CS281B/Stat241B. Statistical Learning Theory. Lecture 4. Peter Bartlett

- 1. Concentration inequalities
 - (a) Markov, Chebyshev
 - (b) Chernoff technique
 - (c) Sub-Gaussian
 - (d) Sub-Exponential

For empirical risk minimization strategies, which choose $f_n \in F$ to minimize

$$\hat{R}(f) = \hat{E}\ell(f(X), Y) = \frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i),$$

how does the risk $R(f_n) = E\ell(f_n(X), Y)$ behave?

Does
$$R(f_n) \to \inf_{f \in F} R(f)$$
?

How rapidly?

If we consider a single prediction rule f, we can appeal to the law of large numbers:

$$\frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y_i) \to \mathrm{E}\ell(f(X), Y).$$

And, for instance, ℓ bounded implies $\Pr(|\hat{R}(f) - R(f)| > \epsilon)$ decreases exponentially in n.

For this, we'll study *concentration inequalities*, which bound the probability of deviations of random variables from their expectations. But because we use data to choose f_n , we need something stronger than a law of large numbers.

Example:

For pattern classification ($\mathcal{Y} = \{0, 1\}$), consider $F = F_+ \cup F_-$ with

$$F_{+} = \{1[S] : |S| < \infty\},$$

$$F_{-} = \{1[S] : |\mathcal{X} - S| < \infty\}$$

Then for a continuous distribution on \mathcal{X} with P(Y=1|X)=0.9,

$$R(f) = \begin{cases} 0.1 & \text{for } f \in F_{-}, \\ 0.9 & \text{for } f \in F_{+}. \end{cases}$$

But for any sample, there is an empirical risk minimizer $f_n \in F_+$ with $\hat{R}(f) = 0$.

If the set F is finite, we *can* relate risk to empirical risk:

Theorem: For
$$\ell(f(x), y) \in \{0, 1\}$$
,

$$\Pr\left(\exists f \in F \text{ s.t. } \hat{R}(f) = 0 \text{ and } R(f) \ge \epsilon\right) \le |F|e^{-\epsilon n}.$$

Proof:

$$\Pr\left(\bigcup_{f\in F} \{\hat{R}(f) = 0, R(f) \ge \epsilon\}\right) \le \sum_{f\in F} \Pr\{\hat{R}(f) = 0, R(f) \ge \epsilon\}$$

$$\le |F| \max_{f\in F} \Pr\{\hat{R}(f) = 0, R(f) \ge \epsilon\}$$

$$\le |F|(1-\epsilon)^n$$

$$\le |F| \exp(-n\epsilon).$$

So any F that is parameterized using a fixed number of bits satisfies this uniform convergence property.

Concentration inequalities

We'll get back to uniform convergence properties later. For now, we'll focus on tail probabilities like $P(T_n \ge t)$ for some statistic T_n . We could consider asymptotic results—like the central limit theorem:

$$\lim_{n \to \infty} P(\bar{X}_n \ge \mu + \sigma \sqrt{n}t) = 1 - \Phi(t).$$

This tells us what happens asymptotically, but we usually have a fixed sample size. What can we say in that case? For example, what is

$$P\left(\left|\bar{X}_n - \mu\right| \ge \epsilon\right)?$$

These are **concentration inequalities**, i.e., bounds on this kind of probability that \bar{X}_n is concentrated about its mean.

Concentration inequalities

We'll look at several concentration inequalities, that exploit various kinds of information about the random variables.

1. Using moment bounds:

Markov (first), Chebyshev (second)

2. Using moment generating function bounds, for sums of independent r.v.s:

Chernoff; Hoeffding; sub-Gaussian, sub-exponential random variables; Bernstein.

3. Martingale methods:
Hoeffding-Azuma, bounded differences.

Markov's Inequality

Theorem: For $X \ge 0$ a.s., $\mathbf{E}X < \infty$, t > 0:

$$P(X \ge t) \le \frac{\mathbf{E}X}{t}.$$

Proof:

$$\mathbf{E}X = \int XdP$$

$$\geq \int_{t}^{\infty} xdP(x)$$

$$\geq t \int_{t}^{\infty} dP(x)$$

$$= tP(X \geq t).$$

Moment Inequalities

Consider $|X - \mathbf{E}X|$ in place of X.

