Final Exam
Open-book.

Covers all of the course.

Best four out of five questions.




Introduction to Time Series Analysis: Review

1. Time series modelling.

2. Time domain.
(a) Concepts of stationarity, ACF.
(b) Linear processes, causality, invertibility.
(c) ARMA models, forecasting, estimation.
(d) ARIMA, seasonal ARIMA models.

3. Frequency domain.
(a) Spectral density.
(b) Linear filters, frequency response.
(c) Nonparametric spectral density estimation.
(d) Parametric spectral density estimation.
(e) Lagged regression models.




Objectives of Time Series Analysij

. Compact description of data. Example:

Xe =Ty + S+ f(Yy) + Ws.

. Interpretation. Example: Seasonal adjustment.
. Forecasting. Example: Predict unemploymeift.
. Control. Example: Impact of monetary policy on unempleytn

. Hypothesis testing. Example: Global warming.

. Simulation. Example: Estimate probability of cataskiggevents.



Time Series I\/Iodelling'

1. Plot the time series.
Look for trends, seasonal components, step changes,rsutlie

2. Transform data so that residuals atationary.
(a) Estimate and subtra¢i, .S;.
(b) Differencing.

(c) Nonlinear transformations (log/-).

3. Fit model to residuals.
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‘ Stationarity I

{ X} isstrictly stationary if, forall k,%4,...,tx, x1,...,xx, andh,

P(Xy, <z1,..., X4, <) = P(ry4n < 21,00, Xoppn < xp).

l.e., shifting the time axis does not affect the distribatio

We considesecond-order propertiesonly:
{ X} is stationary if its mean function and autocovariance fmcsatisfy

pa(t) = E[X:] = p,
Yz (8, 1) = Cov( X, X;) = Yo (s — t).

NB: Constant variancey, (t,t) = Var(X;) = ~v.(0).




‘ACF and Sample ACFI

Theautocorrelation function (ACF) is

px(h) = zﬁg; = Corn( Xyun, Xt).

For observations., ..., z,, of atime series,

. 1 «
thesample meanis T=—)
n t=1

Thesample autocovariance functions

n—|h|
1
— E <5Ut—|—|h| —z)(xy — ), for —n < h < n.
n

t=1

A

Thesample autocorrelation functionis p(h) = 4(h)/4(0).




Linear Processei

An important class of stationary time series:

= U+ Z YWy

Jj=—00
where  {W;} ~ WN(0,03)

and  u,, are parameters satisfying

e.g.. ARMA(p,q).




Causality I

A linear procesq X; } is causal(strictly, acausal function
of {W,}) if there is a

$(B) = o + 1 B + 2B + -




‘ Invertibility I

A linear procesq X;} is invertible (strictly, aninvertible
function of {W,}) if there is a

7T(B)27T0—|—7TlB—|—7TQBQ‘|‘°"
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‘ Polynomials of a complex variablﬂ

Every degre@ polynomiala(z) can be factorized as

a(z) =ap+a1z+ -+ a2 =a,(z—21)(2 —22) - (2 — 2p),

wherezy, ..., z, € C are called the roots af(z). If the coefficients
ap, a1, ..., a, are all real, them is real, and the roots are all either real or
come in complex conjugate pairg, = z;.
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Autoregressive moving average modef

An ARMA(p,q) process{ X, } is a stationary process that
satisfies

Xi—1 Xy 41— —OpXp—p = Wi+ O W1+ - - +0, Wiy,

where{W;} ~ WN(0, c?).

Also, ¢,,,0, # 0 and¢(z), 8(z) have no common factors.
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Properties of ARMA(p,Q) models'

Theorem: If ¢ andf have no common factors, a (unigLstg-
tionary solution top(B) X, = 6(B)W, exists iff

Bz) =11z — - — P =0 = |2| £ 1.

This ARMA(p,q) process isausal iff

H(z)=1—prz—--—p2P =0 = |2z| > 1.

