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1. Concentration inequalities
(a) Markov, Chebyshev

(b) Chernoff technigue
(c) Sub-Gaussian
(d) Sub-Exponential




‘ Risk bounds and uniform convergenci

For empirical risk minimization strategies, which chogse= F' to
minimize

A

R(f) = BUF(X), V) = ST (X0, Vi),

how does the risi( f,,) = E{(f,(X),Y) behave?
DoesR(f,) — infserp R(f)?
How rapidly?




‘ Risk bounds and uniform convergenci

If we consider a single prediction ruje we can appeal to the law of large
numbers:

—Zz Y;) — EL(f(X),Y).

And, for instance¢ bounded implie®r(|R(f) — R(f)| > ¢) decreases
exponentially inn.

For this, we’ll studyconcentration inequalities, which bound the
probability of deviations of random variables from theipegtations. But
because we use data to chogsewe need something stronger than a la
of large numbers.




‘ Risk bounds and uniform convergenci

Example:
For pattern classificatiorM{ = {0, 1}), considerF’ = F; U F_ with

Fy = {1[5] : [S] < oo},
Fo={1]8]:]X — 8| < o0}

Then for a continuous distribution oti with P(Y = 1|.X) = 0.9,

B {0.1 for f € F_,

0.9 forfe F,.

But for any sample, there is an empirical risk minimiZere F', with

R(f) =0,




‘ Risk bounds and uniform convergenci

If the setF’ is finite, wecan relate risk to empirical risk:

Theorem: For/(f(z),y) € {0, 1},

Pr <3f c FstR(f)=0andR(f) > e) < |Fle=em.




‘ Risk bounds and uniform convergenci

So anyF that is parameterized using a fixed number of bits satisfies t
uniform convergence property.




‘ Concentration inequalities'

We’ll get back to uniform convergence properties later. k@, we'll
focus on tail probabilities liké?('T;, > t) for some statistid;,. We could
consider asymptotic results—like the central limit theore

lim P(X, > p+oynt)=1— d(t).

n—oo

This tells us what happens asymptotically, but we usuaNselzafixed
sample size. What can we say in that case? For example, what is

P (‘Xn — ,u’ > e)?

These areoncentration inequalities i.e., bounds on this kind of
probability thatX,, is concentrated about its mean.




‘ Concentration inequalities'

We’'ll look at several concentration inequalities, thatlexXprvarious kinds
of information about the random variables.

1. Using moment bounds:
Markov (first), Chebyshev (second)

2. Using moment generating function bounds, for sums ofpeddent

I.V.S:
Chernoff; Hoeffding; sub-Gaussian, sub-exponential oamd

variables: Bernstein.

3. Martingale methods:
Hoeffding-Azuma, bounded differences.




Markov’s Inequality I

Theorem: ForX >0a.s.EX < oo,t > 0:
EX

P(X>1t) <

EX = /XdP
2/ rdP(x)
t




Moment Inequalities'

Considerl X — EX| in place ofX.

Theorem: For EX < oo, f : [0,00) — [0,00) strictly monotonic,
Ef(|X —EX]|) <oo,t > 0:

P(X —EX| > t) = P (f(IX — EX| > f(1))

_ BJ(X -EX))
RN




Moment Inequalities'

e.g.,f(a) = a* givesChebyshev’s inequality:

Theorem:

e.g.,f(a) = a*:

Theorem:




Chernoff bounds.

Usea — exp(Aa) for A > 0:

Theorem: FOorEX < oo, Eexp(A(X — EX)) < oo, t > 0:

P(X —EX >t) =P (exp(A(X — EX)) > exp(At))
- Eexp(AM(X — EX))
- exp(At)
=e MMx_,(N).

Mx_,,(A) = Eexp(AM(X — p)) (for p = EX) is the
moment-generating functionof X — pu.




‘ Example: Gaussiad

FOF)(PV]V(M,OQ)PN[X_“(A)iS

Eexp(AM(X —p)) = exp Az — 27%/(207)) d

VQWU

Eﬁq) (N0?/2 — (/o — X\0)?/2) du

VQWU
::exp(A202/2)27§; /iOOeX$>(—(y-—,Xa)2/2)ci
= exp(\?0?/2),

for the change of variablg = = /0.




‘ Example: Gaussiad

log P(X — pu>t) < —sup (At —log Mx_,(N))
A>0

)\2 2
= —sup ()\t _ 29 )
A>0 2

t2
202’

using the optimal choicé = t/0% > 0.