Theorem: For $\mathbf{E}X < \infty$, $f:[0,\infty) \to [0,\infty)$ strictly monotonic, $\mathbf{E}f(|X-\mathbf{E}X|) < \infty$, t>0:

$$P(|X - \mathbf{E}X| \ge t) = P(f(|X - \mathbf{E}X| \ge f(t)))$$

$$\le \frac{\mathbf{E}f(|X - \mathbf{E}X|)}{f(t)}.$$

Moment Inequalities

e.g., $f(a) = a^2$ gives Chebyshev's inequality:

Theorem:

$$P(|X - \mathbf{E}X| \ge t) \le \frac{\operatorname{Var}(X)}{t^2}.$$

e.g., $f(a) = a^k$:

Theorem:

$$P(|X - \mathbf{E}X| \ge t) \le \frac{\mathbf{E}|X - \mathbf{E}X|^k}{t^k}.$$

Chernoff bounds

Use $a \mapsto \exp(\lambda a)$ for $\lambda > 0$:

Theorem: For $\mathbf{E}X < \infty$, $\mathbf{E} \exp(\lambda(X - \mathbf{E}X)) < \infty$, t > 0:

$$P(X - \mathbf{E}X \ge t) = P\left(\exp(\lambda(X - \mathbf{E}X)) \ge \exp(\lambda t)\right)$$

$$\le \frac{\mathbf{E}\exp(\lambda(X - \mathbf{E}X))}{\exp(\lambda t)}$$

$$= e^{-\lambda t} M_{X-\mu}(\lambda).$$

 $M_{X-\mu}(\lambda) = \mathbf{E} \exp(\lambda(X-\mu))$ (for $\mu = \mathbf{E}X$) is the **moment-generating function** of $X - \mu$.

Example: Gaussian

For
$$X \sim N(\mu, \sigma^2)$$
, $M_{X-\mu}(\lambda)$ is

$$\mathbf{E}\exp(\lambda(X-\mu)) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp(\lambda x - x^2/(2\sigma^2)) dx$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{\infty} \exp(\lambda^2 \sigma^2/2 - (x/\sigma - \lambda\sigma)^2/2) dx$$

$$= \exp(\lambda^2 \sigma^2/2) \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-(y - \lambda\sigma)^2/2) dy$$

$$= \exp(\lambda^2 \sigma^2/2),$$

for the change of variable $y = x/\sigma$.

Example: Gaussian

Thus,

$$\log P(X - \mu \ge t) \le -\sup_{\lambda > 0} (\lambda t - \log M_{X - \mu}(\lambda))$$

$$= -\sup_{\lambda > 0} \left(\lambda t - \frac{\lambda^2 \sigma^2}{2}\right)$$

$$= -\frac{t^2}{2\sigma^2},$$

using the optimal choice $\lambda = t/\sigma^2 > 0$.

Example: Gaussian

For $X \sim N(\mu, \sigma^2)$, it's easy to check that the Chernoff technique gives a tight bound:

$$\lim_{n \to \infty} \frac{1}{n} \log P(\bar{X}_n - \mu \ge t) = -\frac{t^2}{2\sigma^2}.$$

Example: Bounded Support

Theorem: [Hoeffding's Inequality] For a random variable $X \in [a, b]$ with $\mathbf{E}X = \mu$ and $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 (b-a)^2}{8}.$$

Note the resemblance to a Gaussian: $\lambda^2 \sigma^2/2$ vs $\lambda^2 (b-a)^2/8$. (And since P has support in [a,b], $\text{Var} X \leq (b-a)^2/4$.)

Example: Hoeffding's Inequality Proof

Define

$$A(\lambda) = \log \left(\mathbf{E} e^{\lambda X} \right) = \log \left(\int e^{\lambda x} dP(x) \right),$$

where $X \sim P$. Then A is the log normalization of the exponential family random variable X_{λ} with reference measure P and sufficient statistic x. Since P has bounded support, $A(\lambda) < \infty$ for all λ , and we know that

$$A'(\lambda) = \mathbf{E}(X_{\lambda}), \qquad A''(\lambda) = \operatorname{Var}(X_{\lambda}).$$

Since P has support in [a, b], $Var(X_{\lambda}) \leq (b - a)^2/4$. Then a Taylor expansion about $\lambda = 0$ (at this value of λ , X_{λ} has the same distribution as X, hence the same expectation) gives

$$A(\lambda) \le \lambda \mathbf{E} X + \frac{\lambda^2}{2} \frac{(b-a)^2}{4}.$$

Sub-Gaussian Random Variables

Definition: X is **sub-Gaussian** with parameter σ^2 if, for all $\lambda \in \mathbb{R}$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}.$$

Note:

- Gaussian is sub-Gaussian.
- X sub-Gaussian iff -X sub-Gaussian.

Sub-Gaussian Random Variables

Note:

• X sub-Gaussian implies

$$P(X - \mu \ge t) \le \exp(-t^2/(2\sigma^2)),$$

 $P(X - \mu \le -t) \le \exp(-t^2/(2\sigma^2)),$
 $P(|X - \mu| \ge t) \le 2\exp(-t^2/(2\sigma^2)).$

Sub-Gaussian Random Variables

Note:

• X_1, X_2 independent, sub-Gaussian with parameters σ_1^2, σ_2^2 , implies $X_1 + X_2$ sub-Gaussian with parameter $\sigma_1^2 + \sigma_2^2$.

