
Theoretical Statistics. Lecture 9.
Peter Bartlett

Uniform laws of large numbers.

1. Proof of Glivenko-Cantelli Theorem

2. Glivenko-Cantelli classes

3. Bounding Rademacher complexity.
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Recall: Glivenko-Cantelli Theorem

Theorem: ‖Fn − F‖
∞

as→ 0. That is,‖P − Pn‖G as→ 0, whereG =

{1[x ≤ t] : t ∈ R}.

Uniform law of large numbers because it’s uniform overG.
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Recall: Proof of Glivenko-Cantelli Theorem

We’ll look at a proof that we’ll then extend to a more general sufficient

condition for a class to be Glivenko-Cantelli.

The proof involves three steps:

1. Concentration: with probability at least1− exp(−2ǫ2n),

‖P − Pn‖G ≤ E‖P − Pn‖G + ǫ.

2. Symmetrization:E‖P − Pn‖G ≤ 2E‖Rn‖G, where we’ve defined the

Rademacher processRn(g) = (1/n)
∑n

i=1 ǫig(Xi) (and this leads us

to consider restrictions of step functionsg ∈ G to the data), and

3. Simple restrictions.
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Proof of Glivenko-Cantelli Theorem: Restrictions

We consider the set of restrictions

G(Xn
1 ) = {(g(X1), . . . , g(Xn)) : g ∈ G}:

2E‖Rn‖G = 2E sup
g∈G
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But notice that the cardinality ofG(Xn
1 ) does not change if we order the

data. That is,

|G((X1, . . . , Xn))| =
∣

∣G((X(1), . . . , X(n)))
∣

∣

=
∣

∣

{

(1[X(1) ≤ t], . . . , 1[X(n) ≤ t]) : t ∈ R
}
∣

∣ ≤ n+ 1,

whereX(1) ≤ · · · ≤ X(n) is the data in sorted order (and soX(i) ≤ t

impliesX(i−1) ≤ t).
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Proof of Glivenko-Cantelli Theorem: Rademacher Averages

Finally, we use the following result.

Lemma: [Finite Classes]ForA ⊆ R
n with R = maxa∈A ‖a‖2,

E sup
a∈A

〈ǫ, a〉 ≤
√

2R2 log |A|.

Hence

E sup
a∈A

|〈ǫ, a〉| = E sup
a∈A∪−A

〈ǫ, a〉 ≤
√

2R2 log(2|A|).
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Proof of Rademacher Averages Result

Proof:

exp

(

λE sup
a
〈ǫ, a〉

)
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a
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∑
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2
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≤ |A| exp
(
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2

)

,

using the fact thatǫiai is bounded, hence sub-gaussian. Picking
λ2 = 2 log |A|/R2 gives the result.
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Proof of Glivenko-Cantelli Theorem

For the classG of step functions,R ≤ 1/
√
n and|A| ≤ n+ 1. Thus, with

probability at least1− exp(−2ǫ2n),

‖P − Pn‖G ≤
√

8 log(2(n+ 1))

n
+ ǫ.

By Borel-Cantelli,‖P − Pn‖G as→ 0.
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Recall: Glivenko-Cantelli Classes

Definition: F is aGlivenko-Cantelli classfor P if

‖Pn − P‖F P→ 0.
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Recall: Glivenko-Cantelli Classes and ERM

Why are uniform laws of large numbers useful for empirical risk

minimization?

We are interested in controlling the excess risk,

Pℓ
θ̂
− inf

θ∈Θ
Pℓθ = Pℓ

θ̂
− Pℓθ∗

whereθ∗ minimizesL onΘ. We can decompose it as

Pℓ
θ̂
− Pℓθ∗ =

[

Pℓ
θ̂
− Pnℓθ̂

]

+
[

Pnℓθ̂ − Pnℓθ∗

]

+ [Pnℓθ∗ − Pℓθ∗ ] .

