
CS281B/Stat241B. Statistical Learning Theory.
Lecture 11.

Wouter M. Koolen

• Follow the Perturbed Leader (part 2)

• Adaptive Regret and Tracking

1



Follow the Perturbed Leader

Today we look atcombinatorialprediction tasks.

Sets committee formation, advertising

Trees spanning trees (networking), parse trees

Paths (source-sink) route planning

Permutations ordering

2



Crucial assumption: loss is linear

Loss of a


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. . .
︸ ︷︷ ︸

concepts

is thesumof the losses of its
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edges
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. . .
︸ ︷︷ ︸

components

Representconceptas indicatorC ∈ {0, 1}
d out ofd components.
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Combinatorial dot-loss game

Concept class:C = {C1, . . . , CD} ⊆ {0, 1}d.

Protocol:

• For t = 1, 2, . . .

− Learner chooses a distributionWt on conceptsC.

− Adversary reveals component loss vectorℓt ∈ [0, 1]d.

− Learner incurs the dot lossEC∼Wt
[C⊺

ℓt].

Typically D is large, so spelling outWt = (w1, . . . , wD) is intractable.

We allow Learner to randomise and analyse loss in expectation.

4



Expanded vs Collapsed

Expanded: perturb the loss of eachconcept, then pick best concept.

Analysis immediate from experts case, but intractable algorithm.

Collapsed: perturb the loss of eachcomponent, then pick best concept.
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Follow the Perturbed Leader (Concept)

Abbreviate cumulative loss aftert rounds:Lt = ℓ1 + . . .+ ℓt.

Definition: Let X1
t , . . . , X

d
t be random. FPL with learning rateη plays

in roundt by choosing concept

argmin
C∈C

C⊺

(

Lt−1 +
Xt

η

)

We have special-purpose linear optimisation algorithms:

• Sets: linear-time median

• Minimum spanning tree

• Shortest path

• Maximal weighted matching
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FPL loss decomposition

In the Hedge analysis we decomposed dot loss in terms ofmix lossand

mixability gap.

Here we use the loss ofInfeasible Follow the Perturbed Leader, which

plays the leaderafter the upcoming loss.

ELFPL
T = ELIFPL

T
︸ ︷︷ ︸

close to best
for highη

+ELFPL
T − ELIFPL

T
︸ ︷︷ ︸

small
for low η
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IFPL close to best concept

We use the abbreviationM(v) := argminC∈C C
⊺
v. So IFPL plays

M
(

Lt +
X

η

)

in roundt.

Theorem: After T ≥ 0 rounds:

ELIFPL
T ≤ min

C∈C
C⊺

LT +
U(1 + ln d)

η

whereC ⊆ {0, 1}d andU = maxC∈C |C|1.

We first prove (result akin to telescoping for Hedge):

M

(
X

η

)⊺
X

η
+

T∑

t=1

M

(

Lt +
X

η

)⊺

ℓt ≤ M

(

LT +
X

η

)⊺(

LT +
X

η

)

By induction. Base caseT = 0 holds by definition. ForT ≥ 1, we need
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to show:

M

(

LT−1 +
X

η

)⊺ (

LT−1 +
X

η

)

+M

(

LT +
X

η

)⊺

ℓT

≤ M

(

LT +
X

η

)⊺(

LT +
X

η

)

that is

M

(

LT−1 +
X

η

)⊺ (

LT−1 +
X

η

)

≤ M

(

LT +
X

η

)⊺(

LT−1 +
X

η

)

which follows from the definition ofM .

Bringing the “round 0” term to the other side. The IFPL loss isat most

T∑

t=1

M

(

Lt +
X

η

)⊺

ℓt ≤ M

(

LT +
X

η

)⊺(

LT +
X

η

)

−M

(
X

η

)⊺
X

η
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We then use

M

(

LT +
X

η

)⊺(

LT +
X

η

)

≤ M (LT )
⊺

(

LT +
X

η

)

= M (LT )
⊺
LT +

1

η
M (LT )

⊺
X

︸ ︷︷ ︸

≤ 0 sinceX ≤ 0

.

We then continue to observe that

−M

(
X

η

)⊺
X

η
≤

1

η

∣
∣
∣
∣
M

(
X

η

)∣
∣
∣
∣
1

|X|∞

=
U |X|∞

η

The expected maximum ofd standard exponentials is≤ 1 + ln d.
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FPL close to IFPL

Theorem: In each roundt:

E ℓFPL
t − E ℓIFPL

t ≤ ηd

(Per-round bound, like mixability gap bound in Hedge analysis)

Crucial idea: Bound the maximal change in probability of choosing

experti under addition of one trial of losses:

P
(
IFPL
t = i

)
≤ eη P

(
I IFPL
t = i

)

(tedious but straightforward manipulation of exponentialdistributions)

In the combinatorial concepts case we use|ℓ|1 ≤ d to obtain

E ℓFPL
t ≤ eηd E ℓIFPL

t
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And hence, usinge−ηd ≥ 1− ηd andℓ ∈ [0, U ],

(1− ηd)E ℓFPL
t ≤ E ℓIFPL

t so that E ℓFPL
t − E ℓIFPL

t ≤ ηdU.
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Tuning FPL

We proved

ERFPL
T ≤ TdUη +

U(1 + ln d)

η

Theorem: FPL withη =
√

(1+ln d)
dT

guarantees

ERFPL
T ≤ 2U

√

Td(1 + ln d)
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Part 2: Adaptive Regret
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Motivation: non-stationary data

Suppose the data are like this

T/2 rounds T/2 rounds

expert 1 loss 0 loss 1

expert 2 loss 1 loss 0

We want to be as good as expert 2 on the second half of the data.