It is invertible iff

0(2) =14+61z4+ - 4+6,27=0. = |z| > 1.
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Properties of ARMA(p,Qq) models'

o(B) Xy =0(B)Wy, & Xy =9(B)W;
so  0(B) =v(B)¢(B)
& 1+6:B+ - +0,B1= o+ 1B+ )1—¢1B—- — ¢,B")
& 1 = 1o,
01 = 1 — P10,
02 = o — G191 — -+ - — P21)o,

This is equivalent td; = ¢(B)y;, with6y =1,6; =0forj < 0,5 > g.

14



‘ Linear prediction I

Given X, Xs, ..., X, the best linear predictor

n—l—m _&0—'_2&@

of X,,.,, satisfies th@rediction equations

E(Xpym — X"

n—i—m) — O
E|(Xntm — Xpt) Xi| =0 fori=1,...,

That is, theprediction errors (X, ,,, —
prediction variables (1, X1, ..., X,).

X, 1m) areuncorrelated with the
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Projection Theorem'

If H is a Hilbert space,
M is a closed linear subspace#f
andy € H,

then there is a poinPy € M

(the projection of y on M)

satisfying

L [Py —yl| < [lw—yl forw e M,

2. [|[Py—yll < |lw—yl| forwe M,w#y
3.{(y — Py,w) =0 forw e M.
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‘ One-step-ahead linear predictio:'

Xg—l—l — ¢n1Xn + ¢n2Xn—1 + - T ¢nnX1
anbn = Tn,

withT',, =

| A(i—1) A -2)
an — (¢n17 anQ, I ann)/, Tn
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The innovations representatiod

Write the best linear predictor as

Xpior = 01 (X = X070) 4002 (X1 — X 20) 4+ 400 (X1 — X7)

innovation

The innovations are uncorrelated:
Cov(X; — X', X; — X/ 7") =0fori # j.
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Yule-Walker estimation '

Method of moments: We choose parameters for which the moments are
equal to the empirical moments.

In this case, we chooseso thaty = 4.

Yule-Walker equations fog:

These are the forecasting equations.
Recursive computation: Durbin-Levinson algorithm.
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Maximum likelihood estimation '

Suppose thak;, X5, ..., X,, Is drawn from a zero mean Gaussian
ARMA(p,q) process. The likelihood of parameters RP, 6 € RY,

o2 € R, is defined as the density of = (X, X5, ..., X,,) under the
Gaussian model with those parameters:

1 1
L(¢7 670-30) — €Xp (__X/F;1X> ’
(2m)n/2 |1, |12 -

where| A| denotes the determinant of a matdxandl’,, is the
variance/covariance matrix df with the given parameter values.

The maximum likelihood estimator (MLE) af, 6, 02 maximizes this
guantity.
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Maximum likelihood estimation I

The MLE (¢, 0, 62 satisfies

wherer! ™' = P!~ /o2 and

S(¢70) :Z
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‘ Integrated ARMA Models: ARIMA(p,d,q) I

Forp,d,q > 0, we say that a time serigsX; } is an
ARIMA (p,d,q) process if V; = V4X, = (1 — B)4X, is
ARMA(p,q). We can write

o(B)(1 — B)*X, = 6(B)W,.

22




Multiplicative seasonal ARMA Models'

For p,q,P,() > 0, s > 0, d,D > 0, we say that g
time series{ X, } is amultiplicative seasonal ARIMA model

(ARIMA(p,d,q)x (P,D,Q),)
®(B*)¢(B)VEVIX, = ©(B*)0(B)W,,

where theseasonal difference operator of order D is defined by

vPXx, =1 - B%PX,.
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1. Time series modelling.

2. Time domain.
(a) Concepts of stationarity, ACF.
(b) Linear processes, causality, invertibility.
(c) ARMA models, forecasting, estimation.
(d) ARIMA, seasonal ARIMA models.

3. Frequency domain.
(a) Spectral density.

(b) Linear filters, frequency response.

(c) Nonparametric spectral density estimation.

(d) Parametric spectral density estimation.

(e) Lagged regression models.
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‘ Spectral density and spectral distribution function'

If {X:}hasd ;- |7.(h)|] < oo, then we define its
spectral densityas

fr)= > y(h)e "

h=—o0
for —oco < v < 0co. We have

1/2 | 1/2 |
/ 627m1/hf(y) dy = / 627m1/h dF(V),

—1/2 —1/2

wheredF'(v) = f(v)dv.

f measures how the variance &f Is distributed across the spectrum.
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Frequency response of a linear fiIte:I

If {X;} has spectral densityi,.(v) and the coefficients of th
time-invariant linear filtery) are absolutely summable, th
Y: = ¢(B)X; has spectral density

fo () = [ (™) fu(v).

