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Online Prediction

• Repeated game:

Decision method playsat ∈ A
World revealsℓt ∈ L

• Cumulative loss:̂Ln =
n∑

t=1

ℓt(at).

• Aim to minimizeregret, that is, perform well compared to the best (in
retrospect) from some class:

regret=
n∑

t=1

ℓt(at)

︸ ︷︷ ︸

L̂n

−min
a∈A

n∑

t=1

ℓt(a)

︸ ︷︷ ︸

L∗

n

.

• Data can beadversariallychosen.
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Online Prediction

Minimax regret is the value of the game:

min
a1∈A

max
ℓ1∈L

· · · min
an∈A

max
ℓn∈L

(

L̂n − L∗
n

)

.

L̂n =
n∑

t=1

ℓt(at), L∗
n = min

a∈A

n∑

t=1

ℓt(a).

3



Online Convex Optimization

1. Problem formulation

2. Empirical minimization fails.

3. Gradient algorithm.

4. Regularized minimization

5. Regret bounds
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Online Convex Optimization: Problem Formulation

• A = convex subset ofRd.

• L = set of convex real functions onA.

Example:

• ℓt(a) = (xt · a− yt)
2.

• ℓt(a) = |xt · a− yt|.
• ℓt(a) = − log (exp(a′T (yt)−A(a))), for A(a) the log normaliza-

tion of this exponential family, with sufficient statisticT (y).
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Online Convex Optimization: Examples

Example: Experts.

A = ∆K−1 =

{

w ∈ R
K : wi ≥ 0,

∑

i

wi = 1

}

,

L =
{
a 7→ xT a : x ∈ [0, 1]K

}

NB: Regret is

n∑

t=1

aTt xt −min
a∈A

n∑

t=1

aTxt =

n∑

t=1

aTt xt −min
k

n∑

t=1

xt,k.
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Online Convex Optimization: Examples

Example: Online shortest path.

Fix a directed graphG = (V,E), a sources ∈ V and a sinkt ∈ V .

A = ∆K−1, whereK is number of paths froms to t.

Adversary chooses cost functionft : E → [0, 1],

ℓt(a) = Ep∼a

∑

e∈p ft(e).

• Navigation; cost is

time.

• Scheduling: identify

critical path; cost is

negative time. (Applied Math Programming. Bradley, Hax, and Magnanti. Addison-Wesley. 1977.)
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Online Convex Optimization: Examples

Example: Online shortest path.

Can representA as a convex subset ofRE : a ∈ [0, 1]E s.t.

∑

(i,j)∈E

ai,j −
∑

(k,i)∈E

ak,i =







1 if i = s,

−1 if i = t,

0 otherwise.

ThenaT ft = Ep∼a

∑

e∈p ft(e) = ℓt(a).

Again, best distribution on paths is best path.
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Online Convex Optimization: Example

Choosingat to minimize past losses,at = argmina∈A

∑t−1
s=1 ℓs(a), can

fail. (‘fictitious play,’ ‘follow the leader’)

• SupposeA = [−1, 1], L = {a 7→ v · a : |v| ≤ 1}. Consider:

a1 = 0, ℓ1(a) =
1

2
a,

a2 = −1, ℓ2(a) = −a,

a3 = 1, ℓ3(a) = a,

a4 = −1, ℓ4(a) = −a,

a5 = 1, ℓ5(a) = a,

...
...

• a∗ = 0 showsL∗
n ≤ 0, but L̂n = n− 1.
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Online Convex Optimization: Example

• Choosingat to minimize past losses can fail.

• The strategy must avoid overfitting, just as in probabilistic settings.

• Similar approaches (regularization; Bayesian inference)are

applicable in the online setting.

• First approach: gradient steps.

Stay close to previous decisions, but move in a direction of

improvement.
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Online Convex Optimization: Gradient Method

a1 ∈ A,

at+1 = ΠA (at − η∇ℓt(at)) ,

whereΠA is the Euclidean projection onA,

ΠA(x) = argmin
a∈A

‖x− a‖.

