CS281B/Stat241B. Statistical Learning Theory.
Lecture 10.
Wouter M. Koolen

The Minimax Algorithm for the Dot-loss Game

Follow the Perturbed Leader (part 1)




‘ Recall: Dot-loss gami

Protocol:
Fort=1,2,...
Learner chooses a distributian, on K “experts”.

Adversary reveals loss vectér c [0, 1]%.
Learner’s loss is thdot lossw] ¢;

Definition: Regret afterl” rounds:

T T
Rr = ) wi—miny ly;
k Y

Goal: design an algorithm for Learner that guarantees loyete




‘ Today we take this goal seriouslz'

Minimax regret with aime horizon:

min max - - - min max Rp
w1 £ wr b

turns out to be messy.

However, minimax regret with Bpss budget B of the best expert:

suppso Rr  if ming L% < Bforall T > 0

min max min max - - -
w1 b w2 b —00 0.W.

results in an extremely elegant algorithm.




‘ Sneak peeﬂ

Let L denote the current expert loss vector.

The optimal algorithm:

Start fromL. Repeatedly add uniformly drawn unit loss
e {eq,...,ex}. Play the last expert that goes over the budget




\Menu'

To keep things tractable we restrict to expert logsds

We will perform the analysis in two stages:

1. Unitsé € {61, .. .,BK}

2. Binaryf e {0,1}"

Extending to arbitrary [0, 1] losses could be part of your project.




Straightforward observations'

A dead expert has loss- B.

Adversary may gratuitously assign max. las® dead experts.

Learner cannot benefit by putting weight on a dead expert.
Adversary cannot benefit by keeping the best expertdogs

So we might as well maximise Learners loss.




\ Backward induction I

Let Vi (L) be the amount of loss Adversary can inflict on the Learner
from a starting point where experts have ldss
with the loss of the best expert at most the budget

Base case:

VB(L) 0 if mkin L. > B

Recurrence:

V(L) inf sup{wT€ + V(L + £)}
w £

wherew ranges over distributions on live expefis | L, < B} and
IS {61,...,6K}.




\Units: main claim I

By minimax theorem (Von Neumann)

V(L) = infsupwT™ + V(L + £)

w £

supinf E [wTek + Vg (L + ek)]
p w k~p

Both players havequaliser strategies:

For p, the equaliser isniform: p, = +.

Forw, an equaliser satisfies:
wr + Vp(L + e;) isconstink
solving forw (with >, w; = 1) results in

1+ V(L + e;
o — D K( i) V(L + e




Value of the gamﬂ

1

VB(L) = K KZVB L—l—ek)
k=1

showing that’s (L) is + times the expected length of the game.




‘ Optimal WeightsI

Let wy [L] denote the weight assigned to explerh stateL. The value
expression allows us to rewrite

W = VB(L)—VB(L—I—ek)

(VB(L +ej) — V(L +e;+eg))

Wi [L—|—ej]
=1

|ldea: to samplé ~ w, we may unroll this definition until we hit the base
case ofl surviving expert, wher&z (L) = 1 andVg(L + ex) = 0.




Binary losses: monotonicitz/l

Units e; ande, separately:
Wi [L]T €1 + Wk [L + el]T €s

Combinede; + es:
W [L]T (e1 + e2)

Which is bigger? Claim: separate. l.e.:

wi [L+ei]" es > wy [L]" ey

Every path in which expett is the survivor fromL also works from
L + e;. But there are more such paths.




Equalisation I

The minimax algorithm fomix loss equalises the regret over all loss
sequences in which all but one expert suffer infinite loss.

The minimax algorithm fodot loss equalises the regret over all
sequences of unit losses.




Follow the Perturbed Leader.

Follow-the-Leader is an intuitive algorithm. But its regiehorrible
(Homework).

The reason is that FTL is overly sensitive to small loss dtifiees.

In this lecture we see how FTL can be fixed by adding a pinch of
randomness.

And we see that the solution extends to combinatorial ptedi¢asks
(next lecture).




Follow the Perturbed Leader.

The cumulative loss aftérrounds:L; = €1 + ... + £;.

Definition: Let X~ be random. FPL with learning rateplays in rounc

t by choosing expert
Xk
argmin LY | + L
k n

Question: how to choose the distribution of the perturlveti& * so that
FPL guarantees low regran(expectation/with high probability)?

We use i.i.d. negative-of-exponential distribution:

p(XF =) forz < 0.




‘ FPL loss decompositio:'

In the Hedge analysis we decomposed dot loss in termsxatioss and
mixability gap.

Here we use the loss tfifeas ble Follow the Perturbed Leader, which
plays the leadeafter the upcoming loss.

EL;PL — EL!JEPL _|_EL;PL L ELIZEPL

7

Vv
close to best small
for highn for low n




‘ IFPL close to best exper]

Theorem: AfterT" > 0 rounds:

In K
ELFPY < min Lk + —

k U

We use the abbreviatiol/ (v) := €arg min,, v, - S0 IFPL plays

M (Lt + %) in roundt.

We first prove (result akin to telescoping for Hedge):

X\Tx <& xX\T X\T X
M(U) U+ZM(L75+?) EtSM(LT+—> (LT+—)
t=1

U U

By induction. Base casg = 0 holds by definition. Fofi” > 1, we need




to show:

X\T X
M (LT—l + ?) (LT—l + —

that is

X\T X
M (LT—l + —) (LT—l — —)
i i

X\T X
< M(LT‘F?) (LT—l‘F;)

which follows from the definition of\/.

Bringing the “round 0” term to the other side. The IFPL losatisnost

S ) ez 2) (o 3) ()

U U Ul U




We then use thaX < 0 to drop the middle perturbations, and observe
that

n n n
The expected maximum df standard exponentials1 + In K.

M (X)TX man—Xk




\FPL close to IFPL'

Theorem: In each round:

EgtFPL . EKLFPL < n

(Per-round bound, like mixability gap bound in Hedge analys

Crucial idea: Bound the maximal change in probability of@$iag
expert: under addition of one trial of losses:

P(I;"=4d) < e"P(IT=14)

(tedious but straightforward manipulation of exponendiatributions)

So
Eglt_:PL < e EKLFPL




And hence, using=" > 1 —nand/ € [0, 1],

1—nEF™ < BOPL sothat EFPL_EOFPL <




Tuning FPL I

Theorem: FPL withn =

ER™ < 2¢/T(1+InK)

Constants not as good as tuned Hedge. This can be fixed byingdhg
perturbation distribution (homework).

FPL extends to combinatorial prediction spaces (next feg¢tu