Indeed, for independent X_1, X_2 ,

$$M_{X_1+X_2} = \mathbf{E} \exp \left(\lambda (X_1 + X_2)\right)$$
$$= \mathbf{E} \exp \left(\lambda X_1\right) \mathbf{E} \exp \left(\lambda X_2\right)$$
$$= M_{X_1} M_{X_2}.$$

So
$$\log M_{X_1+X_2-\mu} = \log M_{X_1-\mu_1} + \log M_{X_2-\mu_2} \le \lambda^2 (\sigma_1^2 + \sigma_2^2)/2$$
.

Hoeffding Bound

Theorem: For X_1, \ldots, X_n independent, $\mathbf{E}X_i = \mu_i$, X_i sub-Gaussian with parameter σ_i^2 , then for all t > 0,

$$P\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right).$$

e.g., for $\mathbf{E}X_i = 0$, $X_i \in [a, b]$, we have $\sigma_i^2 = (b - a)^2/4$ so

$$P\left(\frac{1}{n}\sum_{i=1}^{n}X_{i} \ge t\right) \le \exp\left(-\frac{2nt^{2}}{(b-a)^{2}}\right).$$

Definition: X is **sub-exponential** with parameters (σ^2, b) if, for all $|\lambda| < 1/b$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \sigma^2}{2}.$$

Examples:

• Sub-Gaussian X with parameter σ^2 is sub-exponential with parameters (σ^2, b) for all b > 0.

Theorem: For X sub-exponential with parameters (σ^2, b) ,

$$P(X \ge \mu + t) \le \begin{cases} \exp\left(-\frac{t^2}{2\sigma^2}\right) & \text{if } 0 \le t \le \sigma^2/b, \\ \exp\left(-\frac{t}{2b}\right) & \text{if } t > \sigma^2/b. \end{cases}$$

Proof: Assume $\mu = 0$. As before,

$$P(X \ge t) \le \exp(-\lambda t) \mathbf{E} \exp(\lambda X)$$

 $\le \exp\left(-\lambda t + \frac{\lambda^2 \sigma^2}{2}\right)$

provided $0 \le \lambda < 1/b$. As before, we optimize the choice of λ . But now, it is constrained to [0,1/b). Without this constraint, the minimum occurs at $\lambda^* = t/\sigma^2$. So if

$$t/\sigma^2 < 1/b \Longleftrightarrow t < \sigma^2/b,$$

we have

$$P(X \ge t) \le \exp(-\lambda^* t + {\lambda^*}^2 \sigma^2 / 2) = \exp(-t^2 / (2\sigma^2)).$$

If t is larger, the minimum occurs at $\lambda = 1/b$ (since the function $t \mapsto -\lambda t + \frac{\lambda^2 \sigma^2}{2}$ is monotonically decreasing in $[0, \lambda^*]$, which contains [0, 1/b]). Substituting this λ gives

$$P(X \ge t) \le \exp(-t/b + \sigma^2/(2b^2)) \le \exp(-t/(2b)),$$

where the second inequality follows from $t \geq \sigma^2/b$.

Example: X variance σ^2 , bounded: $|X - \mu| \leq b$.

$$\mathbf{E}\exp(\lambda(X-\mu)) = 1 + \frac{\lambda^2 \sigma^2}{2} + \sum_{k=3}^{\infty} \lambda^k \frac{\mathbf{E}(X-\mu)^k}{k!}$$

$$\leq 1 + \frac{\lambda^2 \sigma^2}{2} + \frac{\lambda^2 \sigma^2}{2} \sum_{k=3}^{\infty} (|\lambda|b)^{k-2}.$$

And for $|\lambda| < 1/b$, this is no more than

$$\mathbf{E}\exp(\lambda(X-\mu)) \le 1 + \frac{\lambda^2 \sigma^2}{2(1-b|\lambda|)} \le \exp\left(\frac{\lambda^2 \sigma^2}{2(1-b|\lambda|)}\right).$$

So if $|\lambda| < 1/(2b)$, $1 - b|\lambda| > 1/2$ and

$$\mathbf{E} \exp(\lambda(X - \mu)) \le \exp(\lambda^2 \sigma^2).$$

Thus, X is sub-exponential with parameters $(2\sigma^2, 2b)$.

Overview

- 1. Concentration inequalities
 - (a) Markov, Chebyshev
 - (b) Chernoff technique
 - (c) Sub-Gaussian
 - (d) Sub-Exponential