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Much of my research has involved study of n→∞ limits of “size n”
random structures. There are many techniques one can try. This talk is
about models where it’s easy to see (heuristically) there should be
some kind of limit process which is determined (somehow) by a
specific PDE.

In such cases I want to start with the explicit solution of the PDE – then
the “hard work” comes when we try to formalize heuristics. (In principle
not need explicit solution, but in practice . . . . . . ). This is a very
old-fashioned attitude, to PDE theorists!

The most familiar interface between Probability and PDEs is the theory
of finite- or infinite-dimensional diffusions. My examples are (mostly)
different.



The only example where I could carry this program through was in
Aldous-Diaconis (1995) Hammersley’s Interacting Particle Process and
Longest Increasing Subsequences.

Limit was determined by a function F (t, x) on 0 < t <∞, 0 < x <∞
satisfying (writing Ft for ∂F

∂t )

Ft = 1/Fx

F (t, 0) = F (x , 0) = 0

Here we knew the answer in advance (because re-proving known result)

F (t, x) = 2
√
tx .

The talk will describe 3 examples where I can’t solve the PDE explicitly
and so haven’t got started . . . . . .



1. How to make a spectator sport exciting
You are watching a match in real time.
p(t) = chance home team wins, given what has happened so far.

Several ways to think about the process p(t)

(a) via real-time gambling odds



(b) Via a math model for the point difference process
X (t) = (points by home team) - (points by visiting team)

e.g. for soccer: team i scores at times of a Poisson (rate λi ) process.

Given any model for X (t), and taking match duration as 1 time unit, we
have the derived “price process”

p(t) = P(X (1) > 0|F(t)). (1)

If designing a new sport, what would we want the process p(t) to be?
Imagine equally good teams, so

p(0) = 1/2; p(1) = 1 or 0, equally likely.

What would we like the distribution of p(1/2) to be? To a spectator:

if p(1/2) typically close to 1/2 then only the second half of the
match is important

if p(1/2) typically close to 1 or 0 then only the first half of the
match is important

Note paradox: an individual match is exciting if result open until near the
end, but we don’t want that to happen in every match.



Rules of the sport determine point difference process
X (t) = (points by home team) - (points by visiting team)
which then determines “price process”

p(t) = P(X (1) > 0|F(t)).

Clearly p(t) must be a martingale. Simplify by assuming p(t) is a
continuous-path martingale and a (time-inhomogeneous) Markov process
(roughly, this is saying X (t) is continuous and (time-inhomogeneous)
Markov). So we have

dp(t) = σ(p(t), t) dB(t)

for some variance rate σ2(x , t).

Question. We can in principle (cf. Jeopardy) design a game to have any
chosen σ(x , t), up to two integrals being finite/infinite. How do we
choose?



Under the simplest model (e.g. the soccer model) for (continuized) point
difference

p(1/2) has U(0, 1) distribution. (2)

We have a small data-set consistent with this theory. See 2013 Monthly
paper Using Prediction Market Data to Illustrate Undergraduate
Probability.

Is (2) desirable?

from entropy viewpoint ???

from analysis of variance viewpoint, 1/3 of variance is resolved in
first half, 2/3 in second half ???

Return to previous slide. We study the question there by considering
maximizing entropy for the whole process (p(t), 0 ≤ t ≤ 1). Not clear
how to do this directly in continuous time/space; we first discretize then
pass to a limit.



Take integer parameters (T ,N). Take discrete state space
{−N,−N + 1, . . . ,N − 1,N}. We can construct the discrete time process
(Xs , s = 0, 1, 2, . . . ,T ) which is the maximum entropy process satisfying

X (0) = 0; X (T ) = N or − N (3)

and the martingale property. The process is the time-inhomogeneous
Markov chain whose transition probabilities ps(i , j) = P(Xs+1 = j |Xs = i)
are defined by backwards induction as follows. Clearly for s = T − 1 we
must have

pT−1(i ,N) = i+N
2N , pT−1(i ,−N) = N−i

2N .

Define
eT−1(i) = − i+N

2N log i+N
2N −

N−i
2N log N−i

2N

that is the entropy of the distribution pT−1(i , ·).



Now inductively for s = T − 2,T − 3, . . . , 0, for each i we define ps(i , ·)
as the distribution q(·) on [−N,N] which maximizes

−
∑
j

q(j) log q(j) +
∑
j

q(j)es+1(j) (4)

subject to having mean = i , and let es(i) be the corresponding
maximized value of (4). So this “dynamic programming” construction
inductively specifies the maximum entropy process, starting at state i at
time s, satisfying (3) and the martingale property.



Now a back-of-an-envelope calculation shows what the continuous limit
should be. Rescale (s, i) to (t, x) and rescale es(i) to

e(t, x), 0 < t < 1,−1 < x < 1

We can “solve” the maximization problem to get the PDE

et = 1
2 log(−exx) (5)

with boundary conditions

e(t,±1) = 0, 0 ≤ t < 1; e(1, x) = 0,−1 < x < 1;

and we find that

σ2(t, x) =
−1

exx(t, x)
(6)

STOP.



2. The Lake Wobegon Publishing Group.

Recall that in Lake Wobegon

all the women are strong, all the men are good looking, and all
the children are above average.

