A Tractable Stochastic “Complex Network”
Model

David Aldous, U.C. Berkeley.

short paper: AMS Electronic Research Announcements,
2003.

longer paper: arXiv:cond-mat/0304701 published in Springer
Lect. Notes Physics 650.

Slides on my home page.



1. Recent literature.

Three popular science books, a dozen articles
in Science and Nature, and 154 preprints at
xxx.arXiv.org/cond-mat deal with complex net-
works, which in this context means the em-
pirical and theoretical study of large graphs,
focusing in particular on those possessing the
following three qualitative properties, asserted
to hold in many interesting real-world exam-
ples.

e the degree distribution has power-law tail

e |ocal clustering of edges: graph is not lo-
cally tree-like

e small diameter — O(log (number of vertices)).

The nature of that subject — typically not pre-
sented as rigorous mathematics — is most easily
seen from the long survey papers



R. Albert and A.-L. Barabasi, Statistical me-
chanics of complex networks, Rev. Mod. Phys.
74 (2002), 47-97.

S.N. Dorogovtsev and J.F.F. Mendes, Evo-
lution of networks, Adv. Phys. 51 (2002),
1079—-1187.

M.E.J. Newman, The structure and function
of complex networks, SIAM Review 45 (2003),
167—256.

A shorter survey emphasizes rigorous mathe-
matical results

B. Bollobas and O. Riordan, Mathematical re-
sults on scale-free random graphs, Handbook
of Graphs and Networks (S. Bornholdt and
H.G. Schuster, eds.), Wiley, 2002.

See also Durrett lecture notes (Fall 2004).
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Almost all this literature concerns variants of
two modelling ideas.

Small worlds.
e [ake n-vertex lattice-neighborhood graph
e Add long edges in some random way.

Proportional attachment.

e Vertices arrive sequentially (n =1,2,3,...);
e cach vertex attaches to k existing vertices v
chosen with probabilities proportional to

c + degree(v).



Some natural summary statistics for a complex
network.

e 0 = average vertex-degree

e an exponent ~ indicating power-law tail be-
havior of degree distribution

e a ‘‘clustering coefficient” kK measuring rela-
tive density of triangles

e the average distance ¢ between vertex-pairs.

Desiderata for a stochastic model

e mathematical tractability: one can find reasonably ex-
plicit formulas for a variety of quantities of interest

e fitting flexibility: by varying model parameters one can
vary summary statistics (like the 4 listed above) broadly
through their possible ranges

e naturalness. the qualitative properties emerge from
some simple underlying mathematical structure rather

than being forced by fiat.



No ideal model known. I will describe a specific
two-parameter model, and implicitly a class of
models, which satisfy many of these desider-

ata.

Outline of slides

7 — 8 half description of model

O - 16 gallery of explicit formulas

17 - 28 complete description of model

29 now see why we can calculate things

30 + the Yule process, local weak convergence,

Comment: we are accustomed to models (per-
colation, interacting particle systems) which
are simple to state but complicated to ana-
lyze. In constrast, this model is conceptually
sophisticated to state but easy to analyze (in
some respects).



Platform for model: directed graphs

(i) Vertices v, w,x,... arrive sequentially; some
intrinsic “geometry” given by distances d(v, w).
(ii) Given 1 > p(r) | O fast as r T .

(iii) When vertex v arrives, for each existing
vertex w and each existing edge (w,z), new
edges (v,w) and (v,z) appear independently
with probability p(d(v,w)).

So (i) is reminiscent of lattice-based small worlds,
and (iii) of proportional attachment/copying.

Our specific model uses in (i) a model of “ran-
dom points in infinite-dimensional space’” — de-
tails later. Has property: number of vertices
within distance r of new vertex grows as e'.
This “geometry” model has no dimensionless
parameters.

In (iii) we somewhat arbitrarily take
p(r) = min(1, axe ")
with two parameters a, A > 0.



Model gives evolving random graph G,, on n
vertices. Desighed so that thereisa n — o
limit random graph G representing “the limit
as seen from a typical vertex”. By doing cal-
culations within the limit graph, we get exact
formulas in the n — oo limit.

Recall the two parameters enter via the func-
tion
p(r) = min(l,aAe_)‘T), 0<r < .

We will need to distinguish between a low clus-
tering region with parameter ranges

O<a<l, 0<A<1l/a [low].

and the complementary high clustering region
where al > 1. In the latter case

p(r) =1, r<n:=x"llog(a))

and it is convenient to reparametrize using 7
in place of a, making the parameter range

O<n<1l, n+1/A<1. [high].

