
CS281B/Stat241B. Statistical Learning Theory. Lecture 8.
Peter Bartlett

Uniform laws of large numbers.

1. Recall: Rademacher complexity.

(a) Concentration: whp,‖P − Pn‖F ≤ E‖P − Pn‖F + ǫ.

(b) Symmetrization:E‖P − Pn‖F ≤ 2E‖Rn‖F .

(c) ControlE‖Rn‖F .

2. Bounding Rademacher complexity:

(a) Structural results.

(b) Growth function.

(c) Vapnik-Chervonenkis dimension, Sauer’s lemma.
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Recall: Uniform laws and Rademacher complexity

Theorem: ForF ⊂ [0, 1]X , with probability at least1−2 exp(−2ǫ2n),

E‖P − Pn‖F − ǫ ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ǫ.

and
1

2
E‖Rn‖F −

√

log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

Thus,E‖Rn‖F → 0 iff ‖P − Pn‖F
as
→ 0.
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Rademacher complexity: structural results

Theorem:

1. F ⊆ G implies‖Rn‖F ≤ ‖Rn‖G.

2. ‖Rn‖cF = |c|‖Rn‖F .

3. For|g(X)| ≤ 1, |E‖Rn‖F+g −E‖Rn‖F | ≤
√

2 log 2/n.

4. ‖Rn‖coF = ‖Rn‖F , wherecoF is the convex hull ofF .

5. If φ : R×Z hasα 7→ φ(α, z) 1-Lipschitz for allz andφ(0, z) = 0,

then forφ(F ) = {z 7→ φ(f(z), z)}, E‖Rn‖φ(F ) ≤ 2E‖Rn‖F .
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Rademacher complexity: structural results

Proofs:
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Recall: Uniform laws and Rademacher complexity

Lemma: [Finite Class Lemma]Forf ∈ F satisfying|f(x)| ≤ 1,

E‖Rn‖F ≤ E

√

2 log(|F (Xn
1 ) ∪ −F (Xn

1 )|)

n
≤

√

2 log(2ΠF (n))

n
.

Definition: For a classF ⊆ {0, 1}X , thegrowth function is

ΠF (n) = max{|F (xn
1 )| : x1, . . . , xn ∈ X}.

• ΠF (n) ≤ |F |, limn→∞ ΠF (n) = |F |.

• ΠF (n) ≤ 2n. (But then this gives no useful bound onE‖Rn‖F .)

• log ΠF (n) = o(n) impliesE‖Rn‖F → 0.
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Vapnik-Chervonenkis dimension

Definition: A classF ⊆ {0, 1}X shatters{x1, . . . , xd} ⊆ X means that

|F (xd
1)| = 2d.

The Vapnik-Chervonenkis dimension ofF is

dV C(F ) = max {d : somex1, . . . , xd ∈ X is shattered byF}

= max
{

d : ΠF (d) = 2d
}

.
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Vapnik-Chervonenkis dimension: “Sauer’s Lemma”

Theorem: [Vapnik-Chervonenkis]dV C(F ) ≤ d implies

ΠF (n) ≤
d

∑

i=0

(

n

i

)

.

If n ≥ d, the latter sum is no more than
(

en
d

)d
.

So the VC-dimension is a single integer summary of the growthfunction:

either it is finite, andΠF (n) = O(nd), orΠF (n) = 2n. No other growth

is possible.

ΠF (n)







= 2n if n ≤ d,

≤ (e/d)
d
nd if n > d.
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Vapnik-Chervonenkis dimension: “Sauer’s Lemma”

Thus, fordV C(F ) ≤ d andn ≥ d, we have

E‖Rn‖F ≤

√

2 log(2ΠF (n))

n
≤

√

2 log 2 + 2d log(en/d)

n
.
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Vapnik-Chervonenkis dimension: Examples

e.g.:F = {x 7→ 1[x ≤ α] : α ∈ R}.

dV C(F ) = 1.

e.g.:F = {x 7→ 1[x below and to left ofy] : y ∈ R
2}.

dV C(F ) = 2. [PICTURE]

e.g.:F = {x 7→ 1[x ∈ H] : H halfspace}.

Ford = 2, dV C(F ) = 3. [PICTURE]
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Vapnik-Chervonenkis dimension: Example

Theorem: For the class of thresholded linear functions,

F = {x 7→ 1[g(x) ≥ 0] : g ∈ G}, whereG is a linear space,

dV C(F ) = dim(G).

