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Talk 1. Strolling in the Stochastic Arboretum.

Talk 2. Continuous Limit Trees

(critical branching processes, Brownian excur-

sion, superprocesses, diffusions on fractals)

Talk 3. The View from the Fringe

(stable type structure, discrete infinite limit

trees, stationary processes).

Preprint “Asymptotic Fringe Distributions . . . ”

covers 3 and its examples overlap 1. For these

conference proceedings I’ll write up more de-

tails of 2.
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(Joke) Unlike the theory of random graphs,

which has 500 papers on 1 model, the subject

of random trees has 1 paper on each of 500

models.

Purpose of this talk is to mention 11 exam-

ples, chosen to be mathematically clean. As-

sume familiar with BP (branching process)

models of single-sex populations, which are

really just probability models of “family trees”.

My examples are not overtly BPs, but some

are BPs in disguise.

Default convention: what I say is not new or

mathematically deep.
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Example. Wright-Fisher ancestor tree

(discrete coalescent)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ common ancestor

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ previous gens

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ present gen.

Probability model: children pick parents at

random (uniformly).

The “downwards” description of the tree is

roughly like a density-dependent BP.
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Example. Random recursive tree

(Yule tree)

Start with vertex 1 .

Add vertex n by an edge to a uniformly-

chosen existing vertex.

[Lots of variations]
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Example. (name?)

n vertices

Initially no edges.

At each step, add an edge (i, j) whose end-

points are chosen uniformly from pairs in dif-

ferent components.

After n− 1 steps we get a random tree.

Equivalent description. Start with complete

graph. Put i.i.d. weights on edges. Form

minimum-weight spanning tree.
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Example. Euclidean MST.

Given n points in Rd there is a minimum-

length spanning tree connecting them.

Probability model: points of a Poisson process

(rate 1) in [−L,L]d.

Asymptotics of functionals (e.g. total length)

classical, up to non-explicit constants. Asymp-

totics of tree hard – continuum percolation.
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Examples. Models for Spanning Trees.

G finite connected graph.

A spanning tree has same vertices, fewer edges.

Here are two ways to get a spanning tree.

1. Start with G; repeat operation

“delete some edge whose deletion does not

disconnect graph”.

2. Start with no edges; repeat operation

“add some edge of G which does not create

a cycle”.

Choosing uniformly at each step gives models

for random spanning tree. These models are

different from each other and from

3. Uniform random spanning tree.

(Not obvious how to construct, but can be

done via random walk on G)
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Loosely, there are many “growth processes”

definable on a general graph G which for G =

complete graph give combinatorial models like

the preceeding, and for G = integer lattice Zd

related to standard “hard models” not usually

regarded as trees.

◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

Pemantle studied asymptotics of the “uniform

spanning tree” model on finite lattices, and

shows limit on infinite lattice is tree [forest]

for d ≤ 4 [d ≥ 5].
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People store files in alphabetical order.

This is less convenient for computers.

Knuth’s The Art of Computer Programming dis-

cusses many sorting, storing and searching

methods, some tree-based.

Want algorithms which associate storage lo-

cations [think of mailboxes] with names. Seek

to minimize “costs” such as

(i) time to find location, given a name

(ii) time to allocate location to new name

(iii) time to delete name (which typically re-

quires subsequent rearrangements)

(iv) preallocated total storage space.
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Convert name to “key” using arbitrary hash

function.

name key (rank)

MERCURY .01110 6

VENUS .01011 4

EARTH .11010 10

MARS .01100 5

ASTEROIDS .00110 2

JUPITER .10111 8

SATURN .10000 7

URANUS .00010 1

NEPTUNE .11001 9

PLUTO .01010 3

(ranks are just for our visual purposes – the

algorithm uses the keys).

Imagine storage locations arranged as binary

tree.
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Example. Binary Search Tree.

“Find” by comparing key with number at root:

if less, move left – if greater, move right.

Probability model. n insertions, no deletions.

All orders equally likely.

