
Optimal flows through the disordered lat-

tice

Consider lattice Z2 with i.i.d.r.v.’s (Ce) on edges

e. This structure can be used in many settings

• first passage percolation

• RWIRE

• disordered Ising model

• disordered variants of many interacting

particle systems.

We’ll use it for “traffic flow” models.

Big Picture. Instead of studying only graph

structure of networks, think “what does the

network do?” One answer: “move stuff from

place to place”. Envisage road traffic.
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Complete info about routes is the path-flow,
a measure µ on (directed, loop-free) paths

source = v0, v1, v2, . . . ,destination.

Associated with a path-flow is its induced flow-
volume f = (f(e)),

f(e) = volume of flow across edge e

(both directions combined) and its induced trans-
portation measure on (source,destination).

Optimal routing problem: Given

• network
• transportation measure
• cost function depending on (f(e))
• capacity constraints (cap(e))

we ask

does there exists a feasible path-flow?

if so, what is minimum-cost feasible flow?
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Deterministic algorithmic problems like this are

studied as part of network algorithms; as

multicommodity flow problems they are NP-

hard in general. We take statistical physics

viewpoint of modeling the network (topology,

costs, constraints) as random and studying prop-

erties of optimal solution. We take transporta-

tion measure uniform on all (source,destination)

pairs, so there’s one parameter

ρ = normalized traffic demand.

Seek to study (in different models on n-vertex

networks) the n→∞ limit curves giving some

quantitative measure of network performance

vs ρ.

In many random-graph like networks we hope

to exploit the “locally tree-like” structure to

do explicit calculations. But what about dis-

ordered Z2?
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Order-of-magnitude calculation on N×N grid. Send

volume ρN between each (source,destination)

pair. Then average flow volume f̄ across edges

has

(N2 ×N2)× ρN ×N ≈ f̄ ×N2

We take

ρN = ρN−3

so that flow-volumes f(e) will be order 1.

Open Problem. Take i.i.d. capacities (cap(e))

with 0 < c− ≤ cap(e) ≤ c+ < ∞. Then a fea-

sible flow with normalized demand ρ exists for

ρ < ρ− and doesn’t exist for ρ > ρ+. Prove

there is a constant ρ∗ depending on distribu-

tion of cap(e) such that as N →∞

P (∃ feasible flow, norm. demand ρ) → 1 , ρ < ρ∗

→ 0 , ρ > ρ∗.
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Instead of focussing on capacities, let’s focus

on congestion. In a network without conges-

tion, the cost (to system; all users combined)

of a flow of volume f(e) scales linearly with

f(e). With congestion, an extra user imposes

extra costs on other users as well as on them-

self. So cost scales super-linearly with f(e).
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Model: The cost of a flow f = (f(e)) in an

environment c = (c(e)) is

cost(N)(f , c) =
∑
e
c(e)f2(e).

Theorem 1. N ×N torus (for simplicity)

Large constant bound B on edge-capacity (for

simplicity)

i.i.d. cost-factors c(e) with

0 < c− ≤ c(e) ≤ c+ <∞.

Let ΓN be minimum cost of flow with normal-

ized intensity ρ = 1. Then

N−2EΓN → constant(B,dist(c(e))).

Note: Easy concentration-of-measure lemma

then implies

N−2ΓN → constant(B,dist(c(e)))

in probability.
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Idea of proof. Consider optimal flow in a

randomly positioned M ×M window; consider

N →∞ weak limits.

Note: As N → ∞ the volume of flow with

source or destination at a vertex v becomes

negligible compared to the flow through v.
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Weak limit flows across the M ×M square.

• i.i.d. environment (c(e))

• a path-flow across the square

• with a transportation measure Q on the

boundary BouM ×BouM
• Q is dependent on (c(e))

• given (c(e)) and Q, the path-flow inside

the square minimizes the local cost

costM(f , c) =
∑
e
c(e)f2(e).
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Consider Q non-random. So there’s an expec-

tation (over random environment)

costM(Q) := E inf{costM(f , c) : f has t.m. Q}.

