
Final Exam

• Open-book.

• Covers all of the course.

• Best four out of five questions.

1



Introduction to Time Series Analysis: Review

1. Time series modelling.

2. Time domain.

(a) Concepts of stationarity, ACF.

(b) Linear processes, causality, invertibility.

(c) ARMA models, forecasting, estimation.

(d) ARIMA, seasonal ARIMA models.

3. Frequency domain.

(a) Spectral density.

(b) Linear filters, frequency response.

(c) Nonparametric spectral density estimation.

(d) Parametric spectral density estimation.

(e) Lagged regression models.
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Objectives of Time Series Analysis

1. Compact description of data. Example:

Xt = Tt + St + f(Yt) +Wt.

2. Interpretation. Example: Seasonal adjustment.

3. Forecasting. Example: Predict unemployment.

4. Control. Example: Impact of monetary policy on unemployment.

5. Hypothesis testing. Example: Global warming.

6. Simulation. Example: Estimate probability of catastrophic events.
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Time Series Modelling

1. Plot the time series.

Look for trends, seasonal components, step changes, outliers.

2. Transform data so that residuals arestationary.

(a) Estimate and subtractTt, St.

(b) Differencing.

(c) Nonlinear transformations (log,
√·).

3. Fit model to residuals.
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1. Time series modelling.

2. Time domain.

(a) Concepts of stationarity, ACF.

(b) Linear processes, causality, invertibility.

(c) ARMA models, forecasting, estimation.

(d) ARIMA, seasonal ARIMA models.

3. Frequency domain.

(a) Spectral density.

(b) Linear filters, frequency response.

(c) Nonparametric spectral density estimation.

(d) Parametric spectral density estimation.

(e) Lagged regression models.

5



Stationarity

{Xt} is strictly stationary if, for all k, t1, . . . , tk, x1, . . . , xk, andh,

P (Xt1 ≤ x1, . . . , Xtk ≤ xk) = P (xt1+h ≤ x1, . . . , Xtk+h ≤ xk).

i.e., shifting the time axis does not affect the distribution.

We considersecond-order propertiesonly:

{Xt} is stationary if its mean function and autocovariance function satisfy

µx(t) = E[Xt] = µ,

γx(s, t) = Cov(Xs, Xt) = γx(s− t).

NB: Constant variance:γx(t, t) = Var(Xt) = γx(0).
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ACF and Sample ACF

Theautocorrelation function (ACF) is

ρX(h) =
γX(h)

γX(0)
= Corr(Xt+h, Xt).

For observationsx1, . . . , xn of a time series,

thesample meanis x̄ =
1

n

n∑

t=1

xt.

Thesample autocovariance functionis

γ̂(h) =
1

n

n−|h|
∑

t=1

(xt+|h| − x̄)(xt − x̄), for −n < h < n.

Thesample autocorrelation function is ρ̂(h) = γ̂(h)/γ̂(0).
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Linear Processes

An important class of stationary time series:

Xt = µ+
∞∑

j=−∞

ψjWt−j

where {Wt} ∼WN(0, σ2
w)

and µ, ψj are parameters satisfying
∞∑

j=−∞

|ψj | <∞.

e.g.: ARMA(p,q).
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Causality

A linear process{Xt} is causal(strictly, acausal function
of {Wt}) if there is a

ψ(B) = ψ0 + ψ1B + ψ2B
2 + · · ·

with
∞∑

j=0

|ψj | <∞

and Xt = ψ(B)Wt.
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Invertibility

A linear process{Xt} is invertible (strictly, aninvertible
function of {Wt}) if there is a

π(B) = π0 + π1B + π2B
2 + · · ·

with
∞∑

j=0

|πj | <∞

and Wt = π(B)Xt.
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Polynomials of a complex variable

Every degreep polynomiala(z) can be factorized as

a(z) = a0 + a1z + · · ·+ apz
p = ap(z − z1)(z − z2) · · · (z − zp),

wherez1, . . . , zp ∈ C are called the roots ofa(z). If the coefficients

a0, a1, . . . , ap are all real, thenc is real, and the roots are all either real or

come in complex conjugate pairs,zi = z̄j .
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Autoregressive moving average models

An ARMA(p,q) process{Xt} is a stationary process that

satisfies

Xt−φ1Xt−1−· · ·−φpXt−p =Wt+θ1Wt−1+ · · ·+θqWt−q,

where{Wt} ∼WN(0, σ2).

