

Online Prediction

• Repeated game:

Decision method plays $a_t \in \mathcal{A}$ World reveals $\ell_t \in \mathcal{L}$

- Cumulative loss: $\hat{L}_n = \sum_{t=1}^n \ell_t(a_t)$.
- Aim to minimize regret, that is, perform well compared to the best (in retrospect) from some class:

$$\operatorname{regret} = \underbrace{\sum_{t=1}^{n} \ell_t(a_t) - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} \ell_t(a)}_{\hat{L}_n}.$$

• Data can be adversarially chosen.

Online Prediction

Minimax regret is the value of the game:

$$\min_{a_1 \in \mathcal{A}} \max_{\ell_1 \in \mathcal{L}} \cdots \min_{a_n \in \mathcal{A}} \max_{\ell_n \in \mathcal{L}} \left(\hat{L}_n - L_n^* \right).$$

$$\hat{L}_n = \sum_{t=1}^n \ell_t(a_t),$$
 $L_n^* = \min_{a \in \mathcal{A}} \sum_{t=1}^n \ell_t(a).$

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
- 5. Regret bounds

Online Convex Optimization: Problem Formulation

- $\mathcal{A} = \text{convex subset of } \mathbb{R}^d$.
- \mathcal{L} = set of convex real functions on \mathcal{A} .

Example:

- $\bullet \ell_t(a) = |x_t \cdot a y_t|.$
- $\ell_t(a) = -\log(\exp(a'T(y_t) A(a)))$, for A(a) the log normalization of this exponential family, with sufficient statistic T(y).

Online Convex Optimization: Examples

Example: Experts.

$$\mathcal{A} = \Delta^{K-1} = \left\{ w \in \mathbb{R}^K : w_i \ge 0, \sum_i w_i = 1 \right\},$$

$$\mathcal{L} = \left\{ a \mapsto x^T a : x \in [0, 1]^K \right\}$$

NB: Regret is

$$\sum_{t=1}^{n} a_t^T x_t - \min_{a \in \mathcal{A}} \sum_{t=1}^{n} a^T x_t = \sum_{t=1}^{n} a_t^T x_t - \min_{k} \sum_{t=1}^{n} x_{t,k}.$$

Online Convex Optimization: Examples

Example: Online shortest path.

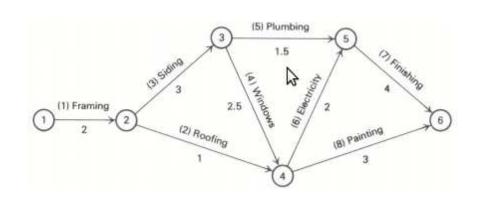
Fix a directed graph G = (V, E), a source $s \in V$ and a sink $t \in V$.

 $\mathcal{A} = \Delta^{K-1}$, where K is number of paths from s to t.

Adversary chooses cost function $f_t: E \to [0, 1]$,

$$\ell_t(a) = \mathbf{E}_{p \sim a} \sum_{e \in p} f_t(e).$$

- Navigation; cost is time.
- Scheduling: identify critical path; cost is negative time.



(Applied Math Programming. Bradley, Hax, and Magnanti. Addison-Wesley. 1977.)

Online Convex Optimization: Examples

Example: Online shortest path.

Can represent \mathcal{A} as a convex subset of \mathbb{R}^E : $a \in [0,1]^E$ s.t.

$$\sum_{(i,j)\in E} a_{i,j} - \sum_{(k,i)\in E} a_{k,i} = \begin{cases} 1 & \text{if } i = s, \\ -1 & \text{if } i = t, \\ 0 & \text{otherwise.} \end{cases}$$

Then $a^T f_t = \mathbf{E}_{p \sim a} \sum_{e \in p} f_t(e) = \ell_t(a)$.

Again, best distribution on paths is best path.

Online Convex Optimization: Example

Choosing a_t to minimize past losses, $a_t = \arg\min_{a \in \mathcal{A}} \sum_{s=1}^{t-1} \ell_s(a)$, can fail. ('fictitious play,' 'follow the leader')

• Suppose $\mathcal{A} = [-1, 1], \mathcal{L} = \{a \mapsto v \cdot a : |v| \leq 1\}$. Consider:

$$a_1 = 0,$$
 $\ell_1(a) = \frac{1}{2}a,$ $a_2 = -1,$ $\ell_2(a) = -a,$ $a_3 = 1,$ $\ell_3(a) = a,$ $a_4 = -1,$ $\ell_4(a) = -a,$ $\ell_5(a) = a,$ $\ell_5(a) = a,$ $\ell_5(a) = a,$

• $a^* = 0$ shows $L_n^* \le 0$, but $\hat{L}_n = n - 1$.

Online Convex Optimization: Example

- Choosing a_t to minimize past losses can fail.
- The strategy must avoid overfitting, just as in probabilistic settings.
- Similar approaches (regularization; Bayesian inference) are applicable in the online setting.
- First approach: gradient steps.
 Stay close to previous decisions, but move in a direction of improvement.

