CS281B/Stat241B. Statistical Learning Theory. Lecture 7.
Peter Bartlett
1. Uniform laws of large numbers

(a) Glivenko-Cantelli theorem proof:
Concentration. Symmetrization. Restrictions.

(b) Symmetrization: Rademacher complexity.

(c) Restrictions: growth function, VC dimension, ...




\ Glivenko-Cantell Theorem'

First example of a uniform law of large numbers.

Theorem: ||F, — F||_ = 0.

Here, F' is a cumulative distribution functiorty, is the empirical
cumulative distribution function,

1=1
whereX,, ..., X,, are i.i.d. with distributionF’, and
[F' = Glloc = sup, [F(t) — G(t)].




Proof of Glivenko-Cantell Theorem.

Theorem: ||F, — F||__ = 0.
Thatis,|P — P,|l¢ = 0, whereG = {z — 1[x > t] : t € R}.

We’ll look at a proof that we’ll then extend to a more generdfisient
condition for a class to be Glivenko-Cantelli.

The proof involves three steps:

1. Concentration: with probability at leabt- exp(—2¢n),
|P = Pullc <E|P = Pl +e

2. SymmetrizationE||P — P, || < 2E| R,||c, where we've defined
theRademacher processk,,(g) = (1/n) > ., €;g(X;) (and this
leads us to consider restrictions of step functigrs GG to the data),

3. Simple restrictions.




\ Proof of Glivenko-Cantelli Theorem: Concentration.

First, sinceg(X;) € {0, 1}, we have that the following function of the
random variables(, ..., X,, satisfies the bounded differences propert
with bound1/n:

sup |Pg — P,g]|
ged

The bounded differences inequality implies that, with @iaibty at least

1 — exp(—2¢2n),

|P— Pyllg < E|IP - Pullg +e




Proof of Glivenko-Cantelli Theorem: Symmetrization'

Second, we symmetrize by replacify by P,g = = >" | g(X]). In

particular, we have
E(|P - P,|c < E|P, — Pullc.

[Why?]




Proof of Glivenko-Cantelli Theorem: Symmetrization'

Now we symmetrize again: for ary € {+1},

n

1
E sup EZ(Q(X ESUP €i(g (Xi))|,

n
geG i=1 9€G i=1

This follows from the fact thak; and X are i.i.d., and so the distribution
of the supremum is unchanged when we swap them. And so irTcyiarti
the expectation of the supremum is unchanged. And sincestinge for
anye;, we can take the expectation over any random choice of;the
We'll pick them independently and uniformly.




Proof of Glivenko-Cantelli Theorem: Symmetrization'

Rademacher complexity

where we've defined thRademacher process
Rn(g) = (1/n) > i €ig(Xa).




Proof of Glivenko-Cantelli Theorem: Restrictions.

We consider the set of restrictions
G(XT) ={(9(X1),...,9(X,)) : g € G}

1 < 1 <
2E||R,,||lc = 2E o .q(X;)| = 2EE o (X)) || X7 -
sl =~ 2Esmp |3 a0 = 228 | sup| £ S o) x|

n
9€G |0 21 9€G |

But notice that the cardinality @i (X7*) does not change if we order the
data. That is,

G(X1,.... X)) = |G(X 1y, X))
H X(1)>t 1[X(n)2t]):t€RH§n—l—1,

whereX ) < --- < X, is the data in sorted order (and £9;) > ¢
implies X ;1) > 1).




Proof of Glivenko-Cantelli Theorem: Rademacher Averag

Finally, we use the following result.

2
Lemma: [Finite Classes]For A C R™ with R? = otacA Ha”2,

n
2R?log | A
E sup — Zezaz_\/ g | ‘
n

acA T

Hence

] — 2R21og(2|A
Esup €;0;| = sup — g €;Q; S\/ o8 (2| |)
n
=1

acA | T i1 aEAU—A n




Proof of Rademacher Averages Resu'




Proof of Glivenko-Cantell Theorem'

For the clasg of step functionsR < 1/4/n and|A| < n + 1. Thus, with
probability at leasi — exp(—2¢%n),

log(2 1
P Palo <[220+ D),
n

By Borel-Cantelli,|P — P, ||¢ =5 0.




Recall: Glivenko-Cantelli Classes

Definition: F'i1s aGlivenko-Cantelli classfor P if

| P, = Pl|lr 0.

GC Theorem:
P, — Plla 0,

forG ={x+— 1z <0]:0 € R}.




Uniform laws and Rademacher complexitﬂ

The proof of the Glivenko-Cantelli Theorem involved thréeps:

1. Concentration of P — P, || about its expectation.

2. Symmetrization, which bounds|| P — P, || ¢ in terms of the

Rademacher complexity @, E|| R, || .

3. A combinatorial argument showing that the set of restmst of ' to
X7 1s small, and a bound on tlieademacher complexityusing this

fact.

We’'ll follow a similar path to prove a more general uniformnwlaf large
numbers.




Uniform laws and Rademacher complexitﬂ

Definition: The Rademacher complexityof F' is E||R,| r, where thg
empirical process$t,, is defined as

Ra(f) = = 3 ef(X0),

n -
1=1

where theeq, ..., ¢, are Rademacher random variables: i.i.d. unifor
{£1}.

Note that this is the expected supremum of the alignmentdmxivhe
random{=+1}-vectore and F'(X7"), the set ofr-vectors obtained by

restrictingF’ to the sampleX,, ..., X,,.




