Introduction to Time Series Analysis. Lecture 20.

1. Review: The periodogram
2. Asymptotics of the periodogram.

3. Nonparametric spectral estimation.




Review: Periodogram.

The periodogram is defined as

sin(2mtv;)x,.

The same as computinff~) from the sample autocovariance (foe= 0).




Asymptotic properties of the periodogram'

We want to understand the asymptotic behavior of the peg@do/(v) at
a particular frequency, asn increases. We'll see that its expectation
converges tg (v).

We’'ll start with a simple example: Suppose tiét, . .., X,, are
i.i.d. N(0,0?) (Gaussian white noise). From the definitions,

1 n
Xc(v;) = \F ZCOS 2ty )y, X(vj) = NG Zsin(thz/j)xt,
t=1

we have thatX.(v;) and X (v;) are normal, with

EX.(v;) = EX,(v;) = 0.




Asymptotic properties of the periodogram'

Z cos? 27rtyt7

0?2 &
= — Y (cos(dmtvj)+1) = —
2n

t=1

Similarly, Var( X (v;)) = o2%/2.




Asymptotic properties of the periodogram'

Cov(X.(v;), Xs(v;)) = % ZCOS(27Tth) sin(2mtv;)

t=1

Cov( X, (v;
Cov( X, (
Cov( X (

foranyj # k.




Asymptotic properties of the periodogram'

Thatis, if X1,..., X, are i.i.d.N(0, o?)
(Gaussian white nois€f(v) = o), then theX.(v;) and X (v, ) are all
i.i.d. N(0,0%/2). Thus,

2 2

;I(Vj) = (X2 () + XZ(15)) ~ x5.
So for the case of Gaussian white noise, the periodogram tlaissgiuared
distribution that depends on the variance(which, in this case, is the
spectral density).




Asymptotic properties of the periodogram'

Under more general conditions (e.g., norfual, }, or linear proces$.X; }
with rapidly decaying ACF), th&.(v;), Xs(v;) are all asymptotically
independent and/ (0, f(v;)/2).

Consider a frequency. For a given value of, let (™) be the closest
Fourier frequency (that ig;("™) = j /n for a value ofj that minimizes

v — j/n|). Asn increasesy™ — v, and (under the same conditions that
ensure the asymptotic normality and independence of tle¢caisine
transforms) f (7(™) — f(v). (picture)

In that case, we have

2
fw)

10" =




Asymptotic properties of the periodogram'

Er(p™) = /Mg (i (Xg(a<”>) + Xg(aw)))

2

Fv)
- Wz 4 2) = jo).

whereZ,, Z, are independenv (0, 1). Thus, the periodogram is
asymptotically unbiased.




Asymptotic properties of the periodogram'

Since we know its asymptotic distribution (chi-squaredg,a@an compute
approximate confidence intervals:

2

Pr{ ;05 160™) > (@) | >

where the cdf of a3 at y5(a) is1 — . Thus,

21 (™) 21 (™) 1y
I%{@mﬂ)éﬂwéx%L%W%}fl '




‘Asymptotic properties of the periodogram: Consistencz'

Unfortunately, Vafl (2(™)) — f(v)?Var(Z? + Z2)/4, whereZ,, Z, are
1.i.d. N(0,1), that is, the variance approaches a constant.

Thus,I (™) is not a consistent estimator ¢fv). In particular, if
f(v) > 0, then fore > 0, asn increases,

Pr {|I(19(”)) — f(l/)| > e}

approaches a constant.
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‘Asymptotic properties of the periodogram: Consistencz'

This means that the approximate confidence intervals weroata
typically wide.

The source of the difficulty is that, asincreases, we have additional data

(then values ofx;), but we use it to estimate additional independent
random variables, (the independent values of.(v;), Xs(v;)).

How can we reduce the variance? The typical approach is ragee
Independent observations. In this case, we can take angavefdnearby”
values of the periodogram, and hope that the spectral geatsite
frequency of interest and at those nearby frequencies witlbse.

11



Introduction to Time Series Analysis. Lecture 20.

1. Review: The periodogram
2. Asymptotics of the periodogram.

3. Nonparametric spectral estimation.

12



‘ Nonparametric spectral estimation.

Define a band of frequencies

L +L
U — — U+ —
o TR T o

of bandwidthZ /n. Suppose thaf () is approximately constant in this
frequency band.

Consider the followingmoothed spectral estimator. (assumel is odd)

) 1 (L—1)/2

fo =7 3 Iw—1in)

l=—(L—1)/2
(L—1)/2

> (X2(wk —1/n) + XZ(vk —1/n)).

I=—(L—1)/2
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‘ Nonparametric spectral estimation'

For a suitable time series (e.g., Gaussian, or a linear psogéh
sufficiently rapidly decreasing autocovariance), we knloat tfor largen,

all of the X (v — I/n) and X4 (v, — [/n) are approximately independent
and normal, with mean zero and variange, — [/n)/2. From the
assumption thaf (v) is approximately constant across all of these
frequencies, we have that, asymptotically,

. 2
fwg) ~ f(%)%-
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‘ Nonparametric spectral estimation.

Bio™) (Z Z2> _

Varf(0(™") ~ fQ(V)Var (Z Zf) = fQ(V)Var(Z%),

4172 2L

1=1

where theZ; are i.i.d.N (0, 1).
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Nonparametric spectral estimation: confidence intervalj

From the asymptotic distribution, we can define approxincatdidence
Intervals as before:

Pr { 2L1 (") < f(v) < 2Lf () ) } ~1-—a.

X5 (/2) ~ X5 (1 —a/2

For largeL, these will be considerably tighter than for the unsmoothed
periodogram. (But we need to be syreloes not vary much over the
bandwidthL /n.)
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‘ Nonparametric spectral estimation.

Notice thebias-variance trade off:
For bandwidthB = L/n, we have Vaf (v;,) ~ ¢/(Bn) for some constant
So we want a bigger bandwidiB to ensure low variancééndwidth

stability).

But the larger the bandwidth, the more questionable thengsison that
f(v) is approximately constant in the bahd— B/2, v + B/2|. For a
larger value ofB, our estimatef () will be a smoother function af. We
have thus introduced mol®as (lower resolution).
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Nonparametric spectral estimation: confidence intervalj

Since the asymptotic mean and variance (")) are proportional tgf (v/)
and f*(v), it is natural to consider th@garithm of the estimator. Then we
can define approximate confidence intervals as before:

o { oL f (™) < 1) < oL f((™) } I

X531, (a/2) ~ x5 (1—a/2)

{0 v )

<log(f(v)) <log (f(p(N))) + log (X%L(ff a/2)> } ~1—a.

The width of the confidence intervals f¢(») varies with frequency,

whereas the width of the confidence intervalsltgy( f(v)) is the same for
all frequencies.
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