Spatial Networks

“Sideways" talk — theorems exist but are
peripheral to the most interesting concep-
tual issues.

Lots of distantly related work, but not much
closely related.

Scope for undergraduate research projects.

I'll spotlight one topic, worthy of more study:
proximity networks on random points.




o 2138 i

El=

g
7
Z_r-_

Tl

4y Great Gend.
Padii)

&mrz e

W2 ,o

prE L

i
347

A

: o4
" ,,.h,,.ﬂ_.. Dodge City
3 N g
N R
Raton 186 ® x)... .
1:44 12 Guymon
e Lo

8- ,
124 pdwenpa

i -
Lo oty
- u_u.;.__ @x/

lefferson ely

13,
i.w 19

e >

o b ih 29T
P qmas " pmasil wfge A
N 6 .. Amariilg .
sa.;.ﬁs.ﬁ 23 q%_ﬁai 1 o
RO LTI 1} B R
% R I I
e o5 @ M hate s =f
S W20 Vaughe  E15 o 245 _
R ! . Clovls 455 LG 342
Wu. i 22 o o e Vemen .43
o A Gy 3 - .
sz T T g 18 1, Lobbock 28 +% o
5% 305 "o Roswell 330 433 Tyt AN .
8l . % o . . i
BECLIS i 30 e 13 Ft. Emﬁ_ﬂ@%w. -
O Y D 3:a7 ciseg O 3T :
W s 1203 Snyder . " TR Lt hrevepart
Carlshad oy .- S AT A T
By g0h Fiy sy sl %
Aes TR \.a.m\.mn g kL w0
?Sﬁv. P RT e Q,n.masssgn ' > Almandriz
_ e o3
: TS Angelo’, i
o
/,_ 42 . FuStocktor o
s " s b .
2 g ) b
ﬁ/n. EwB._._o:O .wnwm.m.,ﬁm.o. .@ .p,,.we
gl B R
/ o . Houston
m._zm_._cunv,
\
.
' .
,/ o
.,/.L -
_,_ i Degrees Fahrenheit
N R A
2in M L U
i N 40 -30 20 A6 0
. '
mo:g__hﬂ . Degrees Ceisius
A \\

Fahrenheit to Celsius:
Subtract 32 from the number of
Fahrerheit, then divide by 1.8.
Calsius to Fahrenheit:
Muttiply the number of Celsius
by 9/5 and add 32,

City
ammath Cave

bl 0
kmf mph
60 rn.p.h. &s maximum speed
allowed on access-cantrolled
highways in Canada. The metric
equivalent is 100kmh,

7:55 Blue numerals indicate driving
time.

Driving time shown is
appraximate under normal
conditions. Consideration has
been given to topography,
number of towns aleng the
route, congested urban areas,
and the speed limit imposed
by each state,

Allowances should be made
for night driving and
unusually fast o slow drivers.

Points of Interest

Banff Nat'l. Park, AB
Black Hills, 5D
Branson, MO
Butchart Gardens, BC
Cape Cod, MA
Cape Hatteras, NC

Kennedy Space Center, FL
Disneyland, CA

Finger Lakes, NY

Great Smoky Mts. Nat', Park, TN
Hearst San Simeon, CA

Hilton Head Island, SC

Lake Tahoe, CAINV

Land Between The Lakes, KY/TN
Laurentlan Mountains, QC

Mail of America, MN

Monterey Peninsula, CA

Mystic Seaport, CT

Niagara Falis, NY

Rehoboth Beach, DE

\Walt Disney World, EL

Williamsburg, VA
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Consider the problem of designing a road net-
work to link n given cities. Assume that some
main goal of the network is to provide short
routes. Want to set up a toy model of “bene-
fits" and ‘costs”.

e ‘‘cost” = total network length.

e “benefit” = some statistic measuring route-
lengths between cities.

Conceptual starting point for this research
project: To what extent are real-world “evolved”
networks approximately optimal (i.e. maximize
benefit for given cost)?

At first sight, “just an empirical question”, but



What's a good choice for the “benefit”
statistic? (Goldilocks!)

Algorithm for finding optimal network?

Theoretical properties of optimal networks
on random points?

There are many possible uses for models
for connected networks on random points.
What are some mathematically tractable
models?




