
Lecture 2 described an example “Maximum

Partial Matchings on Random Trees” and gave

Theorem n−1EM(Tn)→ c = E[ξ 1(ξ > Y +Z)]

where Y and Z are solutions of

Y
d
= max(0, ξi − Yi, 1 ≤ i ≤ Pois(1))

Z
d
= max(ξ − Z′, Y ).

Each equality comes out of a simple picture.

Amazingly, there is a large class of problems

– combinatorial optimization over locally tree-

like random structures – where one can just

write down the (non-rigorous) solution in the

same format; 2 or 3 equalities from simple pic-

tures. This can be viewed as an aspect of the

cavity method.
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Most studied example is the “random assign-

ment problem”, though this can now be ana-

lyzed combinatorially exploiting special struc-

ture. I will describe 2 examples in the “mean-

field model of distance”. Recall this means:

Take the complete graph on n vertices. To

each of the
(
n
2

)
edges e assign i.i.d. lengths

`e with Exponential(mean n) distribution. Call

this network Gn. Recall

Gn →LWC PWIT.

Write TSP (Gn) for the shortest cycle through

all n vertices of Gn. Mézard - Parisi (1986,

non-rigorous) and Wästlund (2006, rigorous)

gave limit behavior, equivalent to the follow-

ing.

lim
n
n−1E len(TSP (Gn)) = c = 2.04...

where c is specified by
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c = 1
2

∫ ∞
0

xP (X1 +X2 > x) dx

where X1, X2 are independent with the distri-

bution determined as the solution of the RDE

(recursive distributional equation)

X
d
= min [2]

i (ξi −Xi)

where 0 < ξ1 < ξ2 < . . . are the points of a

Poisson(rate 1) process, and min[2] denotes

second-minimum.

[show Java of solution]

Jump into heuristics [not easy to formalize];

consider optimal solution to TSP on the PWIT,

without enquiring what this means precisely

. . . . Note feasible solutions are collections of

infinite paths.
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Distinguished edge e∗ of PWIT specifies two rooted sub-
trees Tright,Tleft.
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e∗ Tright

Tleft

Optimal solution either uses/doesn’t use e∗; in restric-
tion of solution to Tright the root has either degree 1 or
degree 2. So on Tright define heuristically

Xright = total length opt. solution, rootdegree = 2
− total length opt. solution, rootdegree = 1.

Optimal solution on T will use e∗ iff

len(e∗) ≤ Xright +X left. [inclusion criterion].

At a given vertex, the mean density of edges with lengths
∈ [x, x + dx] equals dx; so contribution to mean length
of TSP equals

1
2

∫ ∞
0

x P (x ≤ Xright +X left) dx.
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Natural recursive structure of Tright leads to

the RDE for distribution of X.

[blackboard]
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Outline of general rigorous proof technique

Start with a combinatorial optimization prob-
lem over some size-n random structure.

• Find the n → ∞ limit in the sense of local weak
convergence; the “size-∞” random structure,

• Formulate a corresponding combinatorial optimiza-
tion problem on the size-∞ structure – that is, spec-
ify “feasible solution” and “cost per vertex”, requir-
ing “stationarity”.

• [start heuristics] Define relevant quantities on the
size-∞ structure via additive renormalization.

• If the size-∞ structure is tree-like (the only case
where one expects exact asymptotic solutions), ob-
serve that the relevant quantities satisfy a problem-
dependent RDE.

• Solve the RDE. Use the unique solution and in ”in-
clusion criterion” to calculate the value of the op-
timization problem on the size-∞ structure. [end
heuristics].
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• Check that the recursive tree process associated
with the solution on the size-∞ structure, and the
inclusion criterion, define a feasible solution. This
has some cost c∞, which we want to show is the
limit.

• Show that the recursive tree process is endoge-
nous, that is the root value is is a measurable
function of the data. Since a measurable function
is almost continuous, we can pull back to define
almost-feasible solutions of the size-n problem with
almost the same cost.

• Show that in the size-n problem one can patch an
almost-feasible solution into a feasible solution for
asymptotically negligible cost (⇒ upper bound).

• A weak limit of optimal solutions to the finite-n
problems is a “stationary” feasible solution E∗ on
the size-∞ structure; endogeny couples this to the
claimed optimal solution E. Recycle the heuristic
argument to show E∗ cannot have lower cost than
E (⇒ lower bound).
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The 2 examples [Maximum Partial Matchings

on Random Trees; TSP in mean-field model

of distance] have a simplifying feature; there

are only 2 options for a vertex at a cut edge,

so the cost difference between the two opti-

mal solutions is a single random variable X.