Proof:
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Vapnik-Chervonenkis Lemma: Proof

Fix x1, . . . , xn and consider the table of values ofF (xn
1 ):

x1 x2 x3 x4 x5

f1 0 1 0 1 1

f2 1 0 0 1 1

f3 1 1 1 0 1

f4 0 1 1 0 0

f5 0 0 0 1 0

The cardinality ofF (xn
1 ) is the number of distinct rows.
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Vapnik-Chervonenkis Lemma: Proof

Consider the following shifting transformation of the table: For a column

i, change each1 to a0, unless it would lead to a row that is already in the

table.

Shifting the columns from left to right gives:

x1 x2 x3 x4 x5

f1 0 1 0 0 0

f2 0 0 0 1 1

f3 0 0 0 0 1

f4 0 0 0 0 0

f5 0 0 0 1 0
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Vapnik-Chervonenkis Lemma: Proof

Suppose this shifting operation is performed column-by-column until it

leads to no change of the table. Then:

• The number of rows does not change.

• Consider a row with any1s. Every row with some of those1s

changed to0s is in the table.

13



Vapnik-Chervonenkis Lemma: Proof

• The VC-dimension never increases. (Consider a set that is shattered

after shifting a column. If the set does not include the column, it was

certainly shattered before shifting. If it does include thecolumn, we

need to show that the set was shattered before. Suppose that an entry

was shifted down to a zero. The 1s that remain in the column are

there because there was a row before shifting that is identical but for

a 0 in that column. Those 0s suffice for the shattering, and thenewly

shifted 0 is not needed for the shattering. But those 0s were present

before shifting, so the set was shattered before.)

• So no row has more thand 1s.
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Vapnik-Chervonenkis Lemma: Proof

Thus, the number of rows is no more than
∑d

i=0

(

n
i

)

.

Finally, forn ≥ d,

d
∑

i=0

(

n

i

)

≤
(n

d

)d
d

∑

i=0

(

n

i

)(

d

n

)i

=
(n

d

)d
(

1 +
d

n

)n

(binomial theorem)

≤
(en

d

)d

.
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VC-dimension bounds for parameterized families

Consider a parameterized class of binary-valued functions,

F = {x 7→ f(x, θ) : θ ∈ R
p} ,

wheref : Rm × R
p → {±1}.

Suppose thatf can be computed using no more thant operations of the

following kinds:

1. arithmetic (+, −, ×, /),

2. comparisons (>, =, <),

3. output±1.

Theorem: dV C(F ) ≤ 4p(t+ 2).
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VC-dimension bounds for parameterized families

Proof idea:

Any f of this kind can be expressed as

f(x, θ) = h(sign(g1(x, θ)), . . . , sign(gk(x, θ))) for functionsgi that are

polynomial inθ, and some boolean functionh. (Notice thatk ≤ 2t, and

the degree of any polynomialgi is no more than2t.) Notice that a change

of the value off must be due to a change of the sign of one of thegi.

Hence,ΠF (n) ≤ number of connected components inR
d after the sets

gi(xj) = 0 are removed. We won’t go through the proof of this (it can be

found inNeural Network Learning: Theoretical Foundations). It is rather

similar to the case of linear threshold functions, which we’ll look at next.
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VC-dimension bounds for linear threshold functions

Considerf(x, θ) = sign(wTx− w0), wherex ∈ R
d andθ = (wT , w0).

Thenf can only change value on somex1, . . . , xn for θ such that
wTxi − w0 = 0. Then (provided these zero sets satisfy some genericity
condition),|F (xn

1 )| = C(n, d+ 1), whereC(n, d+ 1) is the number of
cells created inRd+1 whenn hyperplanes are removed.

Inductive argument:C(1, d) = 2. And
C(n+ 1, d) = C(n, d) + C(n, d− 1). To see this, notice that when we
haven planes inRd (and soC(n, d) cells), and we add a plane, the
number of cells that we split in two is preciselyC(n, d− 1), the number
of cells in the new plane (ad− 1-subspace) that the firstn planes define.
Then an inductive argument shows that

ΠF (n) = C(n, d+ 1) = 2
d

∑

i=0

(

n− 1

i

)

. [Schaffli, 1851.]
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