Introduction to Time Series Analysis. Lecture 10.
Peter Bartlett

Last lecture:
1. Recursive forecasting method: Durbin-Levinson.

2. The innovations representation.

3. Recursive method: Innovations algorithm.
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‘ Review: Forecasting

X??;L—l-l = Pn1Xn + Gn2Xn—1+ -+ Pnn Xy
Fn¢n — fYn;

Py =E (Xn+1 - X’ZLL+1)2 =7(0) —

yn=1) An—2
an — <¢n17 ¢n27 ) qbnn)/:




Review: Partial autocorrelation function I

The Partial AutoCorrelation Function (PACF) of a station
time serieq X, } is

»11 = Corr( X1, Xo) = p(1)

¢nn = Corr( Xy, — X,’f_l,Xo = Xél_l) forh =2,3,...

This removes the linear effects &f;, ..., X}, _1:

o X, Xo, X0, Xy Xny, Xy X,

N

partial out




Review: Partial autocorrelation function '

The PACFgy,;, is also the last coefficient in the best linear prediction of
Xpi1given Xy, ..., Xp:

U'non = v Xp=opX

On = (On1, On2s - - - Oun).

Prediction error variance reduces by a factor ¢2, :

7?—%1 = 5(0) — Qbf/rﬂ/n
:Pg_l (1 _¢?LTL>




‘ Review: The innovations representatio:'

Instead of writing the best linear predictor as
X?:/L—I-l = Pn1Xn + On2Xn—1+ -+ Pnn X1,

we can write

P =0n1 (X — X071) +0n2 (X1 — X;}:f)+- A, (X1 — X7) -

\ - 7
"

innovation

This is still linear inX4, ..., X,.

The innovations are uncorrelated:
Cov(X; — X771, X; — X/7') = 0fori # j.
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Predicting h steps ahead using innovation'

What is the innovations representation 0(X,, . | X1, ..., X,)?

Fact: If h > 1 and1 < ¢ < n, we have
COV(Xn+h - P(Xn_|_h‘X1, “ e 7Xn—|—h—1)7 Xz) — O

Thus,P(X,1p — P(Xpan| X1, o, Xpan_1)|X1,...,X,) =0.
That is, the best prediction of,,. ; is the
best prediction of the one-step-ahead forecast of ;, .

Fact: The best prediction ok, ; — X’ ; givenonly X, ..., X, Is0.

Similarly forn +2,....,.n+ h — 1.




Predicting h steps ahead using innovation'

P(Xpen| X1, Xn) =) Onan—tn-14i (Xns1mi — X201 0)
1=1




Mean squared error of h-step-ahead forecast'

From orthogonality of the predictors and the error,
E(Xpon — P(Xnan| X1, ., X)) P(Xpan|X1,..., X)) =0.

Thatis, E(X 1 nP(Xpin| X1, ..., X0)) = E(P(Xninl X1, .., Xn)?).

Hence, we can express the mean squared error as

"= E(Xpan — P(Xnqnl X1, X0))?

— 2E(Xn+hP(Xn—|—h‘X17 SR 7Xn))

— 7(0) — E(P(Xn_|_h|X17 cee 7Xn>)2 .

10



Mean squared error of h-step-ahead forecast'

But the innovations are uncorrelated, so

n 2
nh = V(0) — E(P(Xpqn| X1, .o X5))

n+h—1
n+h—j—
=7(0)—E| > Onrn-1; (Xn+h—j - X 1)
j=h

n+h—1 9
n+h—j—1
=1(0) = Y 0Py E (X — X057
j=h

n+h—1
_ 2 n+h—j—1
— 7<0) o E : 0n+h—1,j Pn—l—h—j .
j=h
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Example: Innovations algorithm for forecasting an MA(l)I

Suppose that we have an MA(1) procéss; } satisfying
Xy =W+ 0 Wiy,

Given X, Xo, ..., X,,, we wish to compute the best linear forecast of
X 11, Using the innovations representation,

