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Research strategy (for old guys like me):

if a problem seems . . .

do-able =⇒ give to Ph.D. student
maybe do-able =⇒ give to post-doc
clearly not do-able =⇒ think about it myself.

I’m thinking about a topic in a very classical way (Shannon):
• lossless data compression
• ignoring computational complexity of coding



What is a network?

A graph is a well-defined mathematical object – vertices and edges
etc

A network is a graph with context-dependent extra structure.

I want to consider a certain simple-but-interesting notion of “extra
structure”, which is the notion

vertices have names.



Consider a graph with

N vertices

O(1) average degree

vertices have distinct “names”, strings of length O(logN) from a
fixed finite alphabet.

Envisage some association between vertex names and graph structure, as
in

phylogenetic trees on species

road networks.

I claim [key point of this set-up] this is the “interesting as theory”
setting for data compression of sparse graphs, because the “entropy” of
both the graph structure and of the names has the same order, N logN.
And we want to exploit the association.



Formal setup.

Define a finite set S = S(N,A, β, α); an element of S is a network with

N vertices

ave degree ≤ α (at most αN/2 edges)

finite alphabet A of size A

vertices have distinct names – strings from A of length ≤ β logA N.

Here A ≥ 2, 0 < α <∞, 1 < β <∞ are fixed and we study as N →∞.

Easy to see how big S is:

log |S(N,A, β, α)| ∼ (β − 1 + α
2 )N logN.

For some given model of random network GN we expect

ent(GN) ∼ cN logN

for some model-dependent entropy rate 0 ≤ c ≤ (β − 1 + α
2 ).

[cute observation: value of c doesn’t depend on base of log.]



In this setting there are two “extreme” lines of research you might try.

Clearly do-able: Invent probability models and calculate their entropy
rate.

With Nathan Ross we have a little paper doing this (search on ”arxiv
aldous entropy”). Will show 3 slides about this, soon.

Clearly not do-able: Design an algorithm which, given a realization
from a probability model, compresses optimally (according to the entropy
of the probability model) without knowing what the model is
(“universal”, like Lempel-Ziv for sequences).

So my goal is to find a project laying between these extremes.

[Pedagogical aside: this “N logN” world could provide projects for a first
course in IT.]



What is in the existing literature?

A: “More mathematical”. Topic called “graph entropy” studies the
number of automorphisms of a N-vertex unlabelled graph. See the 2012
survey by Szpankowski - Choi Compression of graphical structures:
Fundamental limits, algorithms, and experiments.

B: “More applied”. Seeking to exploit the specific structure of
particular types of network.

Boldi - Vigna (2003). The webgraph framework I: Compression
techniques.

Chierichetti - Kumar - Lattanzi - Mitzenmacher - Panconesi - Raghavan
(2009). On compressing social networks.



Clearly do-able project: Invent probability models and calculate their
entropy rate.

Many hundreds of papers in “complex networks” study probability models
for random N-vertex graphs, implicitly with vertices labeled 1, . . . ,N.
Two simplest ways to adapt to our setting:
(i) write integer labels in binary.
(ii) assign completely random distinct names.

For the best-known models – Erdős-Rényi, small worlds, preferential
attachment, random subject to prescribed degree distribution, . . . – it is
almost trivial to calculate the entropy rate.

But none of these models has a very “interesting” association between
graph structure and names. Here is our best attempt at a model that
does, and that requires a non-trivial calculation for entropy rate.



Model: Grow sparse Erdős-Rényi G(N, α/N) sequentially; an arriving
vertex is linked to a previous vertex with chance α/N.

Vertex 1 is given a uniform random length-LN A-ary name, where (as in
other models) LN ∼ β logA N.

A subsequent vertex arrives with a tentative name a0; gets linked to
Q ≥ 0 previous vertices with names a1, . . . , aQn ; assign the name
obtained by picking the letter in each coordinate 1 ≤ u ≤ LN uniformly
from the 1 + Q letters a0u, a

1
u, . . . , a

Qn
u .