The Aggregating Algorithm and Hedge donot accomplish this. They

incur loss≈ T/2, not≈ 0, on second half.

Diagnosis: Expert must be ahead incumulativeloss to receive substantial

weight.
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Recap: Mix-loss game

Protocol:

• For t = 1, 2, . . .

− Learner chooses a distributionwt onK experts.

− Adversary reveals loss vectorℓt ∈ (−∞,∞]K .

− Learner incurs the mix loss− ln
(
∑K

k=1 wt,ke
−ℓt,k

)
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New objective

Definition: Theadaptive regreton time interval[t1, t2] is given by

R[t1,t2] =

t2∑

t=t1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)

︸ ︷︷ ︸

Learner’s mix loss in roundt

− min
k

t2∑

t=t1

ℓkt

︸ ︷︷ ︸

best loss for interval

Goal: guarantee low adaptive regret onany interval.
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The Fixed Share Algorithm

Definition: Fixed Sharewith switching rate sequenceα2, α3, . . . plays

uniformwk
1 = 1/K in round1, and updates its weights as

wk
t+1 :=

αt+1

K − 1
+

(

1−
K

K − 1
αt+1

)
wk

t e
−ℓkt

∑K
k=1w

k
t e

−ℓkt
.
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Fixed Share: weight going out

Fraction1− α of weight stays put. The remainder fractionα is

redistributed uniformly to the other experts.

a

b

c

d

a

b

c

d

1− α

α
1

K−1
1

K−1
1

K−1
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Fixed Share: weight coming in

a

b

c

d

a

b

c

d

1− α

α

α

α

1
K−1

1
K−1

1
K−1
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Adaptive regret of Fixed Share

Theorem: Fixed Share with switching ratesα2, α3, . . . guarantees

R[t1,t2] ≤ − ln

(

αt1

K − 1

t2∏

t=t1+1

(1− αt)

)

Proof: The Fixed Share update can be written equivalently as

wk
t+1 = (1− αt+1)

wk
t e

−ℓkt

∑K
k=1w

k
t e

−ℓkt
+

αt+1

K − 1

(

1−
wk

t e
−ℓkt

∑K
k=1 w

k
t e

−ℓkt

)

We next prove by induction that the mix loss telescopes (withoverhead)

t2∑

t=t1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)

≤ −ln

(
K∑

k=1

wk
t1
e−

∑t2
t=t1

ℓkt

)

−ln

t2∏

t=t1+1

(1−αt)
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Base case:t1 = t2 trivial. Induction step:

t2∑

t=t1−1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)

≤ −ln

(
K∑

k=1

wk
t1−1e

−ℓkt1−1

)

−ln

(
K∑

k=1

wk
t1
e−

∑t2
t=t1

ℓkt

t2∏

t=t1+1

(1− αt)

)

≤ −ln

(
K∑

k=1

(

(1− αt1)
(

wk
t1−1e

−ℓkt1−1

))

e−
∑t2

t=t1
ℓkt

t2∏

t=t1+1

(1− αt)

)

= − ln

(
K∑

k=1

wk
t1−1e

−
∑t2

t=t1−1
ℓkt

t2∏

t=t1

(1− αt)

)
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The proof of the theorem is concluded by observing that for any expertk

t2∑

t=t1

− ln

(
K∑

k=1

wk
t e

−ℓkt

)

≤ − ln

(
K∑

k=1

wk
t1
e−

∑t2
t=t1

ℓkt

t2∏

t=t1+1

(1− αt)

)

≤

t2∑

t=t1

ℓkt − ln

(

wk
t1

t2∏

t=t1+1

(1− αt)

)

≤

t2∑

t=t1

ℓkt − ln

(

αt

K − 1

t2∏

t=t1+1

(1− αt)

)

where the last inequality results from

wk
t1

≥
αt

K − 1
.
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Tuning Fixed Share

A constantαt = α results in

R[t1,t2] ≤ ln(K − 1)− lnα− (t2 − t1) ln(1− α)

A slowly decreasingαt = 1/t results in

R[t1,t2] ≤ ln(K − 1) + ln t2

A quickly decreasingαt = 1/(t ln t) results in

R[t1,t2] ≤ ln(K − 1) + ln t1 + ln ln t2

A sum-convergentαt = 1/t2 results in

R[t1,t2] ≤ ln(K − 1) + 2 ln t1 + ln 2

Note: fort1 = 1 replaceln(K − 1) by lnK.
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Fixed Share Wrap-up

Fixed Share (upgrade of Aggregating Algorithm) “tracks” the best expert,

in the sense that it performs almost as well as the best expertlocally.

We found a palette of adaptive regret guarantees, parametrised by the

switching rate sequenceα2, α3, . . ..

It can be shown that Fixed Share is the definitive algorithm for adaptive

regret (in the mix loss game):any adaptive regret guarantee

R[t1,t2] ≤ φ(t1, t2) — no matter how smart the strategy — is reproduced

by Fixed Share (with particular switching rates depending on φ)

Minimaxreplaced byPareto optimality.
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