Equivalent description of random tree. The

n’th insertion is uniform random over the n

possible places it could go.

[order statistics fact – exploited by Devroye].
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Example. 2− 3 Trees.

Here each vertex represents 2 storage loca-

tions.

Here all leaves are at a fixed level – preallo-

cated space requirement less.

Insertion rule: insert at bottom level – if this

makes 3 items, push up middle item.

Probability model as before.
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Example. Digital Search Tree.

Use binary digits to search left/right.

Probability model: the bits of each key are

independent uniform.

Under this stronger assumption, more effi-

cient.
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Example. Trie.

Vertices prelabelled as finite binary strings. In-

sert key at shortest prefix which distinguishes

it from the others (may be necessary to move

other key).

Sample trie doesn’t depend on insertion order.

Deletions easy.

Probability model as before.
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Other Areas Using Random Tree Models.

1. Polymerization of molecules

2. River networks

3. Statistical data analysis (discrimination,

classification)

4. Phylogenic (evolutionary) trees.
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T n random tree of size n, arising from some

concrete process (maybe with extra structure).

Some “cost” functional c. Interested in Ec(T n).

For CS trees, cost functionals are

c(t) = ave number of comparisons to “find”

c(t) = ave number of moves to “insert”

c(t) = height of tree.

Often random trees have recursive structure,

and can seek exact solutions via generating

function/ recurrence equations (c.f. Galton-

Watson BP: extinction probs, total popula-

tion size). Large literature in combinatorics/CS

takes this line.

My personal angle is (i) n → ∞ asymptotics

without exact formulas.

(ii) convergence of trees themselves, not just

individual functionals of the trees.
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Combinatorial Random Trees. Assume all

trees (of some specified size and type) equally

likely. This requires precise notion of which

trees are to be considered the same.

1. Ordered Trees (= “planar” = “birth-order

(left-to-right) counts”).

Trees above are the same, considered as

2. Unordered, unlabelled trees.

Another possibility is

3. Unordered, labelled trees.
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Galton-Watson Branching Process.

[Peeve: Authors who say “the BP is (Xi; i ≥
0)”, where Xi = size of generation i.]

Write ξ = number of offspring

T = family tree of entire BP.

Interested in T conditioned on total popula-

tion size |T | = n: call this conditioned BP

T n.

Note T n unaffected by changing ξ to ξ̂:

P (ξ̂ = i) = cθiP (ξ = i)

Since P (|T | = n) → 0 exponentially fast in

sub- and super-critical case, natural to con-

sider w.l.o.g. the critical case Eξ = 1.
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Connection. Many combinatorial models of

uniform random n-trees are the same as the

conditioned critical GWBP for suitable choice

of offspring dist ξ.

ordered trees: P (ξ = i) = (1/2)i, i ≥ 0.

unordered labelled trees: ξ is Poisson(1)

Variants – allow with at most K offspring:

ordered: P (ξ = i) = cθi, i ≤ K
unordered labelled: P (ξ = i) = cθi/i!, i ≤ K

But no similar story known for uniform un-

ordered unlabelled trees.
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Global asymptotics given by an invariance prin-

ciple – here is informal statement.

T n conditioned critical GWBP with

0 < σ2 ≡ var(ξ) <∞.

We can draw tree with edge-lengths 1/
√
n so

that trees converge in dist to a limit S (scaled

by 1/σ).

Here S is a particular “continuous random

tree”.

[Analogy: random walks and Brownian mo-

tion]

The 2 fundamental combinatorial random trees

can each be studied via explicit constructions.
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Deterministic walk round rooted ordered n-tree,

choosing left-most edges first, can be written

as a string of length 2n

ab ↓ cd ↓ e ↓↓ fg ↓↓↓

f means “walk away from root to vertex f

↓ means “walk toward root”

Now view each letter as a +1 step, and ↓ as

a −1 step, and we get a simple deterministic

walk on the integers, with first return to 0 at

time 2n.
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Can reconstruct the tree from the walk. In

other words, there is a 1 − 1 correspondence

between such walks and ordered n-trees. So

we can construct the “uniform random or-

dered n-tree” from simple symmetric RW con-

ditioned on first return to 0 at time 2n.