There’s one more interesting example with this

feature [later: a challenge to make rigorous

proof] but let me first indicate how heuristics

apply in many cases where there are more than

two options. In the next example we get a

RDE for the distribution of a infinite sequence

(Xk,−∞ < k <∞).
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A new variant. Continue within the same

framework of Gn →LWC PWIT . Note that dis-

tance d(v, w) in Gn is shortest path length; for

random V,W we have d(V,W ) ≈ logn.

Fix 0 < q < 1/2. In Gn take bqnc random ver-

tices to be sources and another bqnc to be

destinations. For any matching of sources v

and destinations w there is a total transporta-

tion cost ∑
(v,w) in matching

d(v, w)

and we study the minimum cost, say Mn,q, over

all matchings of sources and destinations. As

usual we expect a limit constant

n−1EMn,q → c(q).
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We first think a little about structure of opti-
mal matching – view as a set of paths – in Gn.
A given edge e might be in 0 or 1 or several
paths. Orient paths from source to destina-
tion. If there are several paths through e they
must all be oriented the same way through e

[blackboard].

So, giving each edge e of Gn an arbitrary direc-
tion, associated with the optimal matching is a
collection −∞ < K(e) <∞ of random integers
counting how many paths go through e.

Now consider the analogous optimization prob-
lem on the PWIT – random sources and sinks
at density q. Consider the optimal solution, rel-
ative to an edge of length s at the root. There
are some random number −∞ < K(s) < ∞ of
paths through the edge, and the limit constant
is

c(q) = 1
2

∫ ∞
0

E|K(s)| s ds.
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Take a realization of the PWIT and the source
and destination vertices, consider for each k
the solution of the optimization problem mod-
ified by requiring k paths into the root from
external sources (or −k out from the root to
external destinations); write

Xk = optimal cost of k-modified problem

− optimal cost of un-modified problem.
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s Tright

Tleft

K(s) = arg min
k

(s|k|+X ′k +X ′′−k)

where (X ′k) and (X ′′k) are independent copies
of (Xk).

So heuristics give formula for optimal cost in
terms of dist of (Xk).
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To write out the RDE, there are several cases.

In case root is not source or destination

[blackboard]

Xk = min
(ki):

∑
i ki=k

∑
i

(Xi
ki

+ ξi|ki|)

Any volunteers to write code to simulate solu-

tion?
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Example: flow through a disordered net-

work. A challenge to make rigorous . . . . . .

Consider a network with

• M layers

• N vertices per layer

• directed edges upwards from one layer to next

• edges between successive layers are placed

randomly subject to each vertex having

in-degree = out-degree = 2.
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Special problem. Suppose
• edges have capacity = 1.
• retain each edge with probability p, delete with prob-
ability 1− p.
Study maximum flow from bottom to top layers; same
as maximum number of edge-disjoint paths from bot-
tom to top layers. Clearly for p = 1 the maximum flow
= 2N , so for general p we consider the relative flow

FN,M(p) = 1
2N
× (max flow through network).

We anticipate a limit function

EFN,N(p)→ v∗(p) as n→∞.

Cavity method tells you how to write down an equation

whose solution determines v∗(p).
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Lecture 3 part 2 moves away from CO to

A Tractable Stochastic “Complex Network”

Model

short paper: AMS Electronic Research An-

nouncements, 2003.

longer paper: arXiv:cond-mat/0304701 published

in Springer Lect. Notes Physics 650.

Slides only minimally updated since 2003, though

much subsequent work.
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1. Recent literature.

Three popular science books, a dozen articles
in Science and Nature, and 154 preprints at
xxx.arXiv.org/cond-mat deal with complex net-
works, which in this context means the em-
pirical and theoretical study of large graphs,
focusing in particular on those possessing the
following three qualitative properties, asserted
to hold in many interesting real-world exam-
ples.

• the degree distribution has power-law tail

• local clustering of edges: graph is not lo-
cally tree-like

• small diameter – O(log (number of vertices)).

The nature of that subject – typically not pre-
sented as rigorous mathematics – is most easily
seen from the long survey papers
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R. Albert and A.-L. Barabási, Statistical me-

chanics of complex networks, Rev. Mod. Phys.

74 (2002), 47–97.

S.N. Dorogovtsev and J.F.F. Mendes, Evo-

lution of networks, Adv. Phys. 51 (2002),

1079–1187.

M.E.J. Newman, The structure and function

of complex networks, SIAM Review 45 (2003),

167–256.

A shorter survey emphasizes rigorous mathe-

matical results

B. Bollobás and O. Riordan, Mathematical re-

sults on scale-free random graphs, Handbook

of Graphs and Networks (S. Bornholdt and

H.G. Schuster, eds.), Wiley, 2002.