‘ Example: Gaussiad

For X ~ N(u,0?),it's easy to check that the Chernoff technique gives f

tight bound:
t2

1 _
lim —log P(X,, —p>1t) =

n—oo M 202"




‘ Example: Bounded SupportI

Theorem: [Hoeffding’s Inequality] For a random variablg € |a, b] with
EX = pand) € R,

A2 (b — a)?
P 8 °

log Mx_,(\) <

Note the resemblance to a Gaussiafr? /2 vs A% (b — a)? /8. (And since
P has support ifa, b], VarX < (b — a)?/4.)




Example: Hoeffding’s Inequality Proof'

A(N) = log (Ee™) = log ( / e dP(x)) ,

whereX ~ P. ThenA is the log normalization of the exponential family
random variableX , with reference measur and sufficient statistic.
SinceP has bounded suppor,(\) < oo for all A\, and we know that

Define

A/()\) = E(X)\), A”()\) = Var(X,\).

SinceP has support ifia, b], Var(X,) < (b — a)?/4. Then a Taylor
expansion about = 0 (at this value of\, X, has the same distribution as
X, hence the same expectation) gives

A (b —a)?

A(N) < AEX
(\) SABX + T




\ Sub-Gaussian Random Variablej

Definition: X is sub-Gaussianwith parameter? if, for all
A € R,

\2o?

2

log Mx (M) <

Note:
Gaussian is sub-Gaussian.

X sub-Gaussian ift X sub-Gaussian.




\ Sub-Gaussian Random Variablej

Note:
X sub-Gaussian implies
P(X —p>1t) < exp(—t?/(207)),
P(X — p < —t) < exp(—t?/(207)),
P(|X — p| > t) < 2exp(—t?/(20?)).




\ Sub-Gaussian Random Variablej

Note:

X1, X, independent, sub-Gaussian with parametérs 3, implies
X, + X, sub-Gaussian with parametef + o3.

Indeed, for independetk;, X5,
MX1—|—X2 — Eexp <>‘(X1 + XQ))

= Eexp <)\X1) Eexp ()\XQ)
= Mx, Mx,.

SOlOg MX1—|-X2—,M — 10g MX1—,u1 + lOg MXQ—,UQ < >‘2<O-% + O-%)/2




‘ Hoeffding Bound'

Theorem: For Xq,..., X, independentEX; = u,;, X; sub-Gaussia
with parameter?, then for allt > 0,

g (Z(X )2 t) =P (‘zz:?: ) |

e.g., forEX; = 0, X; € [a,b], we haves? = (b — a)?/4 so

= (% iXi > t) < exp (— (bQiLt;Q) |

1=1




‘ Sub-Exponential Random Variablej

Definition: X is sub-exponentialwith parametergo?, b) if, for all ||
1/b,
\2o?

2

log MX—;LO‘) <

Examples:

Sub-GaussiaX with parameter? is sub-exponential with
parameterso?, b) for all b > 0.




‘ Sub-Exponential Random Variablej

Theorem: For X sub-exponential with paramete(is?, b),

exp (—%) if 0 <t <o?/b,
- if t > o2 /0.

P(X>u+t)<{

CXp (—2—)




‘ Sub-Exponential Random Variableﬂ

Proof: Assume: = 0. As before,

P(X >t) < exp(—At)Eexp(AX)

N2 o2
< exp (—)\t + 5 )

provided0 < )\ < 1/b. As before, we optimize the choice &f But now,
it is constrained t¢0, 1/b). Without this constraint, the minimum occurs
at\* = t/0?. So if

t/o* < 1/b <=t < o*/b,

we have

P(X >t) < exp(—\'t+ A\202/2) = exp(—t2/(20?)).




‘ Sub-Exponential Random Variableﬂ

If ¢ is larger, the minimum occurs at= 1/b (since the function
L —At+ 22 s monotonically decreasing if, A*], which contains

2
[0, 1/b]). Substituting this\ gives

P(X >1t) <exp(—t/b+0°/(2b°)) < exp(—t/(2b)),

where the second inequality follows fran® o2 /b.




‘ Sub-Exponential Random Variablej

Example: X variances?, bounded] X — | < b.

oo

N o? L E(X — p)k
EexpAM(X —p)) =1+ 5 +kz_3)\ "

)\2 2 )\2 2 0 B
<1+ 27+ 2N ()R

- 2 2
k=3

And for |\| < 1/b, this is no more than

)\20.2 )\20'2
E X — <1 < .
exp(A( p) <1+ 2(1—b|A|)) — OXP (2(1 — b|)\|)>




‘ Sub-Exponential Random Variableﬂ

Soif|A| <1/(2b),1—b|A| >1/2and

Eexp(A(X — p)) < exp (\0?).

Thus, X is sub-exponential with parametdtsr?, 2b).




\ Overview I

1. Concentration inequalities
(a) Markov, Chebyshev

(b) Chernoff technigue

(c) Sub-Gaussian
(d) Sub-Exponential




