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Online Prediction I

Repeated game:

Decision method plays; € A
World reveald; € L

Cumulative lossL, =) l¢(ay).
t=1

Aim to minimizeregret that is, perform well compared to the best (i
retrospect) from some class:

acA

7 A\ .

regret= Y fy(a;) —min Y 4y(a).
t=1 t=1

Ln Ly

Data can badversariallychosen.




Online Prediction I

Minimax regret is the value of the game:

min max--- min max (Ln — LZ) :
a1€A €L an€A L, €L




Online Convex Optimization'

. Problem formulation
. Empirical minimization fails.
. Gradient algorithm.

. Regularized minimization

. Regret bounds




‘Online Convex Optimization: Problem Formulation I

A = convex subset dR<.

L = set of convex real functions oQA.

Example:
li(a) = (z - a — y;)2.

li(a) = |zs - a — ye.

li(a) = —log (exp(ad'T(y;) — A(a))), for A(a) the log normalizat
tion of this exponential family, with sufficient statisti(y).




‘ Online Convex Optimization: Examples'

Example: EXxperts.

A—AKl—{wERK:wiZO,Zwi— },

L={a—z"a:2ze]0,1]"}

NB: Regret is

mn mn n n
al'r; — min al'z, = al'z, — min Tt k-
t Lt t t Lt t,
acA k
t=1 t=1 t=1 t=1




‘ Online Convex Optimization: Examples'

Example: Online shortest path.

Fix a directed grapli = (V, F), asources € V and asink € V.
A = AK~1 whereK is number of paths from to ¢.

Adversary chooses cost functigh: £ — [0, 1],

le(a) = Epna D ey file)-

o Navigation; cost I

time.
e Scheduling: identify

critical path; cost i¢

negatlve t|me (Applied Math Programming. Bradley, Hax, and Magnanti. &sdd-Wesley. 1977.)




‘ Online Convex Optimization: Examples'

Example: Online shortest path.
Can representl as a convex subset &”: a € [0, 1]% s.t.

(1 ifi=s,

Z i j — Z ar; = 4§ —1 If ¢ =t,

(i,j)€EE (k)€ B 0  otherwise.

\

Thenant - Epwa ZeEp ft(e) — gt( )
Again, best distribution on paths is best path.




‘ Online Convex Optimization: Example'

Choosinga; to minimize past losses; = arg min,c 4 Zi;ll ls(a), can
fall. (‘fictitious play,’ ‘follow the leader’)

Supposed = [-1,1], L={a+— v-a: |v| < 1}. Consider:

CL1:O, Ela

(a)
(a)
(a)
(a)
(a)

a

1
= —qQ
2
pr— —a/7
a’7
pr— —a)
a’7

ls

a

a* = 0 showsL* <0, butL, =n — 1.




‘ Online Convex Optimization: Example'

Choosinga; to minimize past losses can falil.

The strategy must avoid overfitting, just as in probabdisettings.

Similar approaches (regularization; Bayesian infereace)
applicable in the online setting.

First approach: gradient steps.
Stay close to previous decisions, but move in a direction of
Improvement.




Online Convex Optimization: Gradient Method I

a1 € A,
atr1 = 4 (as —nVili(ar)),

wherell 4 is the Euclidean projection aA,

a(x) = in ||z — al|.
A(z) = argmin [z — al

Theorem: ForG = max; ||V (as)|| and D = diam(A), the gradien
strategy withn = D /(G+/n) has regret satisfying

L, — L <GDn.




Online Convex Optimization: Gradient Method I

Example: (2-ball, 2-ball)
A={aeR?: || <1}, L={a—v-a:|v]|<1}.D=2,G<1.
Regret is no more thay/n.

(And O(y/n) is optimal.)

Example: (1-ball,cc-ball)

A=At L={la—v-a:|v||e <1}
D=2G<VK.

Regret is no more thatw/ K n.

Since competing with the whole simplex is equivalent to cetmg with
the vertices (experts) for linear losses, this is worse thgoonential
weights (/ K versuslog K).




Gradient Method: Proof I

Define ar41 = ar — NVl (a),
aty1 = I a(Gry1).

Fix a € A and consider the measure of progréss— al|.

lacsr —all® < flaer — all®

= ||la; — @\\2 -+ 772||V€t(at)||2 —2nVi(ay) - (ar — a).

By convexity,

n

Z(gt(at — 5t

t=1




Online Convex Optimization'

. Problem formulation
. Empirical minimization fails.
. Gradient algorithm.

. Regularized minimization
Bregman divergence

Regularized minimizatiors minimizing latest loss and
divergence from previous decision

Constrained minimization equivalent to unconstrained plu
Bregman projection

Linearization
Mirror descent

5. Regret bounds




Online Convex Optimization: A Regularization Viewpoint

Supposé; is linear:4;(a) = g+ - a
Supposed = R4,

Then minimizing the regularized criterion

— ls( Zlall2
Qp+1 = arg min (nz a||>

corresponds to the gradient step

at4+1 = Q¢ — nVﬁt <Cbt>.




‘ Online Convex Optimization: Regularization'

Regularized minimization

Consider the family of strategies of the form:

t
— i ls .
Gr41 = arg min (77 z_:l (a) + R(@))

The regularize? : R? — R is strictly convex and differentiable.
e R keeps the sequence @fs stable: it diminisheg;’s influence.

e We can view the choice af; . as trading off two competing forces:
making/;(a;. 1) small, and keeping;. ; close toa;.

e This is a perspective that motivated many algorithms initieedture.
We’'ll investigate why regularized minimization can be veshthis

way.




Properties of Regularization Methodz'

In the unconstrained casd (= R?), regularized minimization is
equivalent to minimizing the latest loss and the distandbeqrevious
decision. The appropriate notion of distance isBnegman divergence

Dg, .:
Define
dy = R,
Py = Oy 1 + nly,

SO that

ac A

a;11 = arg min <77 Zﬁs(a) + R(a))

= in ®.(a).
arggrélﬂ t(a)




Bregman Divergencﬂ

Definition 1. For a strictly convex, differentiabl® : R? — R, the
Bregman divergence wi is defined, fow, b € R?, as

Dg(a,b) = ®(a) — (®(b) + V®(D) - (a —D)).

Dg(a,b) is the difference betweeh(a) and the value at of the linear
approximation ofd aboutb. (PICTURE)




Bregman Divergencﬂ

Example: Fora € R%, the squared euclidean nord(a) = 3||a|?,
has

Do(a,t) = 3lal* = (10 +b-(a~ 1))

1
— Zlla — bl
5 lla = ol%

the squared euclidean norm.