Also,φp, θq 6= 0 andφ(z), θ(z) have no common factors.
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Properties of ARMA(p,q) models

Theorem: If φ andθ have no common factors, a (unique)sta-

tionary solution toφ(B)Xt = θ(B)Wt exists iff

φ(z) = 1− φ1z − · · · − φpz
p = 0 ⇒ |z| 6= 1.

This ARMA(p,q) process iscausal iff

φ(z) = 1− φ1z − · · · − φpz
p = 0 ⇒ |z| > 1.

It is invertible iff

θ(z) = 1 + θ1z + · · ·+ θqz
q = 0. ⇒ |z| > 1.
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Properties of ARMA(p,q) models

φ(B)Xt = θ(B)Wt, ⇔ Xt = ψ(B)Wt

so θ(B) = ψ(B)φ(B)

⇔ 1 + θ1B + · · ·+ θqB
q = (ψ0 + ψ1B + · · · )(1− φ1B − · · · − φpB

p)

⇔ 1 = ψ0,

θ1 = ψ1 − φ1ψ0,

θ2 = ψ2 − φ1ψ1 − · · · − φ2ψ0,

...

This is equivalent toθj = φ(B)ψj, with θ0 = 1, θj = 0 for j < 0, j > q.
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Linear prediction

GivenX1, X2, . . . , Xn, the best linear predictor

Xn
n+m = α0 +

n∑

i=1

αiXi

of Xn+m satisfies theprediction equations

E
(
Xn+m −Xn

n+m

)
= 0

E
[(
Xn+m −Xn

n+m

)
Xi

]
= 0 for i = 1, . . . , n.

That is, theprediction errors (Xn
n+m −Xn+m) are uncorrelated with the

prediction variables (1, X1, . . . , Xn).
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Projection Theorem

If H is a Hilbert space,

M is a closed linear subspace ofH,

andy ∈ H,

then there is a pointPy ∈ M
(theprojection of y on M)

satisfying

1. ‖Py − y‖ ≤ ‖w − y‖ for w ∈ M,

2. ‖Py− y‖ < ‖w− y‖ for w ∈ M,w 6= y

3. 〈y − Py,w〉 = 0 for w ∈ M.

y

y−Py

Py

M
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One-step-ahead linear prediction

Xn
n+1 = φn1Xn + φn2Xn−1 + · · ·+ φnnX1

Γnφn = γn,

Pn
n+1 = E

(
Xn+1 −Xn

n+1

)2
= γ(0)− γ′nΓ

−1
n γn,

with Γn =











γ(0) γ(1) · · · γ(n− 1)

γ(1) γ(0) γ(n− 2)
...

...
...

γ(n− 1) γ(n− 2) · · · γ(0)











,

φn = (φn1, φn2, . . . , φnn)
′, γn = (γ(1), γ(2), . . . , γ(n))′.
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The innovations representation

Write the best linear predictor as

Xn
n+1 = θn1

(
Xn −Xn−1

n

)

︸ ︷︷ ︸

innovation

+θn2
(
Xn−1 −Xn−2

n−1

)
+· · ·+θnn

(
X1 −X0

1

)
.

The innovations are uncorrelated:

Cov(Xj −Xj−1
j , Xi −Xi−1

i ) = 0 for i 6= j.
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Yule-Walker estimation

Method of moments: We choose parameters for which the moments are

equal to the empirical moments.

In this case, we chooseφ so thatγ = γ̂.

Yule-Walker equations for̂φ:







Γ̂pφ̂ = γ̂p,

σ̂2 = γ̂(0)− φ̂′γ̂p.

These are the forecasting equations.

Recursive computation: Durbin-Levinson algorithm.
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Maximum likelihood estimation

Suppose thatX1, X2, . . . , Xn is drawn from a zero mean Gaussian

ARMA(p,q) process. The likelihood of parametersφ ∈ Rp, θ ∈ Rq,

σ2
w ∈ R+ is defined as the density ofX = (X1, X2, . . . , Xn)

′ under the

Gaussian model with those parameters:

L(φ, θ, σ2
w) =

1

(2π)n/2 |Γn|1/2
exp

(

−1

2
X ′Γ−1

n X

)

,

where|A| denotes the determinant of a matrixA, andΓn is the

variance/covariance matrix ofX with the given parameter values.

