
CS281B/Stat241B. Statistical Learning Theory.

Lecture 12.

Wouter M. Koolen

• Tuning Fixed Share for low adaptive regret (See lecture 11 notes).

• Normalised Maximum Likelihood

• Universal Portfolios
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Normalised Maximum Likelihood

Today we look at probability forecasting.

Log loss measures mismatch of probability prediction P and outcome x:

loss(P, x) = − lnP (x)
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Log-loss game

Protocol:

• For t = 1, 2, . . .

− Learner chooses a distribution Pt on outcomes X .

− Adversary reveals outcome xt ∈ X .

− Learner incurs the log loss − lnPt(xt).
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Joint vs predictive viewpoint

Correspondence between

• Joint distribution P (x1, . . . , xT ) and

• Prediction strategy P (xt|x1, . . . , xt−1)

Log loss telescopes:

T∑

t=1

− lnP (xt|x1, . . . , xt−1) = − lnP (x1, . . . , xT )
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Reference strategies : probabilistic model

This lecture: compete with a family of distributions

{Pθ(x1, . . . , xT ) | θ ∈ Θ}

Regret w.r.t. Θ

RT =
T∑

t=1

− lnPt(xt)

︸ ︷︷ ︸

Loss of Learner

− inf
θ∈Θ

− lnPθ(x1, . . . , xT )

︸ ︷︷ ︸

Loss of best parameter θ ∈ Θ

Crucial new ingredient: Learner has white-box access to “experts” Pθ.
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From T rounds to one mega round

Sequential minimax reduces to single-shot

min
P1

max
x1

. . .min
PT

max
xT

RT = min
P

max
x1,...,xT

RT

Idea: joint distribution P already encodes all sequential behaviour
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Minimax game solution

Theorem: The T -round log loss prediction game w. model Θ

min
P

max
xT

RT

(

= max
Q

min
P

E
xT∼Q

RT

)

has value given by the parametric complexity of model Θ

CT (Θ) := ln

(
∑

x1,...,xT

sup
θ∈Θ

Pθ(x1, . . . , xT )

)

,

and both Learner’s minimax and Adversary’s maximin strategy are the

Normalised Maximum Likelihood distribution

PNML
T (x1, . . . , xT ) =

supθ∈Θ Pθ(x1, . . . , xT )
∑

z1,...,zT
supθ∈Θ Pθ(z1, . . . , zT )
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Minimax analysis

For Learner, PNML equalises the regret over all sequences xT :

− lnPNML(xT )− inf
θ

− lnPθ(x
T ) = CT (Θ)

For Adversary, we need to do some work:

max
Q

min
P

E
xT∼Q

[

− lnP (xT )− inf
θ

− lnPθ(x
T )

]

= max
Q

E
xT∼Q

[

− lnQ(xT )− inf
θ

− lnPθ(x
T )

]

To find maximin distribution Q introduce Lagrange multiplier λ

= min
λ

max
Q

E
xT∼Q

[

− lnQ(xT )− inf
θ

− lnPθ(x
T )

]

+λ

(

1−
∑

xT

Q(xT )

)
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At the optimal Q the derivative of the objective vanishes, i.e.

0 = − lnQ(xT ) + 1− λ− inf
θ

− lnPθ(x
T )

from which it follows that

Q(xT ) =
supθ Pθ(x

T )
∑

xT · · · = PNML(xT )

Plugging this in, we find that the value again equals CT (Θ).
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Discussion

• Continuous case: densities w.r.t. reference measure

• Efficient implementation tricky.

• NML strategy depends on final horizon T .

• Infinite parametric complexity ⇒ PNML undefined.

• Sometimes success with Sequential NML (SNML), also known as

Last Step Minimax. In round t play minimiser of

min
Pt

max
xt

− lnPt(xt)− inf
θ∈Θ

− lnPθ(x1, . . . , xt)
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Universal portfolios
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Best fixed weights

Back to the mix loss game without outcomes.

In lecture 9 we minimised regret w.r.t. the best expert.