Online Convex Optimization: Gradient Method

$$a_1 \in \mathcal{A},$$

$$a_{t+1} = \Pi_{\mathcal{A}} \left(a_t - \eta \nabla \ell_t(a_t) \right),$$

where $\Pi_{\mathcal{A}}$ is the Euclidean projection on \mathcal{A} ,

$$\Pi_{\mathcal{A}}(x) = \arg\min_{a \in \mathcal{A}} \|x - a\|.$$

Theorem: For $G = \max_t \|\nabla \ell_t(a_t)\|$ and $D = \operatorname{diam}(\mathcal{A})$, the gradient strategy with $\eta = D/(G\sqrt{n})$ has regret satisfying

$$\hat{L}_n - L_n^* \le GD\sqrt{n}.$$

Online Convex Optimization: Gradient Method

Example: (2-ball, 2-ball)

$$\mathcal{A} = \{a \in \mathbb{R}^d : ||a|| \le 1\}, \mathcal{L} = \{a \mapsto v \cdot a : ||v|| \le 1\}. D = 2, G \le 1.$$

Regret is no more than $2\sqrt{n}$.

(And $O(\sqrt{n})$ is optimal.)

Example: $(1-ball, \infty-ball)$

$$\mathcal{A} = \Delta^{K-1}, \mathcal{L} = \{ a \mapsto v \cdot a : ||v||_{\infty} \le 1 \}.$$

$$D=2, G\leq \sqrt{K}.$$

Regret is no more than $2\sqrt{Kn}$.

Since competing with the whole simplex is equivalent to competing with the vertices (experts) for linear losses, this is worse than exponential weights (\sqrt{K} versus $\log K$).

Gradient Method: Proof

Define
$$\tilde{a}_{t+1} = a_t - \eta \nabla \ell_t(a_t),$$
 $a_{t+1} = \Pi_{\mathcal{A}}(\tilde{a}_{t+1}).$

Fix $a \in \mathcal{A}$ and consider the measure of progress $||a_t - a||$.

$$||a_{t+1} - a||^2 \le ||\tilde{a}_{t+1} - a||^2$$

$$= ||a_t - a||^2 + \eta^2 ||\nabla \ell_t(a_t)||^2 - 2\eta \nabla_t(a_t) \cdot (a_t - a).$$

By convexity,

$$\sum_{t=1}^{n} (\ell_t(a_t) - \ell_t(a)) \le \sum_{t=1}^{n} \nabla \ell_t(a_t) \cdot (a_t - a)$$

$$\le \frac{\|a_1 - a\|^2 - \|a_{n+1} - a\|^2}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{n} \|\nabla \ell_t(a_t)\|^2$$

Online Convex Optimization

- 1. Problem formulation
- 2. Empirical minimization fails.
- 3. Gradient algorithm.
- 4. Regularized minimization
 - Bregman divergence
 - Regularized minimization
 ⇔ minimizing latest loss and divergence from previous decision
 - Constrained minimization equivalent to unconstrained plus Bregman projection
 - Linearization
 - Mirror descent
- 5. Regret bounds

Online Convex Optimization: A Regularization Viewpoint

- Suppose ℓ_t is linear: $\ell_t(a) = g_t \cdot a$.
- Suppose $\mathcal{A} = \mathbb{R}^d$.
- Then minimizing the regularized criterion

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + \frac{1}{2} ||a||^2 \right)$$

corresponds to the gradient step

$$a_{t+1} = a_t - \eta \nabla \ell_t(a_t).$$

Online Convex Optimization: Regularization

Regularized minimization

Consider the family of strategies of the form:

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right).$$

The regularizer $R: \mathbb{R}^d \to \mathbb{R}$ is strictly convex and differentiable.

- R keeps the sequence of a_t s stable: it diminishes ℓ_t 's influence.
- We can view the choice of a_{t+1} as trading off two competing forces: making $\ell_t(a_{t+1})$ small, and keeping a_{t+1} close to a_t .
- This is a perspective that motivated many algorithms in the literature. We'll investigate why regularized minimization can be viewed this way.

Properties of Regularization Methods

In the unconstrained case $(A = \mathbb{R}^d)$, regularized minimization is equivalent to minimizing the latest loss and the distance to the previous decision. The appropriate notion of distance is the Bregman divergence $D_{\Phi_{t-1}}$:

Define

$$\Phi_0 = R,$$

$$\Phi_t = \Phi_{t-1} + \eta \ell_t,$$

so that

$$a_{t+1} = \arg\min_{a \in \mathcal{A}} \left(\eta \sum_{s=1}^{t} \ell_s(a) + R(a) \right)$$
$$= \arg\min_{a \in \mathcal{A}} \Phi_t(a).$$

Bregman Divergence

Definition 1. For a strictly convex, differentiable $\Phi : \mathbb{R}^d \to \mathbb{R}$, the Bregman divergence wrt Φ is defined, for $a, b \in \mathbb{R}^d$, as

$$D_{\Phi}(a,b) = \Phi(a) - (\Phi(b) + \nabla \Phi(b) \cdot (a-b)).$$

 $D_{\Phi}(a,b)$ is the difference between $\Phi(a)$ and the value at a of the linear approximation of Φ about b. (PICTURE)

Bregman Divergence

Example: For $a \in \mathbb{R}^d$, the squared euclidean norm, $\Phi(a) = \frac{1}{2} ||a||^2$, has

$$D_{\Phi}(a,b) = \frac{1}{2} ||a||^2 - \left(\frac{1}{2} ||b||^2 + b \cdot (a-b)\right)$$
$$= \frac{1}{2} ||a-b||^2,$$

the squared euclidean norm.