
When Knowing Early Matters:
Gossip, Percolation and Nash Equilibria

The abstract idea of “information spreading
through a network” arises in many contexts:

• gossip algorithms (designed to keep nodes
of a decentralized network updated about
information used to maintain the network)

• first passage percolation (FPP)

• epidemics

as well as harder-to-model contexts such as
the diffusion of technological innovations or of
ideologies.

I will describe a new “economic game theory”
aspect via non-rigorous arguments. First, we
review FPP.
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FPP as spread of information

• n agents

• rates θi,j ≥ 0 for agents i, j

• At t = 0 one agent i0 has an item of

information

• information spreads between agents: from

i to j at (stochastic) rate θij.

So this is FPP on a finite set with Exponential

(rate θij) random times; the set becomes a

network with edges (i, j) such that θij > 0.

Assuming that the network is connected, the

information reaches each agent.

Such processes are well understood, from many

viewpoints. Write θ = (θij) and consider the

random time T = Tn
θ that the information reaches

a uniform random agent. For a sufficiently

symmetric (“transitive”) network the distribu-

tion of Tn
θ does not depend on i0.
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We will be interested in the order of magnitude

of the window width wn
θ over which P (T ≤ t)

increases from near 0 to near 1.
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General framework: communication games

with rank based rewards

• n agents (results in the n →∞ limit)

• New items of information arrive at times

of a rate-1 Poisson process; each item comes

to one random agent.

Information spreads between agents in ways to

be described later [there are many variants],

which involve communication costs paid by the

receiver of information, but the common

assumption is

• The j’th person to learn an item of

information gets reward R( j
n).

Here R(u), 0 < u ≤ 1 is a decreasing function

with R(1) = 0; 0 < R̄ :=
∫ 1
0 R(u)du < ∞.

Intended as toy model for gossip or insider trading.
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Assuming connectivity, the total reward from

each item is
∑n

j=1 R( j
n) ∼ nR̄.

Write

payoff = benefit − cost

where these boldface quantities are “per agent

per unit time”. Note benefit = R̄ is fixed.

And cost can be made arbitrarily small by

simply communicating less often (Nuance of

model: i calls j at a given price and learns all

items j knows – maybe 0 new items, maybe 2

new items).

Thus in the “social optimum” protocol, agents

communicate slowly, giving payoff arbitrarily

close to R̄. But if agents behave selfishly then

one agent may gain an advantage by paying

to obtain information more quickly, and so we

seek to study Nash equilibria for selfish agents.
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Distinguish one agent as ego. Recall that the

characterization of a Nash equilibrium is that

ego cannot increase his payoff by deviating

from the equilibrium strategy. Instead of allow-

ing arbitrary strategies we allow only specified

strategies depending on a parameter.

We will see that, depending on the structure

of communication costs, any of the following

possibilities may occur in the n →∞ limit.

• efficient: Nash payoff = social optimum

payoff, that is Nash cost = 0.

• wasteful: 0 < Nash payoff < social opti-

mum payoff

• totally wasteful: Nash payoff = 0.

Here are two basic examples.
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Example: the complete graph case

Network communication model: Each agent

i may, at any time, call any other agent j (at

cost 1), and learn all items that j knows.

Poisson strategy. The allowed strategy for

an agent i is to place calls, at the times of a

Poisson (rate θ) process, to a random agent.

Result. In the n → ∞ limit the Nash equilib-

rium value of θ is

θNash =
∫ 1

0
(1+log(1−u))R(u)du =

∫ 1

0
r(u)g(u)du > 0

(1)

where g(u) = −(1− u) log(1− u) > 0

and r(u) = −R′(u) ≥ 0.

In particular the Nash equilibrium payoff R̄ −
θNash is strictly less than the social optimum

payoff R̄ but strictly greater than 0. So this is

a “wasteful” case.
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Example: the nearest neighbor grid

Network communication model: Agents are
at the vertices of the N × N torus (i.e. the
grid with periodic boundary conditions). Each
agent i may, at any time, call any of the 4
neighboring agents j (at cost 1), and learn all
items that j knows.

Poisson strategy. The allowed strategy for
an agent i is to place calls, at the times of a
Poisson (rate θ) process, to a random neigh-
boring agent.

Result. The Nash equilibrium value of θ is
such that

θNash
N ∼ N−1

∫ 1

0
g(u)r(u)du (2)

where g(u) > 0 is a certain function
and r(u) = −R′(u) ≥ 0.

So here the Nash equilibrium payoff R̄ − θNash
N

tends to R̄; this is an “efficient” case.
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Discussion

These results suggest many questions . . . . . .

• Wouldn’t it be better to place calls at reg-

ular time intervals?

• In the grid context, what about the case

where an agent can call any other agent

but the cost is a function of distance?

• What about the symmetric model where,

when i calls j, they exchange information?

• Why in formulas (1,2), do we see decou-

pling between the reward function r(u) and

the function g(u) involving the rest of the

model?
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• In the nearest-neighbor grid case, wouldn’t
it be better to cycle calls through the 4
neighbors?

• What about non-transitive models, such as
social networks where different agents have
different numbers of friends, so that differ-
ent agents have different strategies in the
Nash equilibrium?