For two cities 4,5 in a given network, consider

route-length ¢ to j
straight line distance ¢ to j

—1

r(i,7) =

so that “r(i,j) = 0.2" means that route-length
is 20% longer than straight line distance. With
n cities we get ("3) such numbers r(i,7); what
is a reasonable way to combine these into a
single number R to be used as a descriptive
statistic? Two natural possibilities are

Rmax = max r(,j)
JFi
Rave = ave(m-) ’l"(’i,j)

where ave(; i denotes average over all distinct
pairs (i, 7).

I will discuss these in a minute.



Need a notion of “normalized total network
length” for comparing networks with different
spatial scales and different numbers n of cities.

Convention: Choose unit of length so that
ave density of cities equals 1 per unit area.

Define L = (total network length)/n.

This is the right scaling because nearest n'bor
cities will be at distance O(1).

We can get an intuitive feeling for L by looking
at familiar networks on regularly-spaced ver-
tices.
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Figure 4. Variant square, triangular and hexagonal lattices.
Drawn so that the density of cities is the same in each diagram, and ordered by

value of L.



The statistic Rmax has been studied in the
context of the design of geometric spanner
networks (Narasimhan-Smid 2007) where it
is called the stretch. However, being an “ex-
tremal’” statistic Rmax seems unsatisfactory as
a descriptor of real world networks — for in-
stance, it seems unreasonable to characterize
the U.K. rail network as inefficient simply be-
cause there is no very direct route between
Oxford and Cambridge.



Figure 2. Efficient or inefficient? Rave would judge this network
efficient in the n — oo limit. 1

We propose a statistic R which is intermediate between Rave and Rmax-
p(d) := mean value of r(i, j) over city-pairs with d(i,j) =d

R:= oax p(d). (3)
In words, R = 0.2 means that on every scale of distance, route-lengths are
on average at most 20% longer than straight line distance.

On an intuitive level, R provides a sensible and intepretable way to
compare efficiency of different networks in providing short routes. On a
technical level, we see two advantages and one disadvantage of using R
instead of Rave-

Advantage 1. Using R to measure efficiency, there is 3 meaningful n — oo
limit for the network length/efliciency tradeoft (the function Z(#) discussed

IThe tree is actually a MST, taken from the home page of Leland Wilkinson
http://www.spss.con/Tesearch/wilkinson, because we could not find a suitable Steiner
tree picture. Similarly, Table 1 quotes the MST rather than the Steiner tree because we
could not find data for normalized length for the Steiner tree.



The statistic Rave has a more subtle drawback.
Consider a network consisting of

(a) the minimum-length connected network
(Steiner tree) on given cities;

and (b) a superimposed sparse collection of
randomly oriented lines (Poisson line process).
By choosing the density of lines to be suffi-
ciently low, one can make the normalized net-
work length be arbitrarily close to the minimum
needed for connectivity. But [Aldous - Kendall
2008] for this network Rave — 0 as n — o©.

Of course no-one would build a road network
looking like this to link cities, because there
are many pairs of nearby cities with only very
indirect routes between them. The disadvan-
tage of Rave is that (for large n) most city-pairs
are far apart, so the fact that a given network
has a small value of Rave Says nothing about
route-lengths between nearby cities.
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A peripheral theorem.

Notation set-up: Configuration x? of n cities
in square of area n, so side-length /n.
len(ST(x,)) =\length of Steinef tree.
d(i,7) = distance and £(i,j)Y = route-length
in some network\G(xn), whose total length is

len(G(xn)).

Assertion last slide: w¥ can construct G(x™) so
that

() Ien(g(xn/,— len(ST'(xn)) = o(n)
(i) avei (i, 5) — d(i, j R = o(n'/?).

T heorem 1 with Wilf Kendall) True, and can
improve (u )/to

(i) /aye; ;(£(i, 5) — d(i,5)) = o(wnlog n)
for wn oo arbitrarily slowly.

Conceptual point: Rave not helpful, at least
in n — oo setting.

11



We propose a statistic R which is intermediate
between Rave and Rmax.

o(d) := mean value of r(i,j) over
city-pairs with d(i,7) = d
R := max d).
0§d<oop( )
In words, R = 0.2 means that on every scale of

distance, route-lengths are on average at most
20% longer than straight line distance.

Discussion points:

(a) Permits meaningful n — oo limit for the
network length /efficiency tradeoff (in either ran-
dom model for city positions, or worst-case),
and so in particular it makes sense to compare
the values of R for networks with different n.
(b) Finesses modelling issue that traffic vol-
ume depends on distance.

