CS281B/Stat241B. Statistical Learning Theory. Lecture 6.
Peter Bartlett

1. Concentration inequalities

(a) Martingale methods.

2. Uniform laws of large numbers

(a) Motivation.

(b) Glivenko-Cantelli theorem.




Martingale Difference Sequences: the Doob constructio'

Define X =(X1,...,Xn),
X =(X1,...,X;),

YO — Ef( )7
Y; = B[f(X)|X1].

Then f(X)_Ef( ):Yn_

whereD; =Y, — Y;_;. Also, Y] is amartingale w.r.t. X;, and hencé),
IS amartingale difference sequence[Why?]




Concentration Bounds for Martingale Difference Sequenc

Theorem: Consider a martingale difference sequeiige (adapted to i
filtration F,,) that satisfies

for |\ < 1/b, a.s..E[exp(AD,)| Fn_1] < exp(A\02/2).

Then> " | D; is sub-exponential, witho?,b) = (3.7, 07, max; b;).

=1 1

P ZD >+| < 2eXP(—t2/(202)) ifoStSO'Q/b
i o= B 2exp(—t/(2b)) if t > 02/[).




Concentration Bounds for Martingale Difference Sequenc



Concentration Bounds for Martingale Difference Sequenc

Theorem: Consider a martingale difference sequentghat a.s. falls in
an interval of lengthB;. Then

22
P(ZDZ- >t> < 2exp (_Z BZ)'




‘ Bounded Differences Inequalitz/l

Theorem: Supposef : X" — R satisfies the followindoounded differ-
ences inequality
forall zq,...,z,, 2, € X,

|f(331, ... 73771) — f(l‘l, ... 7$i—17$;7$i—i—17 .. ,$n)| S Bz

P(If(X) — BA(X)| > 1) < 2exp (— 22?32) |




‘ Bounded Differences Inequalitz/l

Proof: Use the Doob construction.

D; =Y, —Y; 1,

f(X)—Ef(X) = ZDz




Examples: Rademacher Average'

For a setd C R"™, consider

Z = supe,a),
acA
wheree = (¢4, ...€,) IS a sequence of i.i.d. uniforgi:1} random
variables. Define thRademacher complexityof A asR(A) = EZ/n.
[This is a measure of the size df] The bounded differences approach
implies thatZ is concentrated arounil( A):

Theorem: Z is sub-Gaussian with paramete} . sup, . 4 a7

,Z‘, "

Proof:
?




Examples: Empirical Processei

For a clasg of functionsf : X — [0, 1], suppose thak,..., X, X
are I.1.d. onX’, and consider

1
Z =sup |Ef(X)— — )| =:||P — P,
feF n -

emp proc||

If Z converges t®, this is called ainiform law of large numbers. Here,
we show thatZ is concentrated aboilit”:

Theorem: Z is sub-Gaussian with parametefn.

Proof:
?




‘ Uniform laws of large numbers: Motivation I

We are interested in the performance of empirical risk mination:
Choosef,, € F to minimizeR(f).

How doesR( f,,) behave?
Define f* = argmin e r R(f).
How does the excess risk( f,,) — R(f*) behave?

We can write

R(fa)=R(f*) = |R(fa) = R(fa) |+ | R(f2) = R(F)|+ | R(F) = R(F)




‘ Uniform laws of large numbers: Motivation I

One of these terms is a difference between a sample averdgaan
expectation for the fixed functiofx, y) — ¢(f*(x), y):

R(f*) - Zf — PUf(X),Y).

The law of large numbers shows that this term converges tg aad with
iInformation about the tails of( f*(X), Y) (such as boundedness), we ca
get bounds on its value.




‘ Uniform laws of large numbers: Motivation I

R(f,) — R(f*) is non-positive, becausg, is chosen to minimize.

The other differenceR(f,,) — R(f.), is more interesting. For any fixed
f, this difference goes to zero. Bfit is random, since it is chosen using
the data. An easy upper bound is

A

R(f,) — R(f,) < sup |R(f) — R(f)|,

feF

and this motivates the study of uniform laws of large numbers




\ Glivenko-Cantell Theorem'

First example of a uniform law of large numbers.

Theorem: ||F, — F||_ = 0.

Here, F' is a cumulative distribution functiorty, is the empirical
cumulative distribution function,

1=1
whereX,, ..., X,, are i.i.d. with distributionF’, and
[F' = Glloc = sup, [F(t) — G(t)].




\ Glivenko-Cantell Theorem'

Why uniform law of large numbers?

| Fn — Fl| o = sup [Fy(z) — F(z)]

= sup |P,(X > z) — P|X >z

as

— 0,

whereP, is the empirical distribution that assigns mags to eachX;.

The law of large numbers says that, forallP, (X > z) &3 P(X > z).
The GC Theorem says that this happens uniformly aver




\ Glivenko-Cantell Classes

Definition: F'is aGlivenko-Cantelli classfor P if

P
sup |P,f — Pf|=:|P, — P||lr — 0.
feEF

Here, P is a distribution onX’, X, ..., X,, are drawn i.i.d. fromP, P,, IS
the empirical distribution (which assigns mdgs: to each of
X1,...,X,), I'is aset of measurable real-valued functionstbwith
finite expectation undeP, P,, — P is anempirical process that is, a
stochastic process indexed by a class of functiBnand

| P — PllF :=supsep |Pnf — Pfl.

The GC Theorem is a special case, with= {1[x > t] : t € R} (and

with the stronger conclusion that convergence is almog-suve say that
such anF' is a ‘strong GC class’).




\ Glivenko-Cantell Classeﬂ

Not all F' are Glivenko-Cantelli classes. For instance, recall

F={llzr € S|:SCR, |S| < o0}.

Then for a continuous distributioR, Pf = 0 forany f € F', but
supscp P, f = 1forall n. So althoughP,, f =5 Pf forall f € F, this
convergence is not uniform ovét. I is too large.




