
Stat 260/CS 294-102. Learning in Sequential Decision
Problems.

Peter Bartlett

1. Adversarial bandits

• Definition: sequential game.

• Lower bounds on regret from the stochastic case.

• Exp3: exponential weights strategy.
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Adversarial bandits

Repeated game: strategy choosesIt, then adversary chooses

(x1,t, . . . , xk,t).

Aim to minimize regret,

Rn = max
j

n∑

t=1

xj,t −
n∑

t=1

xIt,t,

or pseudo-regret

Rn = max
j

E

n∑

t=1

xj,t − E

n∑

t=1

xIt,t,
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Adversarial bandits

Some scenarios:

• It deterministic. Hopeless.

• Must haveIt randomized: strategy plays a distribution. Regret is

random. Could consider expected regret, or high probability regret

bounds.

• Adversary choosesxj,t independent of strategy’s previous random

outcomesIt. Oblivious adversary.

• Adversary choosesxj,t with knowledge of strategy’s previous

random outcomesIt. Adaptive adversary or nonoblivious adversary.

But then what does regret mean?
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Adversarial bandits: Lower bounds

It’s clear thatRn ≤ ERn. So a lower bound on pseudo-regret gives lower

bounds on expected regret. Lower bounds in the stochastic setting suffice

here (the adversary can certainly choose a sequence randomly).

Theorem: For any strategy and anyn, there is an oblivious ad-

versary playingxj,t ∈ {0, 1} for which

Rn ≥ 1

18
min{

√
nk, n}.

In particular, it suffices for the adversary to play i.i.d. Bernoulli

rewards to achieve a pseudo-regret that is this large.
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Adversarial bandit strategies

How should a strategy choose the distribution overIt in the adversarial

setting?

• Exploration vs exploitation remains an important issue.

• Exploitation appears to be even more dangerous.

• Let’s digress and consider the corresponding full information game.

It’s standard (and, we’ll see, convenient) to pose it in terms of losses,

rather than rewards. Forxi,t in [0, 1], think of ℓi,t = 1− xi,t, so that

ℓi,t is in [0, 1].
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An aside: A full information prediction game

Consider the following repeated game: at timet,

1. strategy chooses a distributionpt overk experts (It ∼ pt),

2. adversary chooses a loss vectorℓt = (ℓ1,t, . . . , ℓk,t) ∈ [0, 1]k,

3. strategy sees ℓt.

The aim is to ensure that, for all choices of the adversary,

Rn =
n∑

t=1

EℓIt,t −min
j

n∑

t=1

ℓj,t

is not too large.
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An aside: A full information prediction game

Exponential Weights Strategy (with parameterη)

setp1,1 = · · · = pk,1 = 1/k.

for t = 1, 2, . . . , n, chooseIt ∼ pt, observeℓt.

Li,t =

t∑

s=1

ℓi,s,

pi,t+1 =
exp (−ηLi,t)

∑k
j=1 exp (−ηLj,t)

.
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An aside: A full information prediction game

Theorem: The exponential weights strategy with parameterη

incurs regret

Rn ≤ nη

8
+

log k

η
.

Choosingη =
√

8 log k/n givesRn ≤
√

n log k/2.
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An aside: A full information prediction game

Proof idea: For this choice ofpt,

Φt = −1

η
log

(
k∑

i=1

exp(−ηLi,t)

)

is ameasure of progress. WhenEℓIt,t is big, there is a big increase from

Φt−1 toΦt. ButΦn ≤ minj Lj,n.
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An aside: A full information prediction game

For ℓi,t ∈ [0, 1], Hoeffding’s inequality shows that

logE exp (−η (ℓIt,t − EℓIt,t)) ≤
η2

8
,

that is,

EℓIt,t ≤
η

8
− 1

η
logE exp (−ηℓIt,t) .

But the choice ofpt means that the sum of these c.g.f.s telescopes:

n∑

t=1

logE exp (−ηℓIt,t) =

n∑

t=1

log

( ∑k
i=1 exp (−ηLi,t)

∑k
i=1 exp (−ηLi,t−1)

)

= log

(
k∑

i=1

exp (−ηLi,n)

)

− log k.
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An aside: A full information prediction game

Thus,

n∑

t=1

EℓIt,t ≤
ηn

8
+

log k

η
− 1

η
log

(
k∑

i=1

exp (−ηLi,n)

)

︸ ︷︷ ︸

≥exp(−ηLj,n)

≤ ηn

8
+

log k

η
+min

j
Lj,n.

Rn =
n∑

t=1

EℓIt,t −min
j

n∑

t=1

ℓj,t ≤
ηn

8
+

log k

η
.
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Back to bandits

What can the strategy do when it only seesℓIt,t?