Today we consider a more ambitious reference class:

Definition: Regret w.r.t. the best fixed weights

RT =
T∑

t=1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)

︸ ︷︷ ︸

Mix loss of Learner

− inf
w

T∑

t=1

− ln

(
K∑

k=1

wke−ℓkt

)

︸ ︷︷ ︸

Mix loss of fixed weights w
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Investment interpretation

Loss ℓk is negative log return of stock k, i.e. ℓkt = − ln
pricekt+1

pricekt

Weight vector w is portfolio: fraction wk of capital invested in stock k.

Mix loss is negative log return of portfolio:

− ln
K∑

k=1

wk
t e

−ℓkt = − ln
K∑

k=1

wk
t

pricekt+1

pricekt

Strategy playing fixed weights w called constantly rebalanced portfolio

Strategy with low regret w.r.t. best w called universal portfolio
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Intuition

Mix loss is convex in w, so minimiser typically in interior of simplex

stock daily return

A 1

2
2 1

2
2 1

2
2 1

2
2

B 3 1

3
3 1

3
3 1

3
3 1

3

Best single stock: overall return 1.

Best portfolio:

max
p

{

4 ln
(
p 1

2
+ (1− p)3

)
+ 4 ln

(
p2 + (1− p) 1

3

)}

results in p = 1

2
and per-round log return

0.357 ≈ ln(1.43)
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Technology

“Experts” are constantly rebalanced portfolios w.

We again have white-box experts.

Close w have close loss.

First idea:

• Run AA on finely discretised simplex.

• Regret: overhead of AA w.r.t. best discretistation point plus overhead

of best discretisation point w.r.t. best portfolio

• Balancing act.

Second idea:

• Run AA with density on simplex (discretise infinitely fine).

• Balancing act only in analysis.
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Cover’s Universal “algorithm”

Put Dirichlet ( 1
2
, . . . , 1

2
) prior on simplex: π1(w) =

∏K
k=1

w
−1/2
k∫

... dw
.

Density in round t:

πt(w) =
π1(w)e−

∑t−1

s=1
− ln

∑K
k=1

wke−ℓkt

∫
· · · dw

=
π1(w)

∏t−1

s=1

(
∑K

k=1
wke−ℓks

)

∫
· · · dw

Actual portfolio wt played:

wt =

∫

wπt(w) dw
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Analysis

Cumulative mix loss of Universal again telescopes:

T∑

t=1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)

=
T∑

t=1

− ln

(
K∑

k=1

(∫

wkπt(w) dw

)

e−ℓkt

)

=
T∑

t=1

− ln

(
∫
(

K∑

k=1

wke−ℓkt

)

πt(w) dw

)

= − ln

(
∫

π1(w)

T∏

t=1

(
K∑

k=1

wke−ℓkt

)

dw

)

However, we cannot bound using a single w.
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Analysis

Regret

RT = sup
w

ln

∏T

t=1

(

∑K

k=1
wke−ℓkt

)

∫

π1(w)
∏T

t=1

(

∑K

k=1
wke−ℓkt

)

dw

≤ sup
w

max
k1,...,kT

ln

∏T

t=1
wkte

−ℓ
kt
t

∫

π1(w)
∏T

t=1
wkte

−ℓ
kt
t dw

= sup
w

max
k1,...,kT

ln

∏T

t=1
wkt

∫

π1(w)
∏T

t=1
wkt dw

≤
K − 1

2
lnT + lnK

The first inequality follows from the log-sum inequality, which is tight when every

round all but one expert suffer infinite loss.

The last inequality is the regret bound for the KT estimator (see Catoni 2004).

Now the worst-case is when k1, . . . , kT identical.
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Discussion

Universal algorithm not efficient. Can integrate in O(TK−1) time.

Algorithms based on sampling. Typically
√
T regret regime.

Can use efficient Online Newton Step, which has O(lnT ) regret provided

the expert losses are bounded (shares do not spike/crash too much per

round).

Transaction costs?

Adaptive regret? Perhaps slow drift instead of abrupt switches?
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