If ¢/ Is a rational function, the transfer function is determibgdhe
locations of its poles and zeros.
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‘ Sample autocovariancﬂ

The sample autocovariané€-) can be used to give an estimate of the
spectral density,

fy= 3 ez

h=—n+1

for—1/2 <v <1/2.

This is equivalent to the periodogram.
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Periodogram'

The periodogram is defined as

n

1

n
t=1

1 n
X.(v) = NG Zcos(%rtu)a?t,
t=1

1 n
Xs(v) = NG Zsin(Qﬂtz/j)xt.
t=1
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Asymptotic properties of the periodogram'

Under general conditions (e.g., gaussian, or linear psoags rapidly
decaying ACF), theX.(v,), Xs(v;) are all asymptotically independent anc
N(0, f(v;)/2), andf(2(™) — f(v), wherep(™) is the closest Fourier
frequency(k/n) to the frequency.

In that case, we have

2 2
fw) fv)

Thus,EI(»™) — f(v), and ValI(v(™)) — f(v)2.

(™) =

(X200 + X2(00)) 5 33,
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Smoothed periodograﬂ

If f(v)is approximately constant in the bapg — L/(2n), v, + L/(2n)],
the average of the periodogram over the band will be unbiased

) 1 (L—1)/2

fo =7 3 Iw—1in)

l=—(L—1)/2
R
=, > (X -1+ X3~ 1/n)).

l=—(L—1)/2

ThenEf (™) — f(v) and Varf (™) — f2(v)/L.

Notice thebias-variance trade off.
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‘ Smoothed spectral estimatorj

fwy= Y Wa()HI@™ —j/n),

where thespectral window function satisfiesl,, — oo, L, /n — 0,
Wi (5) > 0, Wi (j) = Wa(=j), 2 Wa(4) = 1, andd- W2 (j) — 0.

Thenf’(y) — f(v) (in the mean square sense), and asymptotically

N 2
Fr) ~ F) AL,

whered = 2/ 3" W?2(j).
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‘ Parametric spectral density estimatioj

Given datary, zo, ..., Tn,,

1. Estimate the AR parametets, ..., ¢,, 02

2. Use the estimates, . . ., ¢,, 62 to compute the estimated spectral
density:

Tw
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‘ Parametric spectral density estimatioj

For largen,

Var(f(v)) ~ 2 £2(0).

Notice thebias-variance trade off.

Advantage over nonparametric: betbeguency resolution of a small
number of peaks. This is especially important if there isartban one peak
at nearby frequencies.

Disadvantage: inflexibility (bias).
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‘ Lagged regression model.

Consider a lagged regression model of the form

oo

Vo= > BuXen+ Vi,

h=—o0

whereX; Is an observed input time serids,is the observed output time
series, and/; Is a stationary noise process.

This is useful for

|dentifying the (best linear) relationship between twodigeries.

Forecasting one time series from the other.
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‘ Lagged regression in the time domai:'

Yi=a(B)X;+n = ZOéth—j + Mt
j=0

. Fitan ARMA model (withd..(B), ¢..(B)) to the input serie$ X; }.
. Prewhiten the input series by applying the inverse operator

¢2(B)/0:(B).

. Calculate the cross-correlationaf with 1, vi.w(h), to give an
indication of the behavior ak(B) (for instance, the delay).

. Estimate the coefficients of( B) and hence fit an ARMA model for
the noise series;.

35



\ Coherencﬂ

Define thecross-spectrum and thesguared coherence function:
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‘ Lagged regression models in the frequency domai'1

Yo=Y BiXij+ Vi,

j=—00

We compute the Fourier transform of the sefgs} in terms of the
cross-spectral density and the spectral density:

B(V)f:c(l/) — fy:c( )

1/2
MSE = / fy(v) (1 — pzw(y)) dv.

—1/2

Thus,p,.(v)? indicates how the component of the variance Bf} at a
frequencyr is accounted for by X, }.
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