CS281B/Stat241B. Statistical Learning Theory. Lecture 2.
Peter Bartlett

. Review: Probabilistic formulation of prediction profis.
. Pattern classification: plug-in estimators.
. Empirical risk minimization.

. Linear threshold functions.

. Perceptron algorithm.




\ Review: Probabilistic formulation '

Assume:
There is a probability distributio® on X’ x ),

The pairs( X1, Y7),...,(X,, Yy), (X,Y) are chosen independently
according taP

The aim is to choos¢ with smallrisk:

R(f) = EL(f(X),Y).

If we choosef € F', can we achieve smagixcess risk

R(fs) — inf R(f)?




\ Pattern classification'

Consider two-class classificatioyy: = {+1}.

Notation: represent the joint distributidghon X’ x ) as the pairu, n),

wherey is the marginal distribution oA andn is the conditional
probability of Y given X,

n(x) = P(Y = 1|X = x).




\ Pattern classification'

If we know n, we could use it to find a decision rule that minimizes risk.
To see this, notice that we can write the expected loss aspatetion of
a conditional expectation,

Y = 1JX) + ((f(X), ~1)P(Y = —1X))
n(X) + 1[F(X) # —1](1 = n(X)))
n(X) + (1= 1[f(X) £ 1))(1 -
l(20(X) = 1) + 1 = n(X)).

)
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‘ Bayes decision ruls

Clearly, this expectation is minimized by choosifig= f*, where

{1 it n(z) > 1/2,

U B

Obviously, ifn(z) = 1/2, the choice does not affect the risk.
Denote the optimal risk (thBayes risk, by

R = inf R(f) = R(/").

f* Is called theBayes decision rule

Notice that any choice fof*(x) is equally good when(z) = 1/2, so
there can be several Bayes decision rules.




‘ Risk and distance from f* I

The excess risk of a decision rule (above the Bayes risk) eajubntified
In terms of a certain distance frofft.

Theorem: Foranyf: X — ),
EQ1Lf(X) # f7(X)][2n(X) = 1]).




Risk and distance from f*:. Proof I

We have see®(f) = E(1[f(X)# 1)(2n(X) —1)+ 1 —n(X)).
Hence,

1] =1L (X) # 1)) (
7 fH(X)] (Hf(X) # 1]

X) # f(X)]2n(X) = 1)

Lf(X) # f(X)(=1)@2n(X) —1) |
(from the definition off™)

= 1[f(X) # [7(X)][2n(X) — 1],




‘ Plug-in methods.

This suggests one family of pattern classification methptgy-in
methods:

Use the data to come up with an estimataf n,

Choose

fa(x) =

{1 it f(z) > 1/2,

—1 otherwise.




‘ Plug-in methods.

In estimatingy, what criterion should we aim to minimize?
L1 () distance betweef andn suffices:

Theorem: Foranyn: X — R,

R(f5) — R" < 2E|n(X) —n(X)].




Plug-in methods: Proof'
We have seen:

R(f3) — R = 2E1[f3(X) # f7(X)]In(X) = 1/2].

Now, if f5(X) # f*(X), thenn(X) andn(X ) must lie on opposite sides
of 1/2, so

n(X) —0(X)| = [n(X) = 1/2[ + |0(X) = 1/2] = [n(X) —1/2].

Thus, whenf; (X) # f*(X), we have
LLf3(X) 7 7 (X))In(X) — 1/2] < [n(X) — 7(X)]
And this inequality is trivially true when the indicator ism. Hence,

R(f3) — R = 2E1[f3(X) # f*(X)][n(X) = 1/2|
< 2E[n(X) —n(X)].




‘ Estimating » IS not necessar!

Notice that estimating accurately is not necessary for accurate
classification. In particular, this bound for a plug-in didigr can be very
loose. For example, if(X) € {0, 1}, then for any > 0, there is aj
satisfying

« 7} andn are always on the same sidepfand

R(fp) — R" =0<1—e=2E[n(X) —7(X)].

That is, the bound might be vacuous even though the classifogtimal.




‘ Choosing from a class of decision ruIeI

An alternative to modelling the conditional distributigrof Y given X':
fix a classF’ of decision rules (functions fro’ to ))) and use the data to
choosef,, from F'.

For example, consider the class of linear threshold funstmnX’ = R?,

F={zwsign(@z): 0 e R} .

The decision boundaries are hyperplanes through the origin

(d — 1-dimensional subspaces), and the decision regions arsaties
through the origin. (PICTURE)




\ Linear threshold functions '

For thresholdedinear functions, the decision boundaries are hyperplangs
through the origin.

For thresholdeaffinefunctions, the decision boundaries are arbitrary
hyperplanes.

Essentially equivalent:

F:{xl—>sign(9’$—|—c):96Rd,cE]R}

— {:1: — sign(0'z) : 0 € Rd+1} :

where we defing’ = (x'1). For notational simplicity, we’ll stick to the
linear case.
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Empirical risk minimization I

How can we choos¢ € F'? One approach smpirical risk minimization

Choosef from F' to minimize theempirical risk

FOO.Y) = - UG YD),




\ Linear threshold functions I

Consider empirical risk minimization over the class of &néhreshold
functions.

Approximation Very restricted class of decision rules. Can consider a
much bigger class, and retain many of the attractive progseof
linearly parameterized functions, by considering a nadm
transformationy : R¢ — R for someD > d. (Kernel methods.)

Estimation Smalld/n is ok. Large can also be ok if we regularize.

Computation Easy if R(f) = 0. In general, hard if not. Can simplify if
we consider alternative (convex) loss functidns




Perceptron algorithm I

Input: (X1,Y7),...,(X,,Y,) € RY x {£1}

o =0€c R4 t=0

while some(z;, y;) is misclassified, i.ey; # sign(0] x;)
pick some misclassifieQr;, y;)
Or+1 := 0y + yix;
t:=t+1

Returné,.

Here,

PICTURE




Perceptron convergence theore:'

Theorem: Givenlinearly separable datéi.e., there is ¢
§ € RY such that for alt, y;60"z; > 0), for any choices
made at the update step, it terminates (with empirical
zero) after no more thag‘?tgi updates, where

R = max ||z || (radius of data)

. QTl’z'yz'
Y = min

(margin)
i |9




\ Proof '

The idea is to use the inner prodéctd as a measure of progress, and
show that each mistake gives a big increase to the inner préalignso;
with #), but gives only a small increase [t6; ||.

First,

0T 160 = (6, + y;a;) "0
> 07 0 + ~[6]].

Butdy = 0, sofl'0 > tv|0]].




On the other hand,

104417 =

<

Butd, = 0, sol|6:||* < tR>.

\ Proof '

O + yizi||”
Ocll® + [lill” + 2y:6;
0.1 + R

Combining (and using Cauchy-Shwarz):

ty[16]] < 6,0 < 1611161 < VeR|l6].




\ Linear threshold functions '

Forlinearly separable datdi.e., there is @ € R? such that for al,
v;:017 z; > 0), finding an empirical risk minimizer corresponds to findiang
point satisfyingn linear inequalities:

yiHT:L’Z- > 0.
In particular, it can be solved with a linear program:

max Y
v,0

So we can find a solution in polynomial time (even though thinagd ~
might be exponentially small, so the perceptron algorithighntake
exponential time).




\ Overview I

. Pattern classificationy = {+1}.

. Plug-in estimatorsR( f;) — R* < 2E|n(X) — n(X)].

. Empirical risk minimization.
. Linear threshold functions.

. Perceptron algorithm: convergence.