Greek letters denote quantities computable from
parameters.



GALLERY OF EXPLICIT FORMULAS
exact in n — oo limit.

The two parameters control mean degree
and clustering.

First consider D;, and Dg,t, the random in-
degree and out-degree of a typical vertex. Then

_ 1o [low]
— 5 __ —Q
EDin = EDouit =9 =1{ n¥19x

T——1/x Lhighl =

Second, define a normalized clustering coeffi-
cient Kejyster AS

T he proportion of directed 2-paths v —
vo> — wv3 for which v{ — w3 is also an
edge.

Then
Sy lowl -
K = ay)(1—m—% -
cluster (77+%)\)( 771>\) [high]
| (3 (A—=n—53%)



By solving (1,2) we find that every pair of val-
ues of 9, k¢jyster IN the complete range

O<5<OO, O<K/C|uster<1

occurs for a unique parameter pair (a,\) or
(n,\). Moreover the two regions can be spec-
ified as

8—|—2

0 < 9 < oo, 5 < Kcluster < 1. [high]

8+
So the two model parameters a, A have fairly
direct interpretations in terms of mean degree
and clustering; of course we could re-parametrize
the model in terms of 9 and k¢ster, Ut the
internal mathematical structure is more conve-
niently expressed using the given parameters.
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Distribution of in-degree

T he distribution of D, is specified as
1 4+ D, 4 Geo(e AT where T 4 Exp(1)
and where
5= { o [low]
n—+ 1/ [high]
T his works out explicitly as

@+ DEA/D L
Brd+2+3"  °

with asymptotics

P(Din =d) =

P(Dy = d) ~ 320 (1)) d 7.

Formula (3) appears in recent proportional at-
tachment models, but in fact is a famous 80-
year old calculation.
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Distribution of out-degree

Distribution of Dyt determined by the identity

oo
D £ Y Bin(1+ Dy, axe %) [low]
i=1
where D, D;, ¢+ > 1 are independent with the
distribution of Dyt and where 0 < &1 < &> < ...
are the points of a rate-1 Poisson point process
on (0,c0).

We do not know how to extract a useful ex-
plicit formula from the identity, but we can
compute moments. For instance

( Oé(l—Cl{+C\{21>\/2) [IOW]
| (1-n—55)(1-n—3)2

Note also

D;n, and Dg,t are independent.
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Densities of induced subgraphs

Let G be a finite directed acyclic graph. We
expect a limit
(G) = ”m #subgraphs of QZ isomorphic to G.
For the complete directed acyclic graph K, on
r > 2 vertices,

r—1 3
X(Kr) — -
ul;Il 1 — Bu

By = u~ Lo =1 [low]
“7 1 n+5  [high]

For the complete bipartite directed graph K2,2,
for B2 < 5 (which always holds in the low den-
sity case), the corresponding limit for *“sub-

graphs including Kj 5" is

862(B2 + 398)
(1-282)(1—02)

iX(Ko2) =
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Triangle density as a function of degree

The parameter k¢jyster dives an overall measure
of triangle density. A more detailed description
is provided by statistics C(k), k > 2 defined by

E(# triangles contain. random degree-k vertex)
k
2
(3)
In principle could obtain exact formula for C(k),
but easier to get the tail property

2 1
B2 X — as k — oo.

B—02 k

C(k) =

C(k) ~

Relates to suggestion that property C(k) ~ ¢/k
indicates “hierarchical structure” in complex
networks.
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Edge-lengths

Our model has a “metric structure”, meaning
that there is a distance dmetric(v, w) between
any two vertices which does not involve the
realization of edges in the random graph. So
each edge (v, w) of the graph has a real-valued
length dmetric(v,w), and so a typical edge has
a random length L. The probability density
function for L is given by the formula

1 -« i G+ DrM(a+3) (—xz)
a =5 i+ o+ 3)

and f(x) ~ exp(—=(A £ o0(1))x) as  — oco. In

the underlying metric space, the number of

vertices within distance k£ of a typical vertex

grows as ek, So one can give a rough reinter-
pretation of the tail behavior of f(x) as

, 0<x<oo [low].

the chance that a vertex has an edge to its
k'th nearest neighbor should scale as A1

Note this property appears without being ex-
plicitly built into the model.
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Advantages/disadvantages of the model:

e it has the three qualitative features desired in
a complex networks model (power-law degree
distribution, clustering, small diameter)

e it fits the complete possible range of mean
degree (or scaling exponent) and clustering pa-
rameters

e it permits a broad range of explicit calcula-
tions.