XP=0, XM= Oni(Xpp1—i— X001
1=1

13



Example: Innovations algorithm for forecasting an MA(l)I

An aside: The linear predictions are in the form

mn
X = E OniZni1—i
i—1

for uncorrelated, zero mean random variabtgsin particular,

Xnt1 = Zpt1 + Z OniZn+1—i,
i=1

whereZ, 1 = X,,+1 — X, (and all theZ; are uncorrelated).
This is suggestive of an MA representation. Why isn't it an MA?
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Example: Innovations algorithm for forecasting an MA(l)I

The algorithm compute®y = ~v(0), 61 1 (in terms ofy(1));
P3, 055 (interms ofy(2)), 62 1; P3, 05 3 (in terms of(3)), etc.
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Example: Innovations algorithm for forecasting an MA(l)I

For an MA(1),7(0) = (1 + 0%), ~(1)

Thus:6, 1 = ~v(1)/P};

020 =0,021 =~(1)/Py;

033 =032 =0;031 =~(1)/P§, etc.

Becausey(n — ) # 0only fori =n — 1, only6,, ; # 0.
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Example: Innovations algorithm for forecasting an MA(l)I

For the MA(1) proces$ X, } satisfying
Xy =Wy + 0. Wi_q,

the innovations representation of the best linear forasast

XP=0, X' ,=0(X,—X").

More generally, for an MA(q) process, we hafyg = 0 for : > q.
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Example: Innovations algorithm for forecasting an MA(l)I

For the MA(1) proces$ X; },
X?=0, X! =0, (X,—X").

This is consistent with the observation that

X1 =Zns1+ Y OniZni1i,

1=1

where the uncorrelated; are defined by; = X; — Xf‘l for
t=1,....,n+ 1.

Indeed, as increasesp,’ ; — Var(W;) (recall the recursion foF;', ),
andf,,; = y(1)/P* ! — 6.
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‘ Recall: Forecasting an AR(p)I

For the AR(p) proces$X, } satisfying

b
X = Z OiXe—i + W,
i—1

p
XP=0, XIy=) ¢:iXpi1i
1=1

forn > p. Then

p
Xn+1 = Z GiXnt+1—i + Znt1,
i=1

whereZ, 1 = X510 — X7

The Durbin-Levinson algorithm is convenient for AR(p) pesses.
The innovations algorithm is convenient for MA(Q) processe

19
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An aside: Forecasting an ARMA(p,q)I

There Is a related representation for an ARMA(p,q) proceased on the
Innovations algorithm. Suppose thaX; } is an ARMA(p,q) process:

p q
X = Z Qi Xi—j + Wi+ ZHth—j-
=1 =1

Consider the transformed process (C. F. Ansley, Biometrika 66: 59-65, 1979)

Xi/o ft=1,...,p,
7, — t/ p

»(B)Xi/o ift>p.

If p > 0, this is not stationary. However, there is a more generaigarof
the innovations algorithm, which is applicable to nonstadiry processes.
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An aside: Forecasting an ARMA(p,q)I

Let0,, ; be the coefficients obtained from the application of the yiations
algorithm to this procesg,;. This gives the representation

S5 Ong (Xnay = Xiid ) n<p.

Xr =
n+1 .
2?:1 ¢jX’rL—|—l—j + Z?:l en] (Xn_|_1_j — Xn—l-{—j) n Z D

For a causal, invertibl¢ X, }:
E(Xn — Xg_l — Wn)Q — 0, an — (9j, andP{ff“ — o2,

Notice that this illustrates one way to simulate an ARMAJmopcess
exactly.
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‘ Linear prediction based on the infinite past'

So far, we have considered linear predictors based ohserved values of
the time series:

X’n

n—+m

— P(Xn—l—m|XnaXn—17 SR 7X1)-

What if we have access 8l previous valuesX,,, X,,_1, X,,_2,...?