• To model gossip, wouldn’t it be better to
make the reward to agent i depend on the
number of other agents who learn the item
from agent i?

• To model insider trading, wouldn’t it be
better to say that agent j is willing to pay
some amount s(t) to agent i for informa-
tion that i has had for time t, the function
s(·) not specified in advance but being a
component of strategy and hence with a
Nash equilibrium value?
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Methodology for formulas

Allowing agents’ behaviors to be completely general makes
the problems rather complicated (e.g. a subset of agents
could seek to coordinate their actions) so in each spe-
cific model we restrict agent behavior to be of a specified
form with a parameter θ; the agent’s “strategy” is just
a choice of θ. If all agents use the same parameter value
θ then the spread of each item of information through
the network is as some model-dependent FPP process.
So there is some function Fθ,n(t) giving the proportion
of agents who learn the item within time t after the ar-
rival of the information into the network. Now suppose
one agent ego uses a different parameter value φ and
gets some payoff-per-unit-time payoff(φ, θ). The Nash
equilibrium value θNash is the value of θ for which ego
cannot do better by choosing a different value of φ, and
hence is the solution of

d

dφ
payoff(φ, θ)

∣∣∣∣
φ=θ

= 0. (3)

Obtaining a formula for payoff(φ, θ) requires knowing

Fθ,n(t) and knowing something about the geometry of

the sets of informed agents at time t, but does not

require any more.
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I will outline heuristics for the order-of-magnitude
behavior in the two basic examples and a third
example.

The complete graph case. FPP on complete
graph has elementary analysis (Kendall 1957).
For us, key point is that given the realization
of FPP (θ = 1) the time Tn to reach random
agent has Tn − tn → T ∗ where the limit has
logistic distribution

P (T ∗ ≤ t) =
et

1 + et
, −∞ < t < ∞.

Write θn for Nash equilibrium rates; so window
width wn is order 1/θn. Suppose wn →∞; then
ego could call at fixed slow rate φ and have

cost = φ; benefit→ R(0).

But this is better than the payoff R̄ to other
agents.

Conclusion; wn bounded, so θn bounded away
from 0, so wasteful.
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The N ×N nearest neighbor grid

The shape theorem for FPP on the infinite lat-

tice started at the origin says that the random

set Bs of vertices reached before time s grows

linearly with s, and the rescaled set s−1Bs con-

verges to a limit deterministic convex set B.

So when agents call at rate θ = 1 the window

width wN is order N . The time difference of

learning item for two neighbors of ego is �
1, so the increased reward to ego by calling

neighbors faster is at most � 1/N . This is

unaffected by making each agent’s call rate

= θN . So ego is willing to call at rate � 1/N ,

giving θNash
N � 1/N .
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Here’s the first example that needs some thought.

The N ×N torus with short and long range

interactions

Network communication model. The agents
are at the vertices of the N × N torus. Each
agent i may, at any time, call any of the 4
neighboring agents j (at cost 1), or call any
other agent j at cost cN ≥ 1, and learn all
items that j knows.

Poisson strategy. An agent’s strategy is de-
scribed by a pair of numbers (θnear, θfar) = θ:

at rate θnear the agent calls a random
neighbor

at rate θfar the agent calls a random non-
neighbor.

This model obviously interpolates between the
complete graph model (cN = 1) and the nearest-
neighbor model (cN =∞).
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First let us consider for which values of cN

the nearest-neighbor Nash equilibrium (θnear is

order N−1, θfar = 0) persists in the current

setting. When ego considers using a non-zero

value of θfar, the cost is order cNθfar. The time

for information to reach a typical vertex is or-

der N/θnear = N2, and so the benefit of using

a non-zero value of θfar is order θfarN2. We

deduce that

if cN � N2 then the Nash equilibrium is asymp-

totically the same as in the nearest-neighbor

case; in particular, the Nash equilibrum is effi-

cient.

Let us study the more interesting case

1� cN � N2.

The argument has three steps.
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1. Consider the window width wN of the asso-

ciated percolation process at the Nash equilib-

rium (θNash
near , θNash

far ). Suppose ego deviates from

the Nash equilibrium by setting his θfar = θNash
far +

δ. The increased benefit to ego is order δwN

and the increased cost is δcN . At the Nash

equilibrium these must balance, so

wN � cN .

2. Now consider the difference `N between

the times that different neighbors of ego are

reached. Then `N is order 1/θNash
near . Write

δ = θNash
near and suppose ego deviates from the

Nash equilibrium by setting his θnear = 2δ. The

increased benefit to ego is order `N/wN and

the increased cost is δ. At the Nash equilib-

rium these must balance, so δ � `N/wN which

becomes

θNash
near � w

−1/2
N � c

−1/2
N .
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3. Finally we need to calculate how the win-

dow width wN for FPP depends on (θnear, θfar),

and it turns out

wN � θ
−2/3
near θ

−1/3
far .

We have 3 equations for 3 unknowns, and we

solve to find

θNash
near is order c

−1/2
N and θNash

far is order c−2
N .

In particular the Nash cost � c
−1/2
N and the

Nash equilibrium is efficient.
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