The maximum likelihood estimator (MLE) ofφ, θ, σ2
w maximizes this

quantity.
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Maximum likelihood estimation

The MLE (φ̂, θ̂, σ̂2
w) satisfies

σ̂2
w =

S(φ̂, θ̂)

n
,

andφ̂, θ̂ minimize log

(

S(φ̂, θ̂)

n

)

+
1

n

n∑

i=1

log ri−1
i ,

whereri−1
i = P i−1

i /σ2
w and

S(φ, θ) =
n∑

i=1

(
Xi −Xi−1

i

)2

ri−1
i

.
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Integrated ARMA Models: ARIMA(p,d,q)

Forp, d, q ≥ 0, we say that a time series{Xt} is an

ARIMA (p,d,q) process if Yt = ∇dXt = (1 − B)dXt is

ARMA(p,q). We can write

φ(B)(1−B)dXt = θ(B)Wt.
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Multiplicative seasonal ARMA Models

For p, q, P,Q ≥ 0, s > 0, d,D > 0, we say that a

time series{Xt} is amultiplicative seasonal ARIMA model
(ARIMA(p,d,q)×(P,D,Q)s)

Φ(Bs)φ(B)∇D
s ∇dXt = Θ(Bs)θ(B)Wt,

where theseasonal difference operator of order D is defined by

∇D
s Xt = (1−Bs)DXt.
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1. Time series modelling.

2. Time domain.

(a) Concepts of stationarity, ACF.

(b) Linear processes, causality, invertibility.

(c) ARMA models, forecasting, estimation.

(d) ARIMA, seasonal ARIMA models.

3. Frequency domain.

(a) Spectral density.

(b) Linear filters, frequency response.

(c) Nonparametric spectral density estimation.

(d) Parametric spectral density estimation.

(e) Lagged regression models.
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Spectral density and spectral distribution function

If {Xt} has
∑∞

h=−∞ |γx(h)| <∞, then we define its

spectral densityas

f(ν) =
∞∑

h=−∞

γ(h)e−2πiνh

for −∞ < ν <∞. We have

γ(h) =

∫ 1/2

−1/2

e2πiνhf(ν) dν =

∫ 1/2

−1/2

e2πiνh dF (ν),

wheredF (ν) = f(ν)dν.

f measures how the variance ofXt is distributed across the spectrum.
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Frequency response of a linear filter

If {Xt} has spectral densityfx(ν) and the coefficients of the

time-invariant linear filterψ are absolutely summable, then

Yt = ψ(B)Xt has spectral density

fy(ν) =
∣
∣ψ
(
e2πiν

)∣
∣
2
fx(ν).

If ψ is a rational function, the transfer function is determinedby the

locations of its poles and zeros.
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Sample autocovariance

The sample autocovarianceγ̂(·) can be used to give an estimate of the

spectral density,

f̂(ν) =
n−1∑

h=−n+1

γ̂(h)e−2πiνh

for −1/2 ≤ ν ≤ 1/2.

This is equivalent to the periodogram.
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Periodogram

The periodogram is defined as

I(ν) = |X(ν)|2 =
1

n

∣
∣
∣
∣
∣

n∑

t=1

e−2πitνxt

∣
∣
∣
∣
∣

2

= X2
c (ν) +X2

s (ν).

Xc(ν) =
1√
n

n∑

t=1

cos(2πtν)xt,

Xs(ν) =
1√
n

n∑

t=1

sin(2πtνj)xt.
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Asymptotic properties of the periodogram

Under general conditions (e.g., gaussian, or linear process with rapidly

decaying ACF), theXc(νj),Xs(νj) are all asymptotically independent and

N(0, f(νj)/2), andf(ν̂(n)) → f(ν), whereν̂(n) is the closest Fourier

frequency(k/n) to the frequencyν.

In that case, we have

2

f(ν)
I(ν̂(n)) =

2

f(ν)

(

X2
c (ν̂

(n)) +X2
s (ν̂

(n))
)

d→ χ2
2.