Now intuitively obvious we can take n → ∞
asymptotics.

• conditioned RW → Brownian excursion of

duration 1

• so T n → some continuous tree S built out

of Brownian excursion.

But not clear exactly how to think of S. We

return to this later.
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Unordered labelled n-trees. Cayley’s formula:

there are nn−1 such (rooted) trees. There are

several explicit bijections between such trees

and sequences

(a1, a2, . . . , an−1) : 1 ≤ ai ≤ n

which can be used for simulation. Here is an

alternative algorithm.

Connect vertex 2 to root vertex 1.

stage 1. For 3 ≤ i ≤ n connect vertex i to

vertex Vi = min(Ui, i−1), where U2, . . . , Un are

independent and uniform on 1, . . . , n.

stage 2. Relabel vertices using uniform ran-

dom permutation of (1, . . . , n).

Most questions involve only the shape of the

tree, so can omit stage 2 and drop labels.

Pictures drawn using the rule:

start new branch if Ui ≤ i− 1.
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Explicit construction of limit tree.

Half line [0,∞). Make cuts according to a

Poisson process, rate r(t) = t.

Each new segment is attached (orthogonally

in l1) to a uniform random point in the exist-

ing tree.

The closure of this entire process is compact

in l1.
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Finite tree has graph distance

d(v, w) = # vertices on path v to w

Consider sequence space l1, distance

||x− y|| =
∑
i

|xi − yi|.

Possible to represent the vertices of a finite

tree as points in l1 such that

d(v, w) ≡ ||v − w||.

Call this a set-representation. Related is the

uniform probability distribution on the ver-

tices: the measure-representation. The point

is

- l1 permits linear rescaling

- we have natural notions of convergence for

sets and measures in l1
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Without explicit algorithm, how to show a

family (T n) of random n-trees satisfies

rescaled T n → some S ?

Natural to rescale so that

E (distance root to random vertex) = 1.

Fix k. Take k random vertices of T n. These

and root define a subtree (with edge-lengths)

Sn,k say.

Suppose (analog of “convergence of f.d.d.’s”)

(a) Sn,k
d→ Sk say, as n→∞.

Then (Sk) satisfies a consistency condition in

k, so corresponds loosely to some S∞.
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Theorem 1 S∞ can be represented as a ran-

dom p.m. on l1 iff

(b) vertex 1 not isolated in (Sk, k ≥ 1).

Moreover, given (a) and (b) we have

rescaled T n d→ S∞ in sense of measure-

representations.

Use this to prove invariance principle: general

conditioned GWBPs can be rescaled to con-

verge to S.

Theorem looks nice but . . . . . . most examples

of random trees fail (b), e.g. supercritical BPs

at first time population = n.

Curious fact. Subtree Sk of first k line-segments

in algorithm has same dist as subtree from k

random vertices of S.
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This roundabout argument leads to construc-

tion of S in terms of Brownian excursion (Bt :

0 ≤ t ≤ 1) and independent U(0,1) r.v.’s (Ui).

Neveu, Pitman, Le Gall have given direct con-

structions of trees in Brownian excursion.
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In terms of the BE building the whole tree,

the height profile diffusion (Yx) is local time

at level x.

(c.f. Le Gall & Yor)

We now have many ways to study explicit dis-

tributions associated with S. Consider for in-

stance the random distances

D = d(root, V ) for uniform random V ∈ S
H = maxv d(root, v) “height”

∆ = maxv1,v2 d(v1, v2) “diameter”
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Distance Dn in uniform random unordered tree

has simple exact distribution

P (Dn = i) =
(i+ 1)(n− 1)!

ni(n− i− 1)!

and taking limits gives

D has density fD(x) = xe−x
2/2.

