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Convex losses
EXxp-concave losses

Mixable losses

The gradient trick

Specialists




\I\/Ienu'

Today we solve new online learning problems by reducing tteem
problems/algorithms/analyses we already cracked before.




‘ Prediction with Expert Advice I

Prediction with expert advice:

Protocol:

Fort=1,2,...

Experts announce actions, ..., a* € A.

Learner chooses an actiop € A.
Adversary reveals outcome < X.

Learner incurs losg (a;, x;).

Goal: small regret w.r.t. best expert.




Convex: Reduction to dot Ioss

SayL(a,x) is [0, 1]-bounded and convex unfor eachx:
K K
Zwkﬁ(ak,az) > L (Z wkak,x>
k=1 k=1

Then we can feed Heddé = L(af, x;).

Hedge outputsu,. Play the mean actiom, = >, , wFak.

K
> wil(ay,we) > L(an, )

k=1

P
P actual loss

~~

Dot lossw] £,

Dot-loss bound translates to convex bounded Ibss

Rr < /T/2InK




Exp-concave: Reduction to mix Iosj

Definition: We sayL(a, x) is n-exp-concave in o for eachz if

K

k K k_k
E :wke—nﬁ(a ,X) < e—nﬁ(zkzlw a ,JJ)
k=1

Then we can feed the A& = nL(a¥, z;).

The AA outputsw,. Play the mean actiom, = >, , wFal.

K K
—In <Z wfe”ﬁ(af’xt)> > nkL <Z wfaf,azt>
k=1
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Mix-loss bound translates to exp-concave 14ss

In K
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‘ Example: square loss is exp-conca]a

Let’s consider
L(a,z) = (a — )

whered = X = [—1, +1].

Find n such thatl is n-exp-concave by testing negative second derivatije:

0? 2 0 2
—_eMa=e)T — = 9emnle=2) (g — 1)

da? da
= e_”(a_x)Qn (4n(a — x)* — 2)

Highestr such thatin(a — z)? —2 < Oforall a,z. = n = 1/8.

ForX = A=[-Y,+Y]wefindn = 5.



\ Mixable loss: Reduction to mix Ioss

Crux: exp-concavity is convenient bigo strong.

Definition: We sayL(a, x) is n-mixable if

VwVal, . ..,aKﬂaVa: L(a,z) < —ln (Z wke nﬁ(ak,m‘)>

Mapping fromw, a1, . .., ax to withnessa calledsubstitution function.

Mixable losses behave just enough like the mix loss to céueyXA

regret bound through.
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Square loss is mixablﬂ

Square loss is mixable with = % The substitution function is

(=1) =my(+1)
4

mai
— —2

wherem,(z) = _Tlanle wke=n(a"—a)’

See (Movk 1990, Haussler, Kivinen, Warmuth, 1998)




\ Mixable loss Iist'

Popular mixable losses:
mix loss, log loss, entropic loss

square loss, Brier loss

Hellinger lossA = & = [0, 1]:

Lla,n) = 5 (VI—z—VI—a) +(Va - Va)

Characterisation of mixability: (Van Erven, Reid, Willimaon 2012).




Gradient trick '




Gradient trick I

Abusing an algorithm that can compete with the l@2pert to in fact
compete with the besbnvex combination (cf portfolios).

Assume convex losS(w, x):

L(w,x) > ;C(fwt, x) + (w — wy) Ve L(wy, xz

First-order expansion around algorithm’s action

|dea: feed Hedgé; = V., L(w;, x) (May need restriction + translation +
scaling to make thif), 1] bounded). Getv;. Playws;.




Imaginary regret upper bounds the actual regret:

T T
g wgft—mking o =

Caveat: even if original loss was nice (mixable/curved/.the imagined
lossw — wTV,,L(w,, z) islinear. Regret of ordex/T.
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Motivation '

Not all expert predictions/actions available every round.
Missing data

Noise

Too expensive ($/time/memory)

How to model missingness? Adversarial.
How to redefine the objective? New variant of regret.

How to still do something optimal? Upgrade of AA.



‘ Mix loss game with specialistj

Fort=1,2,...

Protocol:

Adversary picks the subsdtf, C [K] of awake specialists.
Learner chooses a distributian, on awake specialistg,;.

Adversary reveals loss vectéy € (—oo, oo]“.

Learner’s loss is thenix loss — In (ZkeAt wt,ke—ﬁt,k)




‘ Objective I

There is no loss when a specialist is asleep.

Regret w.r.t. specialist only measured during rounds wheres awake

R?f = Z —ln(Z wfe€f> — Z z{
te[T]

te[T] kcAy
jEAt jEAt




‘ Specialist AAI

Definition: The Soecialist Aggregating Algorithm (SAA) maintains &
distributionu,. It starts uniformu? = 1/K.
In roundt with awake experts!;, SAA predict with

k
1
wh = up(k|Ay) = Ut {keAs}
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AA update relative to awake s,




What makes this tick.

Consider the sequenég, £, obtained by completing,, £ by assigning
In each round the SAA mix loss to all the asleep specialists.

Theorem: SAA on/ and AA on#¢’ produce identical weighta; = w;
and suffer identical mix loss.

Proof: (homework)




Specialist regret bound for SAAI

The AA has small regret w.r.t. expeit

In K ”'“) ZW
) s

tEA

Adversary more power (sleeping) but regret stillK: SAA minimax for
specialist mix-loss regret game.




Discussiod

Convex bounded losses are easier than dot loss.
Mixable losses are easier than mix loss.

Gradient trick allows us to compete with mixtures (at a cost)

Specialists extension deals with missing data (at no cost).