In this spirit the Lake Wobegon Math Society journal only publishes
papers whose quality is above the average quality of their
previously-published papers. We model the quality U1,U2, . . . of
successive submissions as IID.

Remark. Analogous to “record process” but not distribution-free. Use
U(0, 1) or Exponential(1) distributions.

Exercise (graduate stochastic processes course):
study Zn := number of accepted papers among first n submissions,

Now imagine a second journal that considers all papers rejected by first
journal, and uses the same “better than average” rule for acceptance.
And so on . . . . . .



This is a “putting objects into piles” random model. There are two well
known such models that are corners of large topics.

Chinese Restaurant Process.

Patience sorting. Cards with IID U(0,1) labels put into piles so we see
the label on the top card in each pile. These visible labels are in
increasing order, for instance

0.15, 0.33, 0.40, 0.54, 0.71, 0.83

If next card has label 0.45 we put it on top of the 0.40 card (largest label
smaller than the card we are placing); if it had label 0.09 we would start
a new pile on the left.

Our “Lake Wobegon Publishing Group” model is the variant of “patience
sorting” where we use the average of the labels in each pile (instead of
the maximum) to determine where the next card is placed.



To study patience sorting informally consider

F (t, x) = E( number of piles with top card label ≤ x).

At given t the process of top card labels is approximately a spatial
Poisson process, rate λ(x) = Fx . So chance that next card increases the
number of piles with top card label ≤ x is the chance the next label is in
the interval

? ? ? ?
�

x

? ?

This chance = 1/λ(x), so this gives the PDE

Ft = 1/Fx

stated at start of talk, whose solution is F (t, x) = 2
√
tx . So the process

has ∼ 2n1/2 piles with order n1/2 cards in each.

Background: number of piles = length of longest increasing
subsequence of a random permutation.



To study our “Lake Wobegon Publishing Group” model informally,
consider

F (t, x) = E( number of piles with average card label ≤ x).

A slightly more elaborate calculation gives

1

Fx
=

(
1

2FtFx

)
t

which can be rearranged to

FttFx + FxtFt + 2F 2
t Fx = 0.

Boundary conditions
F (t, 0) = F (0, x) = 0.

STOP.



3. Online ζ(3). The setting is:

• complete graph on n vertices
• assign IID Exponential(mean n) edge-lengths
• Ln = length of minimum spanning tree (MST).
A remarkable “offline” result of Frieze (1985) shows

n−1ELn ∼ ζ(3).

The formula can be seen as arising from two simple relations. First

lim
n

n−1ELn = 1
2

∫ ∞
0

λp(λ)dλ

where p(λ) is the (limit) probability that a length-λ edge is in the MST.



[repeat] p(λ) is the (limit) probability that a length-λ edge is in the MST.
Second

1− p(λ) = q2(λ) (7)

where q(λ) is the probability that a Galton-Watson Branching Process
with Poisson(λ) offspring survives forever.

Here (7) holds because
(i) a length-λ edge is not in the MST iff there is an alternative path
between its end-vertices using only edges of length < λ.

(ii) relative to a given vertex, the process of edges of length < λ is (in
n→∞ limit) a Galton-Watson BP with Poisson(λ) offspring.

(iii) Both BPs surviving forever (n =∞) corresponds for large finite n to
having overlapping giant components.



In project with Omer Angel and Nathanael Berestycki (moribund since
2008) we study the corresponding “online” spanning tree problem where
the edge-lengths are shown in random order, and one must decide
immediately whether to use the edge in the tree.

Fix n. Any scheme for constructing a tree will build up a forest of
tree-components. Represent state as a point x = (x1, . . . , xn) in the
simplex ∆n−1

xi = proportion of vertices in size-i components.

Initial state is (1, 0, 0, 0, . . .) but we consider

Fn(x) = n−1E(length of optimal online tree starting from x).

Use classical method: get equation for Fn(·) by conditioning on first step.



Fn(x) = n−1E(length of optimal online tree starting from x).

Write xij for the vector obtained from x if we accept an edge linking a
size-i and a size-j component. Clearly the optimal rule is:

• accept such an edge iff its length is < Fn(x)− Fn(xij).

Then by considering the cost of the first accepted edge from x we find

Fn(x) = n2
∑
i,j

xixj
(Fn(x)− Fn(xij))2

4
(8)

which is in fact exact for a Poissonized arrival process.

We now just write down the heuristic n→∞ limit of (8) as a PDE for a
function G (y) on the infinite-dimensional simplex.

G =
1

4

∑
i,j

yiyj(iGi + jGj − (i + j)Gi+j)
2

Gi =
∂G (y)

∂yi



A PDE for a function G (y) on the infinite-dimensional simplex.

G =
1

4

∑
i,j

yiyj(iGi + jGj − (i + j)Gi+j)
2

A boundary condition is

G (yn)→ 0 whenever yn
i → 0 ∀i

We also have, from the fact Fn(x)− Fn(xij) > 0, that

iGi + jGj − (i + j)Gi+j > 0.

So we conjecture there is a unique solution to the PDE and that the
“online ζ(3) constant” is G (1, 0, 0, 0, . . .).

STOP.