Uniform laws and Rademacher complexitﬂ

Theorem: For anyF, E||P — P,||r < 2E||R,||F.

log 2
5% < B||P - Pu||r < 2E|| Ry,

and, with probability at least — 2 exp(—2¢2n),

E||P - Pllr — € < |[P— Pullr < E|P - Pullr +e

Thus,E||R,||r — 0iff |P — P,||r = 0.

That is, the sup of the empirical proceBs- P,, Is concentrated about its
expectation, and its expectation is about the same as tleetdpsup of
the Rademacher procegs,.




Uniform laws and Rademacher complexitﬂ

The first result is the symmetrization that we saw earlier:
E|P = P[lp <E|P, — PullF

<2E||R,| F.

whereR,, is the Rademacher proceBs (f) = (1/n) > ., & f(X;).




Uniform laws and Rademacher complexitﬂ

The second inequalitydésymmetrization) follows from:

1 n n

BlR e <B| -3 e (f(X) ~Ef(X)| +B||- Y aBf(X)
i=1 F 1=1 F

1 n n

S e ) = )| +IPIE| Y e

n -

3

1=1

2log 2

<2E|P, - Pl|p+ -




Uniform laws and Rademacher complexitﬂ

And this shows that P — P, ||z =3 0 impliesE|| R, ||r — 0.

The last inequality follows from the triangle inequalitycatie Finite
Classes Lemma.

And Borel-Cantelli implies thaE|| R,, || — 0 implies|| P — P,||r = 0.




Controlling Rademacher complexity'

So how do we contrdE|| R, || #? We’'ll look at several approaches:

1. |F(X7)| small. (max |F(z7)]| is thegrowth function)

2. For binary-valued functions: Vapnik-Chervonenkis dnsien.
Bounds rate of growth function. Can be bounded for paranzetbr
families.

3. Structural results on Rademacher complexity: Obtaibmgnds for
function classes constructed from other function classes.

4. Covering numbers. Dudley entropy integral, Sudakov fdveind.

5. For real-valued functions: scale-sensitive dimensions




‘Controlling Rademacher complexity: Growth function I

For the class of distribution function&, = {z — 1|z < o] : a € R}, we
saw that the set of restrictions,

G(xy) ={(g(1), .-, 9(xn)) : g € G}

s always smalliG(z7)| < Ilg(n) =n + 1.

Definition: For a clasg” C {0, 1}, thegrowth function is

Ip(n) =max{|F(x7})|: z1,...,2, € X}.




‘Controlling Rademacher complexity: Growth function I

Lemma: [Finite Class Lemma]For f € F satisfying|f(x)| < 1,

B[Ry r < E\/ 2log([FOX) U —F X))

- \/2log<2E|F<X?>|>.

n

'whereR,, is the Rademacher process:

n

%Z@f(Xz‘)-

and F'(X7{") is the set of restrictions of functions mto X;, ...




‘Controlling Rademacher complexity: Growth function I

maXgcA HCLH%

Proof: ForA C R™ with R? = . we saw that

n

1 — 2R2log(|AU —A
Esup —Zeiai <\/ Og(| |)

n o n
acA | T =y

Here, we havel = F(X7), soR < 1, and we get

EHRnHF = EE [HRnHF(Xf)‘Xla - 7Xn}

“E \/2log<2|:<X?>\>

< | [ZERECIF )

n

- \/210g<2E|F<X?>\>.




‘Controlling Rademacher complexity: Growth function I

e.g. For the class of distribution functiorts,= {x — 1[z > o] : a € R},
we saw thatG(z})| < n + 1. SOE|R,||r < \/QIOg%”“).

e.g. F parameterized b¥ bits:
If ¢ maps t00, 1],
F = {m — g(x,0):0 € {O,l}k},
|F(z7)] < 2%,

20k + 1) loo 2
EHRnHFg\/< )log2

n

Notice thatE|| R, || — 0.




\ Growth function I

Definition: For a clasg” C {0, 1}, thegrowth function is

Ip(n) =max{|F(z})|: z1,...,2, € X}.

E|R.|r < \/210g(2?13F(n))_

Hp(n) < |F|,lim,_ o p(n) = |F|.

I1x(n) < 2". (But then this gives no useful bound BY( R, || #.)

Notice thatlog IT(n) = o(n) impliesE||R,, || — 0.




Vapnik-Chervonenkis dimension'

Definition: A classF C {0,1} shatters{z,...,24} C X means th§
F(2)] = 2¢.

The Vapnik-Chervonenkis dimension Bfis

dyc(F) = max {d: somezxy,...,xq € X is shattered by}
= max {d : Ip(d) = Qd} :




‘Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Theorem: [Vapnik-Chervonenkis{ly ¢ (F') < d implies

d
=0

Hp(n) < (7;)

1

If n > d, the latter sum is no more the(ﬁdﬂ)d.

So the VC-dimension is a single integer summary of the grduniation:
either it is finite, andIx(n) = O(n?), orllp(n) = 2". No other growth
IS possible.
If n <d,
< (e/d)"n? if n>d.




‘Vapnik-Chervonenkis dimension: “Sauer’s Lemma”'

Thus, fordy o (F') < d andn > d, we have

2log(211 2log2 + 2d1 d
1 < 220 [2log2 + adog(en/

n n