This gives a family (GN) parametrized by (A, β, α). One can calculate its
Entropy rate:

−1 +
α

2
+ β

∑
k≥0

αkJk(α)hA(k)

k! logA

where

Jk(α) :=

∫ 1

0

xke−αxdx

and the constants hA(k) are defined as follows:.



hA(k) := A−k
∑

(a1,...,ak )∈Ak

ent(p[a1,...,ak ]), (1)

and where p[a1,...,ak ] is the probability distribution p on A defined by

p[a1,...,ak ](a) =
1 + A× |{i : ai = a}|

(1 + k)A
.

Question: Can you be more creative than us in inventing such models?



[repeat earlier slide]

In this setting there are two “extreme” lines of research you might try.

Clearly do-able: Invent probability models and calculate their entropy
rate.

. . . . . .

Clearly not do-able: Design an algorithm which, given a realization
from a probability model, compresses optimally (according to the entropy
of the probability model) without knowing what the model is
(“universal”, like Lempel-Ziv for sequences).

In the rest of the talk I will outline a “maybe do-able” project laying
between these extremes.



Background: Shannon without stationarity

Finite alphabet A. For each N we will be given an A-valued sequence

X(N) = (X
(N)
i , 1 ≤ i ≤ N). No further assumptions.

Question: How well can a “universal” data compression algorithm do?
Answer: Can guarantee that

lim sup
N

N−1(compressed length of X(N)) ≤ c∗

where c∗ is the “local entropy rate” defined as follows.



First suppose we have “local weak convergence”, meaning:

take U(N) uniform on 1, . . . ,N;

there is a process X∗ which is the limit in the sense: for each k,

(∗) (X
(N)

U(N)+i
, 1 ≤ i ≤ k)

d→ (X ∗i , 1 ≤ i ≤ k).

Then X∗ is stationary and has some entropy rate c . Define c∗ = c .

In general (*) may not hold but we have compactness; different
stationary processes may arise as different subsequential limits; define c∗

as [essentially] the sup of their entropy rates.

Not a particularly useful idea for sequences, because stationarity is a
plausible assumption and gives stronger results. But I claim it is a natural
way to start thinking about data compression in our setting of sparse
graphs with vertex-names.



Given rooted unlabeled graphs gN and g∞ where g∞ is locally finite,
there is a natural notion of local convergence

gN →local g∞

meaning convergence of restrictions to within fixed distance from root.
This induces a notion of convergence in distribution for random such
graphs

GN →local G∞ in distribution. (2)

Now given unrooted unlabeled random graphs GN and a
rooted unlabeled random graph G∞, we have a notion called local weak
convergence or Benjamini-Schramm convergence

GN →LWC G∞

defined by:

first assign a uniform random root to GN
then require (2).



Some background for LWC

Random N-vertex 3-regular graph converges to the infinite 3-regular
tree.

The rooted binary tree of height h converges to a different tree.

The limit random rooted graph G∞ always has a property
(unimodular) analogous to stationarity for sequences.

In contrast (to stationarity) it is not obvious that every unimodular
G∞ is a local weak limit of some sequence of finite random graphs
(Aldous-Lyons conjecture).

Presumably one could develop a theory of entropy/coding for sparse
graphs where vertices have marks from a fixed finite alphabet, in
terms of an entropy rate for the limit infinite marked graph.



Program: I want to make correct version of following conjecture about
sparse random graphs-with-vertex-names GN .

Write GN,k for the restriction of GN to a k-vertex neighborhod of a
uniform random vertex. For fixed k we expect

ent(GN,k) ∼ ck logN as N →∞

and then we expect a limit

k−1ck → c∗ as k →∞.

Conjecture. As with sequences, this “local entropy rate” is an upper
bound for global entropy:

lim
N

ent(GN)

N logN
≤ c∗

with equality under a suitable “no long range dependence” condition
analogous to “ergodic” for sequences.

Such a “theory” result would give a target for “somewhat universal”
compression algorithms.