Theorem: ForG = maxt ‖∇ℓt(at)‖ andD = diam(A), the gradient

strategy withη = D/(G
√
n) has regret satisfying

L̂n − L∗
n ≤ GD

√
n.
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Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball)

A = {a ∈ R
d : ‖a‖ ≤ 1}, L = {a 7→ v · a : ‖v‖ ≤ 1}. D = 2, G ≤ 1.

Regret is no more than2
√
n.

(And O(
√
n) is optimal.)

Example: (1-ball,∞-ball)

A = ∆K−1, L = {a 7→ v · a : ‖v‖∞ ≤ 1}.

D = 2, G ≤
√
K.

Regret is no more than2
√
Kn.

Since competing with the whole simplex is equivalent to competing with

the vertices (experts) for linear losses, this is worse thanexponential

weights (
√
K versuslogK).

12



Gradient Method: Proof

Define ãt+1 = at − η∇ℓt(at),

at+1 = ΠA(ãt+1).

Fix a ∈ A and consider the measure of progress‖at − a‖.

‖at+1 − a‖2 ≤ ‖ãt+1 − a‖2

= ‖at − a‖2 + η2‖∇ℓt(at)‖2 − 2η∇t(at) · (at − a).

By convexity,

n∑

t=1

(ℓt(at)− ℓt(a)) ≤
n∑

t=1

∇ℓt(at) · (at − a)

≤ ‖a1 − a‖2 − ‖an+1 − a‖2
2η

+
η

2

n∑

t=1

‖∇ℓt(at)‖2
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Online Convex Optimization

1. Problem formulation

2. Empirical minimization fails.

3. Gradient algorithm.

4. Regularized minimization

• Bregman divergence

• Regularized minimization⇔ minimizing latest loss and
divergence from previous decision

• Constrained minimization equivalent to unconstrained plus
Bregman projection

• Linearization

• Mirror descent

5. Regret bounds
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Online Convex Optimization: A Regularization Viewpoint

• Supposeℓt is linear:ℓt(a) = gt · a.

• SupposeA = R
d.

• Then minimizing the regularized criterion

at+1 = argmin
a∈A

(

η
t∑

s=1

ℓs(a) +
1

2
‖a‖2

)

corresponds to the gradient step

at+1 = at − η∇ℓt(at).
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Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

at+1 = argmin
a∈A

(

η
t∑

s=1

ℓs(a) +R(a)

)

.

The regularizerR : Rd → R is strictly convex and differentiable.

• R keeps the sequence ofats stable: it diminishesℓt’s influence.

• We can view the choice ofat+1 as trading off two competing forces:
makingℓt(at+1) small, and keepingat+1 close toat.

• This is a perspective that motivated many algorithms in the literature.
We’ll investigate why regularized minimization can be viewed this
way.
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Properties of Regularization Methods

In the unconstrained case (A = R
d), regularized minimization is

equivalent to minimizing the latest loss and the distance tothe previous
decision. The appropriate notion of distance is theBregman divergence
DΦt−1

:

Define

Φ0 = R,

Φt = Φt−1 + ηℓt,

so that

at+1 = argmin
a∈A

(

η
t∑

s=1

ℓs(a) + R(a)

)

= argmin
a∈A

Φt(a).
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Bregman Divergence

Definition 1. For a strictly convex, differentiableΦ : Rd → R, the

Bregman divergence wrtΦ is defined, fora, b ∈ R
d, as

DΦ(a, b) = Φ(a)− (Φ(b) +∇Φ(b) · (a− b)) .

DΦ(a, b) is the difference betweenΦ(a) and the value ata of the linear

approximation ofΦ aboutb. (PICTURE)
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Bregman Divergence

Example: For a ∈ R
d, the squared euclidean norm,Φ(a) = 1

2‖a‖2,

has

DΦ(a, b) =
1

2
‖a‖2 −

(
1

2
‖b‖2 + b · (a− b)

)

=
1

2
‖a− b‖2,

the squared euclidean norm.

19


