Theoretical Statistics. Lecture 9.
Peter Bartlett

Uniform laws of large numbers.
1. Proof of Glivenko-Cantelli Theorem

2. Glivenko-Cantelli classes

3. Bounding Rademacher complexity.




\ Recall: Glivenko-Cantelli Theorem.

Theorem: ||F, — F||., = 0. Thatis,||P — P,|lc = 0, whereG =
{1z <t]: t € R}.

Uniform law of large numbers because it's uniform over




Recall: Proof of Glivenko-Cantelli Theorem'

We’'ll look at a proof that we’ll then extend to a more generdfisient
condition for a class to be Glivenko-Cantelli.

The proof involves three steps:

1. Concentration: with probability at leabt- exp(—2¢n),

|P— Pullg <E|IP - Pyl +e

2. SymmetrizationE|| P — P, || < 2E| R,||¢, where we've defined the
Rademacher process,,(g) = (1/n) >, e;g(X;) (and this leads us
to consider restrictions of step functions G to the data), and

3. Simple restrictions.




Proof of Glivenko-Cantelli Theorem: Restrictions.

We consider the set of restrictions
G(XT) ={(g(X1),...,9(X,)) : g € G}
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But notice that the cardinality @ (X{") does not change if we order the
data. That s,

G(X1,.... X)) = |G(X 1y, X))
= {(1[ X <t],..., [ X <)) :teR} <n+1,

whereX ) < --- < X, Is the data in sorted order (and £9;) < ¢
implies X ;) < 7).




Proof of Glivenko-Cantelli Theorem: Rademacher Average:

Finally, we use the following result.

Lemma: [Finite Classes]For A C R™ with R = max,c 4 ||al|2,

Esuple, a) < v/2R2log |A|.
acA

Esup|(e,a)|=E sup (e,a) < /2R2log(2|A|).
acA acAU—A




Proof of Rademacher Averages Resu'

exp ()\E sup(e, a)) < Eexp ()\ sup(e, a})

a

= Esupexp (A€, a))
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using the fact that;a; is bounded, hence sub-gaussian. Picking
A2 = 2log|A|/R? gives the result.




Proof of Glivenko-Cantell Theorem'

For the clasg~ of step functionsRk < 1/4/n and|A| < n + 1. Thus, with
probability at leasl — exp(—2¢%n),

log(2 1
PRI Tz
n

By Borel-Cantelli,|P — P, ||¢ =5 0.




\ Recall: Glivenko-Cantelli Classes

Definition: F'i1s aGlivenko-Cantelli classfor P if

P, — P|lr = 0.




Recall: Glivenko-Cantelli Classes and ERM

Why are uniform laws of large numbers useful for empiricakri
minimization?

We are interested in controlling the excess risk,

Pt; — inf Ply = Pty — Plo-

wheref* minimizesL on®. We can decompose it as

Pls — Plg = |Ply; — Pyls| 4+ |Poly — Pply«| + [Pplgr — Plo+].

The last difference is controlled by a LNN, the second is posHive by the
definition ofd, and the first term is controlled via a ULNN:
Pﬁé — Pngé S SUPg |P€9 — Pn€9|




Recall: Glivenko-Cantelli Classes and ERM

Note that the inequality’¢; — P,,¢, < supgy |Plg — P, {s| might be loose.

But there are important examples where it is tight enoughvi® gptimal
rates (such as two-class classification and regressioralvgblute loss, in
minimax settings, that is, with a worst-case choice of pbilkig
distribution).
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Uniform laws and Rademacher complexitﬂ

The proof of the Glivenko-Cantelli Theorem involved thréeps:

1. Concentration off P — P, || r about its expectation.

2. Symmetrization, which bounds|| P — P, || ¢ in terms of the

Rademacher complexity df, E|| R, || .

3. A combinatorial argument showing that the set of restmst of ' to
X7 1s small, and a bound on tliademacher complexityusing this

fact.

We'll follow a similar path to prove a more general unifornwlaf large
numbers.
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Uniform laws and Rademacher complexitﬂ

Definition: The Rademacher complexityof F' is E||R, |, where the
empirical process$t,, is defined as

n

Ra(f) = |3 3l (X0,

where theeq, ..., ¢, are Rademacher random variables: i.1.d. uniform

[+1).

Note that this is the expected supremum of the alignmentdmivhe
random{=+1}-vectore andF'(X7{'), the set ofr-vectors obtained by
restrictingF’ to the sampleXy, ..., X,,.
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Uniform laws and Rademacher complexitﬂ

Theorem: ForanyF, E||P — P,||r < 2E||R,||F.
If F cC[0,1]%,

log 2
52 < E||P - P,||r < 2E| Ry | F.

and, with probability at least — 2 exp(—2¢2n),

E|P — Pullr —¢ < |P = Pullr <E|P = Pullr+e.

Thus,E||R,||r — 0iff |P — P,||r =3 0.

That is, the sup of the empirical proceBs- P,, is concentrated about its
expectation, and its expectation is about the same as tleetxpsup of the
Rademacher procegs, .
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Uniform laws and Rademacher complexitﬂ

The first result is the symmetrization that we saw earlier:

E|P - Pollp < E|P, — Puollr
1 n
=E |- ) a(f(X) - f(Xi)

n -
1=1

<2E||R,| F.

whereR,, is the Rademacher proceBs (f) = (1/n) >, eif(X,).
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Uniform laws and Rademacher complexitﬂ

The second inequalitydésymmetrization) follows from:

mn mn

BlRlr <B| -3 e (f(X) - Ef(X)|| +B||~ Y aBf(X)

n 4 :
F 1=1 I
n

1
XD +IPIE|- D e
F 1=1

(f(Xi) —Ef(X;) +Ef(X]) — f(X]))

n

1
+IPIE[=> e
1=1

2log 2

n
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Uniform laws and Rademacher complexitﬂ

And this shows thalP — P, || = 0 impliesE||R,,||r — 0.

The last inequality follows from the triangle inequalitycatie Finite
Classes Lemma.

And Borel-Cantelli implies thaE|| R, || r — 0 implies||P — P,||r = 0.
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Controlling Rademacher complexity'

So how do we contrdE|| R, || #? We’'ll look at several approaches:

1. |F(X7)| small. fmax |F(z7)]| is thegrowth function)

. For binary-valued functions: Vapnik-Chervonenkis dnsien. Bounds
rate of growth function. Can be bounded for parameterizetlies.

. Structural results on Rademacher complexity: Obtaibmgnds for
function classes constructed from other function classes.

4. Covering numbers. Dudley entropy integral, Sudakov dveeind.

5. For real-valued functions: scale-sensitive dimensions

17



‘Controlling Rademacher complexity: Growth function I

For the class of distribution function&, = {z — 1|z < o : a € R}, we
saw that the set of restrictions,

G(zy) ={(g(x1), .-, 9(xn)) : g € G}

s always smalliG(z7)| < Ilg(n) =n + 1.

Definition: For a clasg’ C {0,1}", thegrowth function is

p(n) =max{|F(x])|: z1,...,2, € X}.
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