Other interpretations are

fD(x) = EYx Y height profile diffusion

fD(x)dx = E
∫ 1

0
P (Bt ∈ dx)dt

Combinatorialists long known asymptotic dis-

tribution of Hn, but easiest to use BE con-

struction (Durrett Kesten & Waymire)

H = max
t

Bt.

The fact EH = 2ED is clear by symmetry

(under time-reversal) of height profile process

(Yx).
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In terms of Brownian excursion

∆ = max
t1<t2<t3

(B(t1)−B(t2)) + (B(t3)−B(t2)).

Combinatorialists know a complicated exact

formula for density of ∆

3/
√

2π f∆(x) =
∞∑

m=1

exp(−bm,x)

{
64

x4
(4b4m,x − 36b3m,x + 75b2m,x − 30bm,x)

+
8

x2
(4b3m,x − 10b2m,x)}

where bm,x = (πm/x)2.

and thereby calculated E∆ = 4
3EH. The lat-

ter can be derived from a symmetry argument

on S.

Open Problem Derive density of ∆ from BE

description.
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Superprocesses. In studying superprocess

associated with a continuous-time Σ-valued

Markov process, helpful to separate the “fam-

ily tree” structure from the “spatial move-

ment” structure. W.l.o.g. condition on total

population size before extinction – then the

family tree is just S.

There is obvious construction of a realization

of Σ-valued (Xt : t ∈ S) along with the con-

struction of S.
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In the same way, we can construct the su-

perprocess conditioned on non-extinction by

using its family tree S∞, which is the limit of

combinatorial random trees under a different

rescaling.

At τ = 0, semi-infinite line.

During [τ, τ+dτ ], each segment dx of existing

tree has chance dxdτ to grow a branch, with

length exponential(τ).

Closure of τ =∞ limit is a self-similar random

tree S∞.
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Interpolating between work of Kesten and of

Barlow-Perkins, we can consider S or S∞-

valued diffusions. These are examples of “dif-

fusions on fractals” where (a) existence is easy

(b) can do explicit calculations.

(a) Build S from finite line segments; put

BM on each. Adding new segment does not

change local time on existing tree, so (with-

out work) there exists “local time for the limit

process”.

+ 34



+ +

Finite rooted tree. Each vertex v defines a

subtree rooted at v. Picking v at random

(uniformly) gives the random fringe subtree.

+ 35



+ +

T = { finite rooted trees }, countable set.

Tn : random tree, size n.

Fn : random fringe subtree of Tn.

Empirical Observation. In most examples, easy

bare-hands arguments show

Fn d→ F (say), as n→∞

where limit is a.s. finite random tree.

(Maybe asymptotic cycling instead.)

Call F the asymptotic fringe distribution. In-

formally, F describes limits of all “local” prop-

erties of Tn. For instance

P (F = •) = asymptotic prop. of leaves in Tn.

degree of root of F = asymptotic

distribution of out-degrees in Tn.
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The Pessimist’s View of Life

1. You’re born; you have a random number

of children at random times; you die.

2. Your children behave in the same way, in-

dependently of you.

The mathematical model is alternatively called

the Crump-Mode-Jagers general continuous-

time supercritical branching process.
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Model. BP where each individual has C chil-

dren (EC > 1) at times (ξ1, ξ2, . . . , ξC) (arbi-

trary distribution) after own birth.

Standard facts. “Stable type structure”.

1. (Number born before t) ∼ Zeθt for a certain

Malthusian constant θ.

2. Pick individual at random from those born

before T ; look at descendants born before T .

As T →∞ this “random family tree” has the

following limit.

Start the BP with 1 individual and watch for

an exponential (θ) time.

My point. Limits often exist for models of ran-

dom trees with no BP structure.
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Aside. Some of the initial examples can be re-

garded as the “jump processes” of continuous-

time BPs.

1. Linear pure birth process (Yule process)

gives the random recursive tree (Yule tree).

2. The continuous-time BP where each indi-

vidual has exactly 2 offspring, at (concurrent)

exponential times after own birth, gives the

random binary search tree.