Importance sampling: in the strategy, replaceℓi,t by

ℓ̃i,t =
ℓi,t
pi,t

1[It = i].

This is an unbiased estimate of the unseen losses:

ℓj,t = El̃j,t.
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Exp3: Exponential weights

Strategy Exp3
setp1 uniform on{1, . . . , k}.

for t = 1, 2, . . . , n, chooseIt ∼ pt, observeℓIt,t.

ℓ̃i,t =
ℓi,t
pi,t

1[It = i],

L̃i,t =
t∑

s=1

ℓ̃i,s,

pi,t+1 =
exp

(

−ηL̃i,t

)

∑k
j=1 exp

(

−ηL̃j,t

) .
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Back to bandits

Then the regret involves
∑

t(ℓIt,t − ℓj,t), and

ℓIt,t =
k∑

i=1

pi,tℓ̃i,t ℓj,t = El̃j,t.

But we can no longer appeal to Hoeffding’s inequality, becausel̃i,t is

unbounded. Happily, we only need an upper bound on the c.g.f.Γ(λ) for

negative values ofλ = −η. This corresponds to a lower tail concentration

inequality for the non-negative random variableℓ̃It,t. But non-negative

random variables with finite variance have sub-Gaussian lower tails:
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Sub-Gaussian lower tails for non-negative r.v.s

Lemma: ForX ≥ 0 andλ > 0,

logEe−λX ≤ λ2

2
EX2 − λEX,

hence

EX ≤ 1

λ
logEe−λX +

λ

2
EX2.

Proof.

logE exp (−λ(X − EX)) = logE exp (−λX) + λEX

≤ E exp (−λX)− 1 + λEX

≤ E
λ2X2

2
,

becauselog y ≤ y − 1 for all y ande−x ≤ 1− x+ x2/2 for x ≥ 0.
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Exp3: Exponential weights

Theorem: Exp3 with parameterη incurs regret

Rn ≤ nηk

2
+

log k

η
.

Choosingη =
√

2 log k/(nk) givesRn ≤
√
2nk log k.

(Recall the lower boundRn = Ω(
√
nk). This strategy matches it to

within a log k factor.)
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Exp3: Exponential weights

n∑

t=1

ℓIt,t =
n∑

t=1

k∑

i=1

pi,tℓ̃i,t

≤
n∑

t=1

(

λ

2

k∑

i=1

pi,tℓ̃
2
i,t −

1

λ
log

(
k∑

i=1

pi,t exp(−λℓ̃i,t)

))

.

For the first term, we can bound the variance byk:

E

k∑

i=1

pi,tℓ̃
2
i,t = E

ℓ2It,t
pIt,t

≤ E
1

pIt,t
= k.

For the second, as in the full information case, forλ = η and anyj,

−1

η

n∑

t=1

log

(
k∑

i=1

pi,t exp(−λℓ̃i,t)

)

≤ log k

η
+ EL̃j,n.
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Exp3: Exponential weights

Hence,

Rn = E

n∑

t=1

ℓIt,t −min
j

E

n∑

t=1

ℓj,t

= E

n∑

t=1

ℓIt,t −min
j

EL̃j,n

≤ ηnk

2
+

log k

η
.
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Exp3: Exponential weights

• Auer, Cesa-Bianchi, Freund and Schapire introduced Exp3 (but with
a uniform distribution mixed in, to keep1/pIt,t bounded).

• Stoltz showed that the uniform distribution is not necessary, through
the sub-Gaussian lower tails idea. (See the ‘Readings’ pageon the
website.)

• Notice that theη parameter is set using the time horizonn. There are
two approaches to avoiding this:

− Run Exp3 in multiple epochs, doublingn in each epoch, and then
the regret is no more than the sum of the regrets, which grows like
the square root of the total time horizon.

− Setηt on a decreasing schedule:ηt =
√

log k/(tk). Sinceηt is
decreasing, the telescoping sum becomes a sum that is no more
than 0, and theknη/2 becomesk

∑

t ηt/2 = O(
√
nk log k).
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Exp3: Exponential weights

• High probability? Variances of the losses are big (Eℓ̃2j,t = ℓ̃2j,t/pj,t).

Mixing the uniform distribution does not help (for a small regret, the

uniform component must be as small asn−1/2). Need a new strategy.

Instead, use a biased estimate in place ofℓ̃j,t: subtract a small offset

soL̃j,t becomes a lower confidence bound on the cumulative

expected lossLj,t (or, in the case of gains, an upper confidence

bound on the cumlative expected reward).

• Log factor? Can eliminate thelog k factor. One approach is to

replace exponential weights with a generalization,mirror descent,

with an appropriate potential function.

• Other comparisons? Can compete with sequences of actions, with a

bounded number of switches.
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