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1. Discrete decision problems with partial monitoring

• Definition: loss and feedback. Stochastic and adversarial.

• Examples.

• Minimax regret: algorithms and lower bounds.
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Discrete decision problems with partial monitoring

Example:Dynamic pricing

A vendor has products to sell one by one to a stream of customers. To

each, she offers the product at a certain pricept ∈ [0.00, 0.01, . . . , 1.00].

The customer has in mind a maximal pricemt that he’s willing to pay. If

pt ≤ mt, the customer buys the product, otherwise he does not (and in

neither case does he reveal his maximal price). The loss of the vendor is

missed earnings plus a fixed cost per customer:

Lpt,mt
= (mt − pt)1[pt ≤ mt] + c.

The feedback the vendor receives is

Fpt,mt
= 1[pt ≤ mt].
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Discrete decision problems with partial monitoring

Example:Label efficient prediction

Aim is to predict a sequence of outcomes (yt ∈ {1, . . . , k}). At roundt:

1. A prediction strategy either predictsŷt and incurs a loss

Lŷt,yt
= 1[ŷt 6= yt] (but the outcomeyt is not revealed), or

2. The strategy buys the label (ŷt = 0), incurs lossc ∈ [0, 1], and the

outcomeyt is revealed.

Fŷt,yt
= 1[ŷt = 0]yt.
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Discrete decision problems with partial monitoring

Sequential decision problem. At each step:

1. strategy chooses (distribution of)It ∈ {1, . . . , k} and

environment chooses (distribution of)Jt ∈ {1, . . . ,m}.

2. strategy incurs lossLIt,Jt
(but does not see it).

3. strategy receives feedbackFIt,Jt
.

Two flavors:

Stochastic The environment can chooseJt i.i.d.

Adversarial The environment choosesJt with full knowledge of all

previous choices.
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Discrete decision problems with partial monitoring

• The loss matrixL ∈ R
k×m and feedback matrixF ∈ N

k×m are fixed

and known.

• The aim of the strategy is to minimize regret,

Rn =
n
∑

t=1

LIt,Jt
−min

i

n
∑

t=1

Li,Jt
,

(in expectation or with high probability) or pseudo-regret,

Rn = E

n
∑

t=1

LIt,Jt
−min

i
E

n
∑

t=1

Li,Jt
.
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Partial monitoring: Examples

Dynamic pricing:

Lpt,mt
= (mt − pt)1[pt ≤ mt] + c,

Fpt,mt
= 1[pt ≤ mt].

Dynamic pricing variant:

Lpt,mt
= c− pt1[pt ≤ mt],

Fpt,mt
= 1[pt ≤ mt].

(bandit!)
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Partial monitoring: Examples

Label efficient prediction:

Lŷt,yt
= 1[ŷt 6= yt],

Fŷt,yt
= 1[ŷt = 0]yt.

General bandit problem:

L:,j = losses for outcomej,

Fi,j = Li,j .

Full information: Fi,j = j.
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Partial monitoring: Regret

For full information problems, the stochastic minimax regret and the

adversarial regret arẽΘ(
√
n).

For bandit problems, these are alsoΘ̃(
√
n). (But with worse dependence

on the number of arms.)

What is achievable for other partial monitoring problems?
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Partial monitoring: Regret

Example:

L =





1 2 3 4

1 2 2 1



 F =





1 2 3 3

1 2 3 3





Regret is0: never need to try the first action.

Example:

L =





1 2 3 4

4 3 2 1



 F =





1 2 3 3

1 2 3 3





Regret isΩ(n): adversary’s choice between last two actions is always

hidden.
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Partial monitoring: Regret

Stochastic minimax regret:

0 if trivial (only one nondegenerate action)

n1/2 if nontrivial and locally observable

n2/3 if observable but not locally observable

n if not observable.

(ignoring log factors).
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Partial monitoring: Regret

(Oblivious) adversarial regret:

0 if trivial

Ω(n1/2) if nontrivial

O(n1/2) if nontrivial, NDD, locally observable

Ω(n2/3) if observable, NDD, not locally observable

O(n2/3) if observable

n if not observable.

(ignoring log factors). ‘NDD’ means ‘no degenerate or duplicate actions.’
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Partial monitoring: Definitions

DefineLi as theith row ofL.

Definition: The optimal cell for actioni is the subset of them-

simplex on which it gives the least expected loss:

Ni =
{

p ∈ ∆m : ∀j, Li 6= Lj ⇒ Lip ≤ Ljp
}

.

Action i is dominated if Ni is empty.

Clearly, if all but one action is dominated, it suffices to play that action to

get zero regret. But we can also avoid playing actions that are almost

dominated...
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Partial monitoring: Degenerate actions

Lemma: If we define theopen optimal cell for actioni as

Si =
{

p ∈ ∆m : ∀j, Li 6= Lj ⇒ Lip < Ljp
}

,

then for anyp ∈ ∆m, there is ani with Si non-empty such that

p ∈ Ni.

