Stat 260/CS 294-102. Learning in Sequential Decision
Problems.
Peter Bartlett

1. Adversarial bandits

Definition: sequential game.

Lower bounds on regret from the stochastic case.

Exp3: exponential weights strategy.




\Adversarial bandits'

Repeated game: strategy chooggeshen adversary chooses
(l‘l,t, e ooy $k;’t).

Aim to minimize regret,

n mn
R, =max ¥y aj,— > 1,4,
J t=1 t=1

or pseudo-regret

mn mn
R, = max E E T — E g L1, t,
J t=1 t=1




\Adversarial bandits.

Some scenarios:
e [, deterministic. Hopeless.

o Must havel; randomized: strategy plays a distribution. Regret is
random. Could consider expected regret, or high probgivégret
bounds.

o Adversary chooses; ; independent of strategy’s previous random
outcomegd/;. Oblivious adversary.

o Adversary chooses; ; with knowledge of strategy’s previous
random outcomes,. Adaptive adversary or nonoblivious adversary.
But then what does regret mean?




\Adversarial bandits. L ower bounds'

It's clear thatR,, < ER,,. So a lower bound on pseudo-regret gives lowgr
bounds on expected regret. Lower bounds in the stochagtilegssuffice
here (the adversary can certainly choose a sequence randoml

Theorem: For any strategy and any, there is an oblivious ad-
versary playinge; ;. € {0, 1} for which

— 1
R, > . min{vnk,n}.

In particular, it suffices for the adversary to play i.i.d.rBeulli
rewards to achieve a pseudo-regret that is this large.




‘Adversarial bandit strategies'

How should a strategy choose the distribution ayan the adversarial
setting?

o EXxploration vs exploitation remains an important issue.

o EXxploitation appears to be even more dangerous.

e Let’s digress and consider the corresponding full infororagame.
It's standard (and, we’ll see, convenient) to pose it in teohlosses,
rather than rewards. Fax; ; in [0, 1], think of ; , = 1 — z; 4, So that
l; ¢ 1sin 0, 1].




An aside: A full information prediction game.

Consider the following repeated game: at tithe

1. strategy chooses a distributipnover k experts {; ~ p;),

2. adversary chooses a loss vedtoe= ({1 ¢,...,0) € [0,1]%,

3. strategy sees/;.

The aim is to ensure that, for all choices of the adversary,

n n
Rn — E Ef[t’t — min E fj’t
t=1 J t=1

IS not too large.




An aside: A full information prediction game'

Exponential Weights Strategy (with parameten)

Setpl,l — s =DE1 = 1/:1{3
fort =1,2,...,n, choosel; ~ p;, observe,.




An aside: A full information prediction game.

Theorem: The exponential weights strategy with parameije
Incurs regret

— nn logk

R, <
<5t

Choosingy = \/8log k/n givesR,, < \/nlogk/2.




An aside: A full information prediction game'

Proof idea: For this choice ¢f;,

k
1
¢, = ——log <Z exp(—nLi,t)>

"l =1

IS ameasure of progress. WhenE/;, ; Is big, there is a big increase from
®;_;t0P,. Butd,, < minj Lj,n-




An aside: A full information prediction game'

For/; , € |0, 1], Hoeffding’s inequality shows that

2
logEexp (—n (41, + —El;, 1)) < %7

that is,

1
Elr, + < g — ElogEeXP (=nlr, 1) -

But the choice op; means that the sum of these c.g.f.s telescopes:

( S exp (—nLiy) )
S exp (—nLig—1)

= log <Z exp (—nLi.n) > — log k.




An aside: A full information prediction game.

Thus,

n k

logk 1
E Eé[t,t < i + 5 - 10g E :eXp (_ULz,n)
t=1 8 g g 1=1

\ . _J/
N/

>exp(—nLjn)

+min L ,,.
n




\ Back to bandits'

What can the strategy do when it only ségs;?
Importance sampling: in the strategy, repldceby

~ l; .
Uiy = —L1[I = 4]
Pit

This iIs an unbiased estimate of the unseen losses:

Ej,t — Eij’t.




‘ Exp3: Exponential WeightsI

Strategy Exp3
setp; uniformon{1,..., k}.
fort =1,2,...,n, choosel; ~ p;, observe/y, ;.




\ Back to bandits'

Then the regret involves_, (¢, + — ¢;), and

k
glt,t — E pz’,tﬁ;,t gj,t — Elj,t-
i=1

But we can no longer appeal to Hoeffding’s inequality, bsefigt IS
unbounded. Happily, we only need an upper bound on the €.Q\f. for
negative values ok = —n. This corresponds to a lower tail concentratio
iInequality for the non-negative random variaﬁ}gt. But non-negative
random variables with finite variance have sub-Gaussiaerroals:




‘Sub-Gaussian lower tailsfor non-negativer.v.s'

Lemma: ForX > 0and)\ > 0,

)\2
logEe ¥ < ?EX2 — MEX,

1 A
EX < 3 log Ee % + 5IE«:XQ.

logEexp (—A(X —EX)) =logEexp (—AX) + AEX
<Eexp(—AX) — 1+ AEX
A2 X?

<E ,
=9

becauséogy <y — 1forallyande ™ <1 -z +2?/2forz >0. O




‘ Exp3: Exponential WeightsI

Theorem: Exp3 with parameten incurs regret

R, < "k, logk
2 n

Choosingy = \/2log k/(nk) givesR,, < v/2nklogk.

(Recall the lower bound,, = Q(+v/nk). This strategy matches it to
within alog k factor.)




‘ Exp3: Exponential WeightsI

n n k ~
Zglt,t — Z sz',tgz',t
t=1

t=1 =1

SZ( sztf log (sztexp( A )))

1=1

For the first term, we can bound the variancekby

E Z (2 Eéi’t Ly
p 1 - — — .
R PI,t PI,t

For the second, as in the full information case, Xo& n and anyy,

n k

1 ~ log k -
—— ZlOg (Zpi’t exp()\&;,t)> S 06 —|—ELJ‘,n.

d t=1 1=1 g




‘ Exp3: Exponential WeightsI

R, = Ei@t,t - minEi@,t
t=1 ’ t=1




‘ Exp3: Exponential WeightsI

e Auer, Cesa-Bianchi, Freund and Schapire introduced Exyp3with
a uniform distribution mixed in, to keep/p;, ; bounded).

e Stoltz showed that the uniform distribution is not necegdarough
the sub-Gaussian lower tails idea. (See the ‘Readings’ pagiee
website.)

o Notice that the; parameter is set using the time horizenThere are
two approaches to avoiding this:

— Run Exp3 in multiple epochs, doublingin each epoch, and then
the regret is no more than the sum of the regrets, which gnae's
the square root of the total time horizon.

— Setrn, on a decreasing schedulg: = \/log k/(tk). Sincen, is
decreasing, the telescoping sum becomes a sum that is no moje
than 0, and thénn/2 becomes: > _, 1, /2 = O(y/nklogk).
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‘ Exp3: Exponential WeightsI

« High probability? Variances of the losses are lig, = 2, /p;..)-
Mixing the uniform distribution does not help (for a smalgret, the
uniform component must be as small:as'/?). Need a new strategy.

Instead, use a biased estimate in placé; ef subtract a small offset
so L, becomes a lower confidence bound on the cumulative

expected losg,; ; (or, In the case of gains, an upper confidence
bound on the cumlative expected reward).

Log factor? Can eliminate theg k factor. One approach is to
replace exponential weights with a generalizatioiryor descent,
with an appropriate potential function.

Other comparisons? Can compete with sequences of actidghsa w
bounded number of switches.