(c) Need to discretize for finite n.

13
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Figure 6. The function p(d) for three theoretical networks on random cities.
Irregularities are Monte Carlo random variation.

This characteristic shape is also visible in real-world data [7]. It is easy to
interpret. Any efficient network will tend to place roads directly between
unusually close city-pairs, implying that p(d)} should be small for d < 1.
For large d the presence of multiple alternate routes helps prevent p(d)
from growing.. At distance 2 — 3 from a typical city zo there are about
732 — 722 ~~ 16 other cities z;. For some of these z; there will be cities =’
near the straight line from zp to x;, so the network designer can create roads
from zy to z' to z;. The difficulty arises where there is no such intermediate
city z’: including a direct road (zo, z;) will increase L, but not including it
will increase p(2.5).
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Tractible models for connected networks

Of the many ways to construct random net-
works in two-dimensional space, the following
two are perhaps best known.

(i) [Small world models ]. Start with the usual square
grid of vertices and edges; add extra edges (i,5) with
probability p(i,j) for prescribed p(-):.

(ii) [Random geometric graph]. Start with a Poisson
point process of vertices; put an edge between vertices
i, 7 if the Euclidean distance d(, j) is less than some pre-
scribed constant c.

Note that in mode! (ii), for any configuration
of vertices there is a determinstic rule for defin-
ing edges; one then applies this rule to random
points. We study a different model with the
same “deterministic’ feature. The point of
the model is that it is both connected and
has finite normalized length.

14



Spotlight topic : Proximity graphs

Write v_ and vy for the points (—%,0) and
(3,0). The lune is the intersection of the open
discs of radii 1 centered at v_ and vy. SO
v— and vy are not in the lune but are on its
boundary. Define a template A to be a subset
of R? such that

(i) A is a subset of the lune;

(ii) A contains the line segment (v_,vy);

(iii) A is invariant under reflection (left - right
and top - bottom)

(iv) A is open.

For arbitrary points z,y in R2, define A(z,y)
to be the image of A under the transformation
(translation, rotation and scaling) that takes

(v—,v4) to (z,y).

16
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Definition. Given a template A and a locally
finite set x of vertices, the associated prox-
imity graph G has edges defined by. for each

w,yEX,

(z,y) is an edge of G iff
A(x,y) contains no vertex of V.

Note that replacing A by a subset A’ can only
increase the edge-set. It is easy to check that,
if A is the lune, then G contains the minimum
spanning tree, and it follows that (for finite V)
the proximity graph is always connected.

There are two “named” special cases. If A is
the lune then G is called the relative neigh-
borhood graph. If A is the disc centered at
the origin with radius 1/2 then G is called the
Gabriel graph.

17









Discussion. This general idea has been stud-
ied since the 1980s in computational geome-
try and pattern recognition, focusing on spe-
cific examples such as the relative neighbor-
hood graph, the Gabriel graph and an inter-
polating family called beta-skeletons. \We are
imagining proximity graphs as toy models for
road networks (an idea already noted in e.g.
Kirkpatrick and Radke (1985) but not inves-
tigated very thoroughly). That is, whether or
not there is a direct road from city ¢ to a nearby
city j depends (partly) on whether some other
city k is between ¢ and j.

Finally, note that the Delaunay triangulation
does not fit the “proximity graph” definition
(though it has a related description).

18



Let's consider G4, the proximity graph assoCi-
ated with a Poisson point process of rate 1 on
R2. To indicate that G, is at least somewhat
tractable, note

Lemma 2 Write a = area(A). Then for G4

. 3/2

mean edge-length per unit area = I3//2
a
mean vertex degree — %

One could continue along the lines of Lemma
2 to write down complicated integral expres-
sions for (e.g.) the mean number of triangles
per unit area in G 4. In contrast to random geo-
metric graphs [see Penrose monograph] there
seems only one known non-elementary result
about G4 — the model deserves more study.

20
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Figure 7. The normalized network length L and the route length efficiency
statistic R for certain networks on random points. The ¢ show the beta-skeleton
family, with RN the relative neighborhood graph and G the Gabriel graph. The o
shows the Delaunay triangulation and ¢ shows the Hammersley network,

Notes on Table 1. (a) Values of R from our simulations with n = 2, 500.
(b} Value of L for MST from Monte Carlo [15]. In principle one can calcu-
late arbitrarily close bounds [8] but this has never been carried through. Of
course d = 2 for any tree.