Note

• Q→ costM(Q) is convex

• An easy concentration inequality (C.I.)

shows that the r.v.

inf{costM(f , c) : f has t.m. Q}

is close to its expectation.

These ingredients suggest the following con-

ceptually standard (but technically hard to im-

plement here) argument. Take a large finite

set Q which is δ-dense in space of Q’s.
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N →∞ weak limit involves

costM(f , c) : f has random t.m. Q

Use δ-dense to say

≈ costM(f , c) : f has random t.m. Q ∈ Q

[by C.I.] ≈ weighted ave of costM(Q) over Q ∈ Q

[convexity] ≥ costM(EQ) .

Of course we don’t know EQ but we’ll write

some constraints soon. This argument gives a

lower bound for Theorem 1

lim inf N−2EΓN ≥ −εM

+M−2 inf{costM(Q0) : Q0 satisfy constraints}.
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What are constraints on Q0 = EQ arising from
Q being t.m. across random M ×M window in
a uniform source-destination flow on the N×N
torus?

Recall Q is a measure on pairs (vent, vexi) ∈
R2 ×R2. Has marginals Qent and Qexi.

Constraint 1. The push-forward of Q0
exi un-

der the reflection map equals Q0
ent.

Constraint 2. Write

drift(Q) = M−2
∫

(vexi − vent) dQ.

Then Q0 has a mixture representation

Q0 =
∫
Q ψ(dQ)

where ψ is a p.m. whose pushforward under
the map

Q→ drift(Q) mod (1,1)

is uniform on the continuous torus [0,1)2.
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Ultimately we prove

limN−2EΓN =

lim
M

M−2 inf{costM(Q0) : Q0 satisfy constraints}.

What do we need to do, to prove the upper

bound? Fix some Q0 satisfying constraints.

We need to construct a flow on the N × N

torus such that

lim sup
N

N−2Ecost(N)(f , c)

≤M−2costM(Q0).

Rather magically, our previous abstract [non-

constructive] arguments provides clues for the

construction. A transportation measure (t.m.)

Q can be normalized to a transition matrix

(t.m.). So we can use any given Q to de-

fine a Markov chain on the “skeleton” of the

partition.
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Take N/M steps of this chain starting from

some vertex v1. We finish at some random

vertex v2 with

v2 − v1 ≈ Ndrift(Q)

using Markov chain LLN. So we construct flows

this way. Given source v0 and destination v1,

we want to use a Q with drift(Q) = (v2−v1)/N .

We get Q from the disintegration

Q0 =

∫
Q ψ(dQ)

where ψ is a p.m. whose pushforward under the map

Q→ drift(Q) mod (1,1)

is uniform on the continuous torus [0,1)2.

Putting together all source-destination pairs,

we have flows on the skeleton graph which are

independent of the realization of environment

and for which the expectation of transporta-

tion measure across a M × M square equals

Q0.
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Within each M ×M square we simply use the

flow f attaining

inf{costM(f , c) : f has t.m. Q0}
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Discussion

1. Much of the outline seems robust to model

details. Plausible that method works quite

generally to prove existence of limit constant

for cost of optimal flows in N ×N square with

some kind of random environment. Essential

requirement is

• Global cost function equals sum of order-

N2 local cost functions.

2. Assumed edge-capacity = B (large); helps

in some places, hinders in other places. Prob-

ably not hard to remove assumption.

3. In our open problem (maximum flow volume

subject to i.i.d. edge-capacities) the C.I. fails.

Because maximum flow volume across M ×M
square is order M but depends on order M2

random variables.
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4. The global optimal flow satisfies a certain

condition by virtue of being a local minimum

of

f → cost(N)(f , c).

But I don’t know how to exploit this.
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