Write

~

Xn—l—m — P(Xn—km‘Xna Xn—la ax )

©.@)
= E ;i Xpy1—i
i—1
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‘ Linear prediction based on the infinite past'

Xn—l—m — P<Xn—|—m|Xn7 Xn—1,-. ) — Z&an—l—l—i-
=1

The orthogonality property of the optimal linear predictmplies

~

E [(Xn+m _ Xn+m)Xn+1_i} —0, i=1,2,...

Thus, if{ X;} is a zero-mean stationary time series, we have

Y ayi— ) =y(m—1+1), i
j=1
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‘ Linear prediction based on the infinite past'

If {X,}is acausal, invertibldjnear process, we can write

Xn—l—m — Z ijn—l—m—j + Wn—l—ma Wn—i—m — Zﬂ-an—i—m—j + Xn—l—m-
j=1 j=1

In this case,

~

Xn+m — P(Xn—i—m‘Xna X1y
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‘ Linear prediction based on the infinite past'

That iS, Xn_|_1 = — Zﬂ-an—l—l—ja
j=1

o0
Xpyo = —mMXpq1 — E T Xn42—j,
j=2
o0
Xpga = —m1Xpqo2 — MaXpq1 — E T Xn4+3—j-
Jj=3

The invertible (AR(o)) representation gives the forecaﬁs i

27



‘ Linear prediction based on the infinite past'

To compute the mean squared error, we notice that

oo

~

Xn—l—m — P(Xn—i—m|Xn7 Xn—1,-- ) — P
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‘ Linear prediction based on the infinite past'

That is, the mean squared error of the forecast based onfthegarhistory
IS given by the initial terms of the causal (M#&()) representation:

m—1

~ 2
E (Xn+m - Xn+m) =02 3" y2

j:

In particular, form = 1, the mean squared errords,.
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The truncated forecast.

For largen, truncating the infinite-past forecasts gives a good
approximation:

oo
E :7TJ n+m—j — E :Waner—j
Jj=m

n+m-—1

n—l—m_ E :T‘-J n+m—j5 E : ﬂ-an‘f‘m—j'
j=m

The approximation is exact for AR(p) when> p, sincer; = 0 for j > p.
In general, it is a good approximation if the converge quickly td).
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‘ Example: Forecasting an ARMA(p,q) model'

Consider an ARMA(p,q) model:

p q
X — Z OiXi—; = Wi + Z O Wi_i.
i=1 i=1

Suppose we hav&,, X, ..., X,, and we wish to forecasX,, . ,,,.

We could use the best linear predictio,, .

For an AR(p) model (that ig; = 0), we can write down the coefficients,.
Otherwise, we must solve a linear system of size

If n Is large, the truncated foreca@m give a good approximation. To
compute them, we could compute and truncate.

There is also a recursive method, which takes tién + m)(p + q))...
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‘ Recursive truncated forecasts for an ARMA(p,q) mode'

0 fort <0,
X, forl<t<n.

~

Wr=0 fort<0. XI'=

Wrh=X!—o1 Xy — - — X",

— W = =0 W, fort=1,...,n

~

W, =0 fort > n.
X? — leX?—l +"'+¢pr—p+elwtn—1 +"'+9th?1q
fort=n+1,...,n4+m.
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‘ Example: Forecasting an AR(2) mode'

Consider the following AR(2) model.

1
Xt + EXt_Q — Wt.

The zeros of the characteristic polynomial+ 1.21 are at+1.1:. We can
solve the linear difference equationts = 1, ¢(B); = 0 to compute the

MA(o0) representation:

1
Yy = 51.1_'5 cos(mt/2).

Thus, them-step-ahead estimates have mean squared error

~

E<Xn—|—m — Xn+m)2 —
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‘ Example: Forecasting an AR(2) mode'

AR(2): X, +0.8264 X _, =W,

T T T
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35



Example: Forecasting an AR(2) mode

AR(2): X, +0.8264 X _, =W,

T T T

T T

T

- X

—©— one-step prediction
95% prediction interval
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‘ Example: Forecasting an AR(2) mode'

AR(2): X, +0.8264 X _, =W,

T T

-o- X
—©— prediction
95% prediction interval
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