Typically, continuous-time supercritical BPs,

and Markovian models of tree growth in dis-

crete time, the relation between height and

size of tree is

height(T ) ≈ log |T |

This differs from conditioned critical GWBPs,

where

height(T ) ≈ |T |1/2
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By analogy with (Sn − an)/bn → Y , ask:

“What distributions π on T occur as limits of

random fringe subtrees Fn? ”

Answer: π occurs iff πQ = π, where Q =

Q(t, t∗) is the matrix counting first-generation

subtrees.

Q(t, ) = 2.

Q(t, ) = 1.

Q(t, ) = 1.

Call such π’s fringe distributions. Given such

a π, define a Markov transition matrix by

Pπ(t, t∗) = π(t∗)Q(t∗, t)/π(t).

Run this chain with initial dist. π . . .
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This defines a discrete infinite rooted tree

with unique infinite path from the root. I call

such a tree a sin-tree, for single infinite path.

Alternative “tree with one end”.

Fringe distributions on finite trees correspond

precisely to invariant distributions on sin-trees:

invariant under map: move root up one step.

1. Local limits in (T n) around random vertex

can be described via limit sin-tree – this looks

toward the root, as well as away from the

root.

2. For conditioned critical GWBPs it’s natu-

ral to consider discrete limit trees around the

root. For general families this is not interest-

ing.
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Work towards stating a theorem.

Abstract BP with arbitrary types.

Type space S. Individual, type s, has random

number/type of children.

R(s, ·) = E(# offspring with type ∈ ·).

Given a p.m. ν on S, define random tree F
to be family tree of descendants of individual,

type ∼ ν. Suppose finite.

Fact. For F as above, dist(F) has a fringe

dist. iff νR = ν.

Empirical observation. (N.B. selection bias!)

In all examples where asymptotic fringe dist.

is known, it has description as abstract BP

with simple type-space, even though underly-

ing trees are not BP’s.
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Random trees Tn, random fringe subtrees Fn.

Suppose asymptotic fringe F exists. This says

Eφ(Fn)→ Eφ(F) (all bounded φ).

Want to improve “expected” to “empirical”.

Theorem. In order that

φ(Fn)→p Eφ(F) (all bounded φ),

it suffices that the “ancestor chain”

s→ type of ancestor of s

R∗(s, ds∗) = ν(ds∗)R(s∗, ds)/ν(ds)

has trivial invariant σ-field.

Remarks. 1. For CMJBP, ancestor chain is

renewal process, and Choquet-Deny theorem

applies.

2. Otherwise, seek to verify by coupling.

3. Proof is non-trivial: show dist(F) is ex-

treme amongst all fringe distributions.
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This gives an abstract way to prove WLLNs,

for example for empirical proportion of leaves

in T n. (can be hard to estimate variances in

order to use Chebyshev’s inequality). Think-

ing about CLTs is harder.

Given (T n) with asymptotic fringe distribution

F, we sometimes have a special property

dist. of F given |F| = n is same as dist. of

T n.

This coherence holds for

(a) conditioned GWBPs

(b) random recursive trees

(c) random binary search trees

(d) random tries.
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Recall we can identify ordered n-trees with

{−1,1}-valued sequences (x1, . . . , x2n) for which

first return to 0 of partial sums is at time

2n. We can identify sin-trees with certain

infinite {−1,1}-valued sequences, and limit-

ing invariant sin-trees with stationary randon

sequences (Xi). In the concrete examples,

these stationary processes are somewhat un-

usual. For instance, with “supercritical BP”

type models we often find that the partial sum

process
∑n
i=1Xi is stochastically bounded as

n→∞.
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Point. “Coherence” can be defined in terms

of the stationary (Xi) as: the tree represented

by

(X1, . . . , X2n) given min{m > 0 : Sm ≤ 0} = 2n

is exactly T n.

Then CLTs for empirical local quantities as-

sociated with random trees (e.g. proportion

of leaves) become CLTs for sums

m∑
i=1

f(θ−i ◦X) (f finite width )

conditioned as above. (Not yet clear if this

approach is useful.)
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