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Mix loss and dot loss: one-and-a-half algorithm




Online learning focus'

Tight feedback loop (recurring prediction task)

Continuous learning (no training/learning separation)

Adversarial analysis (Prequential principle, individaatjuence.
There is only the data. Also establishes robustness ostai
estimators.)

Emphasis on both computational and statistical performanc

Regret: relative notion of performance




Application domains'

Truly sequential problems:

electricity demand prediction (EDF, also Amazon)
mobile device power management

hybrid cars engine switching

caching

medical trials (bandits)

online advertisement (bandits)

weather forecasting

data compression (CTW)

statistical testing

iInvestment (Universal portfolios)

Input assistants (e.qg. Dasher)

prediction with expert advice (meld human and machine ptex)
online convex optimisation




Wider application I

Big data sets (transport online algorithm state, onlinedicip
conversion)

Convex optimisation

Game theory (online learning methods for approximate éauiin)

General understanding
— Uncertainty and ways to manipulate it
— Makeup of and patterns in data

— Complexity of classes of strategies




‘The menu for today'

Two fundamental and prototypical online learning problems

The mix-loss game

The dot-loss game




‘ Mix-loss game'

Protocol:

Fort=1,2,...
Learner chooses a distributian, on K “experts”.

Adversary reveals loss vectér € (—oo, oo .
Learner’s loss is thenix loss — In (Zle wt,ke—euk)
Instances:
Investment (loss isegative |og-growth)
Data compression (loss tede length)

Probability forecasting (loss Isgarithmic 10ss)




‘ Mix-loss objective'

Obviously we cannot guarantee small loss.

|dea: relative evaluation, i.e. performance close to gzt

Definition: After T rounds of the mix-loss game, thegret is given by

T
—fek | — min g li 1
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Vo . Vo
Learner’s mix loss loss of best expert

Goal: design an algorithm for Learner that guarantees loyete




Mix-loss regret: lower bound (adversary).

Theorem: Any algorithm for Learner can be forced to incur reg
Rr > In K, already inT" = 1 round.

Idea: Look atkjoy = arg ming wy j SO thatwy g, < -

Administer loss killing everyone by

oo k 7é Fiow

i =
0 k= klow

Now Learner’s mix loss equals

K
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‘ The Aggregating Algorithm for mix loss I

Definition: The Aggregating Algorithm plays weights in round:
e Zi;i s,k
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or, equivalentlyw; , = + and

—/
wt,ke t,k

K i (AA, incremental)
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Many names
(Generalisation of) Bayes rule

Exponentially weighted average




Mix-loss regret: upper bound (algorithm) I

Theorem: The regret of the Aggregating Algorithm does not exc
Ry <InK forall T > 0.

Proof: Crucial observation is that mix lossescopes
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and is bounded for eadhby

T
S th’k -+ an
t=1




‘ Dot-loss gamﬂ

Protocol:

Fort=1,2,...
Learner chooses a distributian, on K “experts”.
Adversary reveals loss vectéy c [0, 1]%.

Learner’s loss is thdot lossw] ¢;

Many names:
Decision Theoretic Online Learning
Prediction with Expert Advice

The Hedge setting




Dot-loss objectivﬂ

Definition: Regret afterl” rounds:

T T
RT == E thEt—min E Etk
k Y

Goal: design an algorithm for Learner that guarantees loyete




Hedge aIgorithmI

ldea: re-use AA for mix loss, now with learning raje

Definition: The Hedge algorithm with learning rate n plays weights i
roundt:
e " Zz;i eS»k
Wtk =

) T K t—1 ot
_77 Zs: ES,
S e e

(Hedge)

or, equivalentlyuw, , = + and

Witk = i . (Hedge, incrementa




Hedge analysij

Lemma: The regret of Hedge is bounded by

In K
RTSTQJrn—
8 Uy

K
—1
— In <Z wt,ke"6t7k> +w/ b — — ln <Z Wy, ke_" t, "3>

" k=1

\ - 7 \ - 7
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mix loss mlxablllty gap

The mix loss telescopes, and is bounded by (1) by

i—ln (Zwtke”t’“> -

t=1




The mixability gap is bounded by Hoeffding (recéll, < [0, 1]) by

w/l; — —ln <Zwtke’7 tk) <

(to think about: when is Hoeffding tight?)
And overT rounds this accumulates Tbg

Putting (2) and (3) together yields the desired result.




‘ Hedge tuning'

Theorem: The Hedge regret bound is minimisedjat: |/ 225 where

It states

RT S \/T/QIHK.




Extensions/generalisation’

e Other losses

— Mixable losses naturally reduce to mix-loss game.
— Bounded convex losses naturally reduce to dot-loss game.

Luckiness (not all data are created equal)
Loss of best expert exceptionally small (or big)
Empirical variance of loss of best expert small

Many experts are good

Special/favoured expert is good
ERM/FTL has low regret

Bandits




