CS281B/Stat241B. Statistical Learning Theory. Lecture 3.
Peter Bartlett

1. Review: Linear threshold functions, perceptron aldpmnit

2. Lower boundsd/n) on minimax risk for linear threshold functions.

3. Upper and lower bound$2¢ /n~?) on minimax risk for perceptron
algorithm.

4. Risk bounds, uniform convergence, concentration.




\ Review: Linear threshold functions on R¢ I

F={zwsign@z):0 e R*}.

Empirical risk minimization:
Choosef from F' to minimize theempirical risk,

R(f) = BUT(X),Y) = = ST U (X0, Vi),




Review: Perceptron algorithm I

Input: <X1,Y1), Cee (Xn,Yn) e R? x {:‘:1}
0p =0 € Rd, t=20

while some(z;, y;) is misclassified, i.ey; # sign(0] x;)
pick some misclassifiedr;, y;)
Or+1 := 0y + y;x;
t:=t+1

Returné,.




Review: Perceptron algorithm I

Theorem: For anyd € R? such that for alk, y;07 z; >
0 (linearly separable data), for any choices made a|
update step, the perceptron algorithm terminates (|
empirical risk zero) after no more théjﬁ updates, wher

R = max ||z;||, (radius of data)

(margin)




‘A glimpse of kernel methods'

Notes:

o We can writed, in terms of the data:
975 = Zz QX with ||04H1 = Zz |Oéz‘ = .

o We can replace the inner prodyat, 6) = = 6 with an arbitrary
Inner product:

prediCt: QZ = sign (Zj Q. <CCJ‘, CUZ>),

(t4+1) _

update: if §; # s, seta ol + ;.

So the perceptron algorithm (and its convergence proofksviora more
generalnner product space.




Minimax risk I
Consider the minimax risk,

min max ER(f,),

where the max is over alP for which somef € F' has zero risk, and the
min is over all methods that use data to choose a predictienfru
(perhaps inF', pernaps not).

If n < d, then we should expect the minimax risk to be large. For
Instance, ifx4, ..., x, are linearly independent, then for apy, . . ., y,,
we can findd € R< such that

6/ [xl‘CCQ‘ C ‘In] — [ylny, . '7yn]7

and henceign(0'z;) = vy;.

So we can fiany labels, and we should not expect the predictions for
subsequent points to be accurate.




\Minimax risk lower bound.

Theorem: For anyn > 1 and any mapping,, :
R x (R? x {£1})" — {&1}, there is a probabilit)
distribution P on R¢ x {41} for which some linea
threshold functiorf € F hasR(f) = 0 but

- 2n n

ER(f,) > min (n,d) — 1 (1_1>”.

Notes:

1. f,, need not use prediction rules from the cl&ssf linear threshold
functions.

2. P can depend on. That is, the theorem does not show that for sonje
P the risk decreases at least as slowlylas. Rather, it shows that

there is no uniform upper bound on risk that’s better ttamn.



‘Minimax risk lower bound: proof'

Uses the probabilistic method: choaBeandomly from some clasB,
and show that the expectation Bf f,,) under this random choice is large
This implies that forsome distribution in the classkz( f,,) is large.

(NB: not constructive. Thé must depend on the algorithm. But every
algorithm must fail.)

We'd like the distributions irP to satisfy:
1. Forsomef € F', R(f) = 0.

2. A sample of sizex contains limited information about this

For (1), we restrict the marginal distribution &¢ to have support on a
linearly independent sét,, ...,v4} C RY. So for any
b= (by,...,bq) € {£1}¢, thereis anf, ¢ F with, for all i, f,(v;) = b;.




‘Minimax risk lower bound: proof'

For (2), we concentrate the probability on a single point,.sg and make
the other points unlikely:

% If m,y):(vi,bi)forizl,...,d—l,
Pb(ajay): -t (

1—¢ |f (Cl?,y) — (’Ud,bd).

The idea is that many points will not be seen in the sample (@nde
their label cannot be predicted), but they will have enougissrithat these
mistakes matter.

DefineU = {vy,...,v4_1} — {X1,..., X, } as the set ofinseen ‘light’
elements ofS. Let N = |U|.




‘Minimax risk lower bound: proof'

Chooseé uniformly at random fron{4-1}¢ (henceP u.a.r. fromP).

