CS281B/Stat241B. Statistical Learning Theory. Lecture 8.
Peter Bartlett

Uniform laws of large numbers.

1. Recall: Rademacher complexity.
(a) Concentration: whp|lP — P, ||r < E||P — P,||r + €.
(b) SymmetrizationE|| P — P,||r < 2E||R,| F .

(c) ControlE||R,||£.

2. Bounding Rademacher complexity:
(a) Structural results.
(b) Growth function.

(c) Vapnik-Chervonenkis dimension, Sauer’s lemma.




Recall: Uniform laws and Rademacher complexitz'

Theorem: For F' C [0, 1], with probability at least — 2 exp(—2¢2n),

B|P - Pllr — € < |[P— Pullp <E|P - Pulp +e

1 log 2
SElIRullr =/ 5= <E|P = Pullr < 2B||Ru |,

Thus,E||R,.||r — 0iff |P — P,||r = 0.




Rademacher complexity: structural results'

Theorem:
1. F C Gimplies||R,||r < ||Rxn|la-
2. [|Ruller = lell| Rull £
3. For[g(X)| < 1, [E|Ry|[p+g — E[[Rullr| < \/21log2/n.

4. ||Rp|lco 7 = ||Rnl| r, Whereco F' is the convex hull off.

5. If ¢ : R x Z hasa — ¢(a, z) 1-Lipschitz for allz and¢(0, z)
then forg(F) = {z = ¢(f(2), 2)}, Bl Rnllg(r) < 2E[|Rul|F-

— 0,




Rademacher complexity: structural results'

Proofs:




Recall: Uniform laws and Rademacher Complexitg

Lemma: [Finite Class Lemma]For f € F satisfying|f(xz)| < 1,

210g([F(X{) U=F(XT)]) _ \/zlog@HF(n)x

IR, < By

Definition: For a clasg’ C {0,1}F, thegrowth function is

p(n) =max{|F(x})|: z1,...,2, € X}.

o Tp(n) < |F), limy, a0 Tp(n) = |F].
o IIx(n) < 2". (But then this gives no useful bound BYR,,|| ».)

o logllp(n) = o(n) impliesE|| R, || — 0.




Vapnik-Chervonenkis dimension'

Definition: AclassF C {0, 1} shatters{xz,...,z4} C X means that
|F(zd)| = 2¢.

The Vapnik-Chervonenkis dimension Bfis

dyc(F) = max {d : somezx,...,xq € X is shattered by}
= max {d : Ip(d) = 2d} :




‘Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Theorem: [Vapnik-Chervonenkis{ly ¢ (F') < d implies

d
1=0

p(n) <> (7;)

If n > d, the latter sum is no more the(ﬁdﬂ)d.

So the VC-dimension is a single integer summary of the grduniation:
either it is finite, and1x(n) = O(n?), orIIz(n) = 2". No other growth
IS possible.
If n <d,
< (e/d)"n? if n>d.




‘Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Thus, fordy o (F') < d andn > d, we have

2log(211 2log2 + 2d1 d
1 < 220 [2log2 + adog(en/

n n




‘Vapnik-Chervonenkis dimension: Examplei

eg.F={x— 1z <al:aeR}
dyvo(F) =1.

e.g..F = {x — 1[x below and to left ofy] : y € R?}.
dyc(F) = 2. [PICTURE]

e.g..F ={x — 1llz € H| : H halfspacé.

Ford = 2, dyc(F) = 3. [PICTURE]




‘Vapnik-Chervonenkis dimension: Example'

Theorem: For the class of thresholded linear functions,

F={xz—1[g(x) > 0] : g € G}, whereG is a linear space,

dyo(F) = dim(Q).

Proof:




‘Vapnik-Chervonenkis Lemma: Proof'

Fix z1,...,x, and consider the table of valuesBtx7):

L1 X2 | 3 | L4 | T5

fi
f2
fs

fa
f5 1010

0] 1
110
1 | 1
0] 1

0
0
1
1
0

IS the number of distinct rows.

1
1
0
0
1

1)

The cardinality ofF'(x




‘Vapnik-Chervonenkis Lemma: Proof'

Consider the following shifting transformation of the tabFor a column
i, change eaclh to a0, unless it would lead to a row that is already in the
table.

Shifting the columns from left to right gives:

J1
[
f3
fa
[




‘Vapnik-Chervonenkis Lemma: Proof'

Suppose this shifting operation is performed column-bysom until it
leads to no change of the table. Then:

The number of rows does not change.

Consider a row with anys. Every row with some of thosks
changed t@s is in the table.




‘Vapnik-Chervonenkis Lemma: Proof'

e The VC-dimension never increases. (Consider a set thaattesad
after shifting a column. If the set does not include the caluihwas
certainly shattered before shifting. If it does include ¢th&umn, we
need to show that the set was shattered before. Suppose thialrg

was shifted down to a zero. The 1s that remain in the column are
there because there was a row before shifting that is ideriiud for
a 0 in that column. Those 0s suffice for the shattering, anaégy
shifted O is not needed for the shattering. But those 0s wesent
before shifting, so the set was shattered before.)

e So no row has more thahils.




‘Vapnik-Chervonenkis Lemma: Proof'

Thus, the number of rows is no more th@flzo ( )

Finally, forn > d,

() =GS0)E)

1

d mn
<%) (1 4 ﬂ) (binomial theorem)

n




‘VC-dimension bounds for parameterized familiei

Consider a parameterized class of binary-valued functions
F={x— f(x,0):0 € RP},

wheref : R™ x RP — {+£1}.

Suppose thaf can be computed using no more thtasperations of the

following kinds:
1. arithmetic ¢, —, %, /),
2. comparisons, =, <),

3. outputEl.

Theorem: dyc(F) < 4p(t + 2).




‘VC-dimension bounds for parameterized familiei

Proof idea:

Any f of this kind can be expressed as

f(x,0) = h(sign(g1(x,0)),...,sign(gx(x,))) for functionsg; that are
polynomial ind, and some boolean functidn (Notice thatt < 2!, and

the degree of any polynomia} is no more thar2?.) Notice that a change
of the value off must be due to a change of the sign of one of¢he
Hence ll1x(n) < number of connected componentsif after the sets
gi(z;) = 0 are removed. We won’t go through the proof of this (it can b
found inNeural Network Learning: Theoretical Foundations). It is rather
similar to the case of linear threshold functions, whichlitebk at next.




\VC-dimension bounds for linear threshold functions.

Considerf(z, ) = sign(w?z — wy), wherez € R? andfd = (w?, wy).
Then f can only change value on someg, .. ., x,, for 6 such that

w!x; —we = 0. Then (provided these zero sets satisfy some genericit
condition),|F(z})| = C(n,d + 1), whereC(n,d + 1) is the number of
cells created iR“*t! whenn hyperplanes are removed.

Inductive argumentC'(1,d) = 2. And

C(n+1,d) =C(n,d)+ C(n,d — 1). To see this, notice that when we
haven planes inR¢ (and soC(n, d) cells), and we add a plane, the
number of cells that we split in two is precisely(n,d — 1), the number
of cells in the new plane (@ — 1-subspace) that the firatplanes define.
Then an inductive argument shows that

[Schaffli, 1851.]