(c) The Gabriel graph and the relative neighborhood graph fit the assump-

tions of Lemma 1 below with ¢ = #/4 and ¢ = 2% — @ respectively, and

their table entries for L and d are obtained from Lemma 1, as are the values
for G-skeletons in Figure 7.

(d) For the Hammersley network, every degree equals 4, so L = 2x(mean
edge-length). It follows from theory [3]| that a typical edge, say NE from
(z,y), goes to a city at position (x + £,y + &}, where §; and &, are inde-
pendent with Exponential(1} distribution. So mean edge-length equals

oQ o0
/ f vai+y? e Y dedy ~ 1.62. (7)
\] a

16



In the random model of cities, the figure shows
the R — L trade-off for the standard family of
proximity graphs.

Perhaps the central object in our project is the
(unknown) function R = W(L) giving the op-
timal value of R for given network length 6.
This means optimal over all possible networks
on the random cities.

Intuitively, we expect to be able to construct
networks that improve over these proximity graphs.
for instance by introducing junctions. But in
ongoing simulation projects [by undergradu-
ates] our first three ideas failed to work well

21






Peripheral theory, In progress.

Heuristics suggest that we can attain the long-
network asymptotics

R~ L %/3 for large L.

Qur function R = W (L) is one of four func-
tions, depending on choice of

° random or worst-case city positions

o R or Rmax.

Seems reasonable to conjecture that each has
the same long-network scaling exponent «

V(L) ~ L™¢ for large L.

23



Spotlight topic #2

A (slightly) new idea — networks whose construction
depends on the fact that we have a Poisson process of
City positions.

For a picturesque description, imagine one-eyed frogs
sitting on an infinitely long, thin log, each being able
to see only the part of the log to their left before the
next frog. At random times and positions (precisely, as
a space-time Poisson point process of rate 1) a fly lands
on the log, at which instant the (unique) frog which can
see it jumps left to the fly's position and eats it. This
defines a continuous time Markov process (Hammer-
sley process) whose states are the configurations of
positions of all the frogs. There is a stationary version
of the process in which at each time, the positions of
the frogs form a Poisson (rate 1) point process.

Now consider the space-time trajectories of all the frogs,
drawn with time increasing upwards on the page. For
each frog, the part of the trajectory between the ends
of two successive jumps consists of an upward edge (the
frog remains in place as time increases) followed by a
leftward edge (the frog jumps left).

24









Reinterpreting the time axis as a second space
axis, and introducing compass directions, the
part of the trajectory becomes a North edge
followed by a West edge. Now replace these
two edges by a single North-West straight edge.
Doing this procedure for each frog and each
pair of successive jumps, we obtain a collec-
tion of NW paths; that is, a network in which
each city (the reinterpreted space-time random
points) has a edge to the NW and an edge to
the SE.

Repeat with the same realization of the space-
time Poisson point process but with frogs jump-
ing rightwards instead of leftwards. This yields
a network on the infinite Poisson point pro-
cess, which we name the oriented Hammer-
sley network. In this network each city has
degree 4, with one road going in each direc-
tion NW, NE, SE, SW. We can calculate the
normalized length of this network as

6 =325....

26



Final comments on proximity graphs.

1. Elementary inclusion of edge-sets in the
deterministic case:

MST C relative n'hood C Gabriel € Delaunay .

2. In contrast, for certain proximity graphs on
random cities, it is known that

Rmax(n) ~ || 557 - 1

This contrasts with the Delaunay triangulation
for which Rmax < 1.42. Fact (1), from Bose-
Devroye-Evans-Kirkpatrick (2006), is perhaps
the only known non-elementary result about
random proximity graphs.

27



3. Speculative applications of random prox-
imity graphs.

Random proximity graphs seem an interesting
object of study from many viewpoints, in par-
ticular as an attractive alternative to random
geometric graphs for modeling spatial networks
that are connected by design. As well as being
natural models for road networks, they might
be useful in modeling communication networks
suffering line of sight interference.

At a more mathematical level, for questions
such as spread-out percolation or critical value
of contact processes, random proximity graphs
with small A are an interesting alternative to
the usual lattice- or random graph-based mod-
els. For instance, it is natural to conjecture
that the critical value p*% for a random proxim-
ity graph with template A satisfies

p% ~ m larea(A) as area(4) -0  (2)

and that the critical value Aj;l for the contact
process has the same asymptotics.

28
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