ZE (fn)|N = k] Pr(N = k)

and  ER(f)IN =K > ok

This is because, for th® unseen points i/, the corresponding; can be
chosen afterwards (the bits are independent). So on thases pibe
decision rule can do no better than tossing a coin.




‘Minimax risk lower bound: proof'

But the expected number of unseen light elements is

d—1
EN = 3" Pr (v ¢ {X1.. ., X, })
=1

:(d—l)(l—




‘Minimax risk lower bound: proof'

ER(fn) = 5 (1—d_1> .

Then choose to optimize the bound:
Forn > d — 1, choose = (d — 1) /n. Then

Thus,

ER(f,) > a-1 (1—l)n.

2n n

Otherwise (ifn < d — 1), choose& = ( )/n(< (d—1)/n). Then

(1 - <dn—_11>n>n -




\Minimax risk lower bound'

Theorem: For anyn > 1 and any mapping,, :
R? x (R? x {£1})" — {1}, there is a probability
distribution P on R¢ x {41} for which some linea
threshold functiory € F hasR(f) = 0 but

ER(f) > min (n, d) — 1 (1_l>”.

2n n

So for any method, il /n is large, some probability distribution will
cause a large excess risk.




Per ceptron aIgorithmI

We'll see that, ifd/n is small, then small empirical risk over linear
threshold functions ensures small risk.

The perceptron algorithm converges quicklyifallows a large margin
solution. In that case, its solution incorporates few (agpnately

R? /~?) (X;,Y;) pairs. The data isompressed in some sense. This is
enough to ensure good performance.




Per ceptron aIgorithmI

Theorem: SupposeP is such that, for somé € R? and~ > 0,

0'XY <
191

|X|| <R,  and a.s.

Define f,, as the function returned by the perceptron
gorithm with input (X,Y3),...,(X,,Y,), and f, as the
function returned by the perceptron algorithm with in
(X1,Y1),..., (X, Yar), where M is chosen uniformly fron
{1,...,n}. Then




‘ Per ceptron algorithm: Proof I

Define D™ = ((X1, Yl), Ceey (Xm7 Ym))

1 m
ER(f, _EZEEmeD ),Y)

el Z U fn (X p1: D™), Vi),

becaus€ X,Y) and(X,,.11, Y,,11) are iid. But the perceptron
convergence theorem shows that




Perceptron algorithm: L ower bound'

|dea: If algorithm makes no more thanmistakes, then expected
proportion of mistakes is no more thann.

And this is the best we can hope for under these conditions.

Theorem: For anyf,, v, R, d,n, there is aP onR¢ x {41}
s.t. some& € R has
XY

91 > and || X||<R a.s,

ER(fn) =

(D2 /.2 _ n
>mm(R /v, n,d) 1(1_1) |

2n




‘ Risk bounds and uniform convergence'

For empirical risk minimization strategies, which chogse= F' to
minimize

A

R(f) = BUF(X), V) = ST (X0, Vi),

how does the risi( f,,) = E{(f,(X),Y) behave?
DoesR(f,) — infserp R(f)?
How rapidly?




‘ Risk bounds and uniform convergence'

If we consider a single prediction rule we can appeal to the law of large
numbers:

—Zg Y;) — EO(F(X),Y).

And with some assumptions (e.g., on the momentg 6(X ), Y)), we
can obtain rates. For instandehounded implie®r(|R(f) — R(f)| > €)
decreases exponentially in

For this, we’ll studyconcentration inequalities, which bound the
probability of deviations of random variables from theipegtations. But
because we use data to chogsewe need something stronger than a la
of large numbers.




‘ Risk bounds and uniform convergence'

Example;
For pattern classificatiorM{ = {0, 1}), considerF’ = F; U F_ with

Fy = {1[5] : [S] < oo},
Fo={1]8]:]X — 8| < o0}

Then for a continuous distribution oti with P(Y = 1|.X) = 0.9,

B {0.1 for f € F_,

0.9 forfe F,.

But for any sample, there is an empirical risk minimiZere F', with

R(f) =0,




\Overview.

1. Review: Linear threshold functions, perceptron aldpmnit

2. Lower boundsd/n) on minimax risk for linear threshold functions.

3. Upper and lower bound#2¢ /n~?) on minimax risk for perceptron
algorithm.

4. Risk bounds, uniform convergence, concentration.