3K 3K 5k 3Kk 3k 3Kk 3Rk Sk 3kok 3Rk Sk ko ok 3k Sk SRk ok 3kok Rk Sk kook >Rk ok skok ok kok >k

e G, is not connected (for large n).

e [ here is no power law for distribution of out-
degree.

e in-degree and out-degree are independent.

e [ he scaling exponent for in-degree is deter-
mined by the mean degree; one might prefer
a model where these could be specified sepa-
rately.

e In the n — oo limit not every finite graph is
possible as an induced subgraph.
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Geometry of n points as n — oo.

In d dimensions, pictured for d = 2. Could take
the points ordered or random, in region of area
n. In either case there is a n — oo limit: the
infinite lattice, or the Poisson point process.

Draw attention to one feature of each.
e On lattice, point has 2d ‘“near neighbors’ .
e Poisson process is time-equilibrium of a cer-
tain space-time process, in which points move
to infinity as deterministic exponentials x(ty) =
z(t1)elt27t1)/d and new random points arrive
at space-time rate 1. “Enterprise under warp
drive”, or Hoyle's 1950s steady-state model of
Universe.
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There are various names (random link; randomly-
weighted complete graph; mean field model of
distance) for a static model of n points:

take the (73) inter-point link lengths to be inde-
pendent r.v.'s with Exp (mean n) distribution.
Then set distance = length of shortest path.

Turns out (2 minutes thought!) thereisn — oo
limit geometry, as seen from typical point 0.
Limit geometry is the PWIT. One property:

E(number points within distance r of 0) = e".

Moreover, PWIT is time-invariant distribution
of the space-time ‘“steady-state Universe” pro-
Cess, as in 2 dimensions.

18



Finally, we formulate the finite-n model of ar-
riving vertices and evolving geometry which
has the space-time PWIT as its n — oo limit.

e vertex n arrives at time logn

e the link lengths from n to previous n— 1 ver-
tices are independent Exp (mean n) r.v.’s

e distances increase deterministically with time,
at exponential rate 1.

Over this model of geometry we build our com-
plex network model as described earlier, but
with a restriction to near neighbors.

e \When vertex v arrives, for each existing near
neighbor w and each existing edge (w,x), new
edges (v,w) and (v,z) appear independently
with probability p(d(v,w)).
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The PWIT — a window centered on point 0.

Distances 0 < &1 < & < &3 < ... from a vertex
to its near neighbors (indicated by lines) are
successive points of a Poisson (rate 1) process

on (0,00). Continue recursively.
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An earlier time, when only the three vertices
a,b,c from current-time window had arrived.
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Bottom line: we get a non-explicit description
of the n — oo limit complex network model as
“this process at the current time”. Tractable
because

e everything is time-invariant, so can immedi-
ately write down various equations, e.g. for
out-degree D

@)
D £ Y Bin(1+ Dy, axe %) [low]
i=1
e the process “1 4 in-degree(v) at time ¢t is
precisely a Yule process.

The model's underlying geometry — random
points in infinite dimensional space — may seem
arbitrary but in fact is less arbitrary than the
usual “extreme” alternates
e vertices are points in d-dimensional space
e NO geometry, which is tantamount to assum-
ing all vertex-pairs are at equal intrinsic dis-
tance.
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Yule process of rate u

Each individual at time ¢t has chance u dt to have daugh-
ter during [¢, t + dt].

N(t) = number individuals at time ¢ (N(0) = 1).

Yule (1924) used as model for species within a genus
and proved two results.

N(t) = Geo(e ™).

Yule extended model by assuming that from within a
genus, a new species founding a new genus arises at
constant stochastic rate 6. In long run, age of typical

genus has law T/6 for T < Exp(1) and so size N of
typical genus has

N £ Geo(e #1/9)

which has a power law tail.
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Yule processes appear within our model in two differ-
ent ways. First consider the PWIT, the “geometry” of
random points in infinite-dimensional space. Consider

N(r) = number of points within distance r of ()

and include 0 itself, then (N(r), 0 <r) is the Yule pro-
cess of rate 1. So

EN(r) =¢€".

Next consider our space-time random dgraph process.
For a typical vertex w consider

N(t) =14 in-degree(w) at time t

starting time when w arrives. Using time-invariance of
space-time process of arriving points, and the underlying
stochastic dynamics

When vertex v arrives, for each existing ver-
tex w and each existing edge (w, ), new edges
(v, w) and (v, x) appear independently with prob-
ability p(d(v,w))

easy to see that N(t) is Yule process of rate 3 for

5 = /Ooopcn) dz.
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