The last difference is controlled by a LNN, the second is non-positive by the

definition of θ̂, and the first term is controlled via a ULNN:

Pℓ
θ̂
− Pnℓθ̂ ≤ supθ |Pℓθ − Pnℓθ|.
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Recall: Glivenko-Cantelli Classes and ERM

Note that the inequalityPℓ
θ̂
− Pnℓθ̂ ≤ supθ |Pℓθ − Pnℓθ| might be loose.

But there are important examples where it is tight enough to give optimal

rates (such as two-class classification and regression withabsolute loss, in

minimax settings, that is, with a worst-case choice of probability

distribution).
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Uniform laws and Rademacher complexity

The proof of the Glivenko-Cantelli Theorem involved three steps:

1. Concentration of‖P − Pn‖F about its expectation.

2. Symmetrization, which boundsE‖P − Pn‖F in terms of the

Rademacher complexity ofF , E‖Rn‖F .

3. A combinatorial argument showing that the set of restrictions ofF to

Xn
1 is small, and a bound on theRademacher complexityusing this

fact.

We’ll follow a similar path to prove a more general uniform law of large

numbers.
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Uniform laws and Rademacher complexity

Definition: The Rademacher complexityof F is E‖Rn‖F , where the

empirical processRn is defined as

Rn(f) =

∣

∣
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∣

,

where theǫ1, . . . , ǫn are Rademacher random variables: i.i.d. uniform on

{±1}.

Note that this is the expected supremum of the alignment between the

random{±1}-vectorǫ andF (Xn
1 ), the set ofn-vectors obtained by

restrictingF to the sampleX1, . . . , Xn.
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Uniform laws and Rademacher complexity

Theorem: For anyF , E‖P − Pn‖F ≤ 2E‖Rn‖F .

If F ⊂ [0, 1]X ,

1

2
E‖Rn‖F −

√

log 2

2n
≤ E‖P − Pn‖F ≤ 2E‖Rn‖F ,

and, with probability at least1− 2 exp(−2ǫ2n),

E‖P − Pn‖F − ǫ ≤ ‖P − Pn‖F ≤ E‖P − Pn‖F + ǫ.

Thus,E‖Rn‖F → 0 iff ‖P − Pn‖F as→ 0.

That is, the sup of the empirical processP − Pn is concentrated about its
expectation, and its expectation is about the same as the expected sup of the
Rademacher processRn.
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Uniform laws and Rademacher complexity

The first result is the symmetrization that we saw earlier:

E‖P − Pn‖F ≤ E‖P ′
n − Pn‖F

= E
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whereRn is the Rademacher processRn(f) = (1/n)
∑n

i=1 ǫif(Xi).
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Uniform laws and Rademacher complexity

The second inequality (desymmetrization) follows from:

E‖Rn‖F ≤ E
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Uniform laws and Rademacher complexity

And this shows that‖P − Pn‖F as→ 0 impliesE‖Rn‖F → 0.

The last inequality follows from the triangle inequality and the Finite

Classes Lemma.

And Borel-Cantelli implies thatE‖Rn‖F → 0 implies‖P − Pn‖F as→ 0.
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Controlling Rademacher complexity

So how do we controlE‖Rn‖F? We’ll look at several approaches:

1. |F (Xn
1 )| small. (max |F (xn

1 )| is thegrowth function )

2. For binary-valued functions: Vapnik-Chervonenkis dimension. Bounds

rate of growth function. Can be bounded for parameterized families.

3. Structural results on Rademacher complexity: Obtainingbounds for

function classes constructed from other function classes.

4. Covering numbers. Dudley entropy integral, Sudakov lower bound.

5. For real-valued functions: scale-sensitive dimensions.
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Controlling Rademacher complexity: Growth function

For the class of distribution functions,G = {x 7→ 1[x ≤ α] : α ∈ R}, we

saw that the set of restrictions,

G(xn
1 ) = {(g(x1), . . . , g(xn)) : g ∈ G}

is always small:|G(xn
1 )| ≤ ΠG(n) = n+ 1.

Definition: For a classF ⊆ {0, 1}X , thegrowth function is

ΠF (n) = max{|F (xn
1 )| : x1, . . . , xn ∈ X}.
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