Hence, we don’t need to worry about exploitingdegenerate actions (but

we might need to use them to distinguish losses of other actions).

Definition: An actioni is degenerate if Si is empty.
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Partial monitoring: Regret lower bounds

Why does nontrivial implyΩ(
√
n)?

When the problem is nontrivial, there is a boundary between optimal

cells. By choosing a distribution for the adversary (randomly) that isǫ to

one side or the other of that boundary, the regret of mistaking the optimal

action is of orderǫn. But even if the adversary’s actions are observed, the

fluctuations in their relative frequency will scale like1/
√
n (and things

certainly cannot be improved by seeing limited feedback). Choosingǫ of

this scale will give the
√
n lower bound.
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Partial monitoring: O(n2/3) regret

To illustrate the idea, we’ll look first at a weaker result. Suppose we can

write L = KF for some matrixK ∈ R
k×k. Then

Li,j =
∑

l

Ki,lFl,j ,

so we can use

L̃i,Jt
=

Ki,ItFIt,Jt

pIt,t

as an unbiased estimate of the lossLi,Jt
, and it only needs to see the

feedbackFIt,Jt
.
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Partial monitoring: O(n2/3) regret

The idea is to use this estimate with an exponential weights strategy,

where the exponential distribution is mixed with a uniform distribution

over actions (the mixture component decreases slowly, ast−1/3; this

constrains1/pIt,t, and can be viewed as an exploration

component—we’ll see why it’s essential in general).

Theorem: Forn = Ω̃(k2 log3 1/δ), with probability at least1−δ,

Rn ≤ ck2/3 (log k)1/3 n2/3
√

log 1/δ.
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Partial monitoring: O(n2/3) regret

• Constants involve size of entries ofK matrix.

• Notice poor dependence onk. If there is a revealing action (one that

reveals action of adversary), then by playing it randomly (roughly a

proportionn−1/3 of the time) and using the revealed adversary action

to estimate the cumulative losses, it is possible to obtain high

probability regret bounds that grow as

n2/3 log1/3(k/δ).

• How to extend beyondL = KF?
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Partial monitoring: Regret

RecallLi is theith row ofL and defineF i as theith row ofF .

Definition: For eachi ∈ {1, . . . , k} if the entries ofF i are

f1, . . . , fmi
, define thesignal matrix Si ∈ R

mi×m as

Si
j,l = 1[F i

l = fj ].

(L, F ) is observable if, for all nondegeneratei, j,

Li − Lj ∈ span

(

⋃

k

{rows ofSk}
)

.

TheL = KF idea extends in this case to estimating the nondegenerate

rows ofL using the feedback. This approach givesn2/3 regret bound for

the observable case.
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Partial monitoring: Regret lower bounds

If (L, F ) is not observable, the regret isΩ(n).

High level idea:

There are two nondegenerate actions, sayi andj, whose average losses

cannot be distinguished via observing feedback. Then can construct two

different values of the adversary’s distributionp, one inSi and one inSj ,

that lie in the subspace orthogonal to the observed space

span

(

⋃

k

{rows ofSk}
)

,

but have a non-zero inner product withLi − Lj (that is, the expected

losses differ). Then the distinction between these two adversarial

probability distributions will never be observed. So the expected regret

(under a random choice of those two) will grow linearly.
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Partial monitoring: Local observability

We are concerned with distinguishing adversary distributions near a

boundary between cells of nondegenerate actions. To get good

performance while distinguishing between these distributions, we must be

able to estimate differences of losses using actions that are optimal at the

boundary.

Definition: Actions i, j are locally observable if they are non-

degenerate, their optimal cells share a boundary that is(m − 2)-

dimensional, and

Li − Lj ∈ span
(

⋃

{rows ofSk : Ni ∩Nj ⊂ Nk}
)

.
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Partial monitoring: Local observability

It turns out that without local observability, the regret inthe stochastic

(hence adversarial) setting grows asΩ(n1/3): distinguishing the losses of

two nondegenerate actions that are not locally observable requires an

action that is far from optimal. This requires a separation of exploration

and exploitation, which leads to then2/3 regret:

Suppose that we explore a proportionγ of the time, incurring a constant

regret for each exploration trial, and exploit the remaining time, incurring

a regret per trial that decreases no faster than(γn)−1/2. Then regret will

scale like

γn+
(1− γ)n

(γn)1/2
,

which is minimized forγ ∼ n−1/3, giving regret of ordern2/3.

21



Partial monitoring: Local observability

With local observability in the stochastic setting, an upper confidence

bound strategy can be constructed that works separately foreach ‘local

pair.’ In the (oblivious) adversarial setting, it suffices to ensure a bound on

‘local’ internal regret (internal regret means the decrease in cumulative

loss that would have resulted from consistently substituting one action for

another; local means only substituting neighboring actions).
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