Thus,EI(ν̂(n)) → f(ν), and Var(I(ν̂(n))) → f(ν)2.
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Smoothed periodogram

If f(ν) is approximately constant in the band[νk − L/(2n), νk + L/(2n)],

the average of the periodogram over the band will be unbiased.

f̂(νk) =
1

L

(L−1)/2
∑

l=−(L−1)/2

I(νk − l/n)

=
1

L

(L−1)/2
∑

l=−(L−1)/2

(
X2

c (νk − l/n) +X2
s (νk − l/n)

)
.

ThenEf̂(ν̂(n)) → f(ν) and Var̂f(ν̂(n)) → f2(ν)/L.

Notice thebias-variance trade off.
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Smoothed spectral estimators

f̂(ν) =
∑

|j|≤Ln

Wn(j)I(ν̂
(n) − j/n),

where thespectral window function satisfiesLn → ∞, Ln/n→ 0,

Wn(j) ≥ 0,Wn(j) =Wn(−j),
∑
Wn(j) = 1, and

∑
W 2

n(j) → 0.

Thenf̂(ν) → f(ν) (in the mean square sense), and asymptotically

f̂(νk) ∼ f(νk)
χ2
d

d
,

whered = 2/
∑
W 2

n(j).
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Parametric spectral density estimation

Given datax1, x2, . . . , xn,

1. Estimate the AR parametersφ1, . . . , φp, σ2
w.

2. Use the estimateŝφ1, . . . , φ̂p, σ̂2
w to compute the estimated spectral

density:

f̂y(ν) =
σ̂2
w

∣
∣
∣φ̂ (e−2πiν)

∣
∣
∣

2 .
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Parametric spectral density estimation

For largen,

Var(f̂(ν)) ≈ 2p

n
f2(ν).

Notice thebias-variance trade off.

Advantage over nonparametric: betterfrequency resolution of a small

number of peaks. This is especially important if there is more than one peak

at nearby frequencies.

Disadvantage: inflexibility (bias).
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Lagged regression models

Consider a lagged regression model of the form

Yt =
∞∑

h=−∞

βhXt−h + Vt,

whereXt is an observed input time series,Yt is the observed output time

series, andVt is a stationary noise process.

This is useful for

• Identifying the (best linear) relationship between two time series.

• Forecasting one time series from the other.
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Lagged regression in the time domain

Yt = α(B)Xt + ηt =
∞∑

j=0

αjXt−j + ηt,

1. Fit an ARMA model (withθx(B), φx(B)) to the input series{Xt}.

2. Prewhiten the input series by applying the inverse operator

φx(B)/θx(B).

3. Calculate the cross-correlation ofỸt with Wt, γỹ,w(h), to give an

indication of the behavior ofα(B) (for instance, the delay).

4. Estimate the coefficients ofα(B) and hence fit an ARMA model for

the noise seriesηt.
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Coherence

Define thecross-spectrum and thesquared coherence function:

fxy(ν) =
∞∑

h=−∞

γxy(h)e
−2πiνh,

γxy(h) =

∫ 1/2

−1/2

fxy(ν)e
2πiνhdν,

ρ2y,x(ν) =
|fyx(ν)|2
fx(ν)fy(ν)

.
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Lagged regression models in the frequency domain

Yt =
∞∑

j=−∞

βjXt−j + Vt,

We compute the Fourier transform of the series{βj} in terms of the

cross-spectral density and the spectral density:

B(ν)fx(ν) = fyx(ν).

MSE =

∫ 1/2

−1/2

fy(ν)
(
1− ρ2yx(ν)

)
dν.

Thus,ρyx(ν)2 indicates how the component of the variance of{Yt} at a

frequencyν is accounted for by{Xt}.

37



Introduction to Time Series Analysis: Review

1. Time series modelling.

2. Time domain.

(a) Concepts of stationarity, ACF.

(b) Linear processes, causality, invertibility.

(c) ARMA models, forecasting, estimation.

(d) ARIMA, seasonal ARIMA models.

3. Frequency domain.

(a) Spectral density.

(b) Linear filters, frequency response.

(c) Nonparametric spectral density estimation.

(d) Parametric spectral density estimation.

(e) Lagged regression models.

38