See also Durrett lecture notes (Fall 2004).
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Almost all this literature concerns variants of

two modelling ideas.

Small worlds.

• Take n-vertex lattice-neighborhood graph

• Add long edges in some random way.

Proportional attachment.

• Vertices arrive sequentially (n = 1,2,3, . . .);

• each vertex attaches to k existing vertices v

chosen with probabilities proportional to

c+ degree(v).
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Some natural summary statistics for a complex

network.

• ∂̄ = average vertex-degree

• an exponent γ indicating power-law tail be-

havior of degree distribution

• a “clustering coefficient” κ measuring rela-

tive density of triangles

• the average distance ¯̀ between vertex-pairs.

Desiderata for a stochastic model

• mathematical tractability: one can find reasonably ex-

plicit formulas for a variety of quantities of interest

• fitting flexibility: by varying model parameters one can

vary summary statistics (like the 4 listed above) broadly

through their possible ranges

• naturalness: the qualitative properties emerge from

some simple underlying mathematical structure rather

than being forced by fiat.
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No ideal model known. I will describe a specific

two-parameter model, and implicitly a class of

models, which satisfy many of these desider-

ata.

Comment: we are accustomed to models (per-

colation, interacting particle systems) which

are simple to state but complicated to analyze.

In contrast, this model is conceptually sophis-

ticated to state but easy (in some respects) to

analyze and get explicit formulas.
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Platform for model: directed graphs

(i) Vertices v, w, x, . . . arrive sequentially; some

intrinsic “geometry” given by distances d(v, w).

(ii) Given 1 ≥ p(r) ↓ 0 fast as r ↑ ∞.

(iii) When vertex v arrives, for each existing

vertex w and each existing edge (w, x), new

edges (v, w) and (v, x) appear independently

with probability p(d(v, w)).

We will build this over a version of our “mean-

field model of distance”. Loosely, the model

is between the extremes of

(a) lattice-based small world models

(b) proportional attachment/copying models.

In (iii) we somewhat arbitrarily take

p(r) = min(1, αλe−λr)

with two parameters α, λ > 0.
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Geometry of n points as n→∞.

In d dimensions, pictured for d = 2. Could take
the points ordered or random, in region of area
n. In either case there is a n → ∞ limit: the
infinite lattice, or the Poisson point process.
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Draw attention to one feature of each.
• On lattice, point has 2d “near neighbors”.
• Poisson process is time-equilibrium of a cer-
tain space-time process, in which points move
to infinity as deterministic exponentials x(t2) =
x(t1)e(t2−t1)/d and new random points arrive
at space-time rate 1. “Enterprise under warp
drive”, or Hoyle’s 1950s steady-state model of
Universe.

22



Conceptually new ingredient : we can also

regard the PWIT as the equilibrium spatial dis-

tribution of a space-time process. Existing

edge-lengths `(t) increase as determinstic ex-

ponentials

`(t2) = `(t1)et2−t1.

New vertices appear and by fiat are at Pois-

son(rate 1) distances 0 < ξ1 < ξ2 < . . . from ex-

isting points (changing the geometry, cf. “worm-

holes”).

We will do calculations within this space-time

PWIT model. So we are “cheating” in first

devising a limit model; here’s how we “reverse

engineer” to represent it as a limit of finite

models.
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The finite model.

• vertex n arrives at time logn

• the link lengths `(·) from n to previous n− 1

vertices are independent Exp (mean n) r.v.’s

• lengths increase deterministically with time,

at exponential rate 1.

Over this model of geometry we build our com-

plex network model as described earlier (but us-

ing link lengths rather than shortest-path distances).

• When vertex v arrives, for each existing w

and each existing edge (w, x), new edges (v, w)

and (v, x) appear independently with probabil-

ity p(`(v, w)). Note: only the “near neighbors” w

with small `(v, w) matter.
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Next 9 slides provide a low-tech simulation –

volunteers to write a high-tech simulation?
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The space-time geometry process, conditioned

on a particular vertex ∅ arriving at a particular

time 0. By PASTA, the spatial geometry is the

PWIT.
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What just happened at time 0− was that ∅
arrived, was assigned random link-lengths and

random neighbors.
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∅

This causes previously disconnected (in the PWIT;

far apart in the finite model) components to

become connected via ∅.
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Here are two of the previously disconnected

components at an earlier time; edges were shorter.
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So far we’re just showing the geometry of our

“steady-state expanding universe”. Now we

superimpose the random directed graph struc-

ture.
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The random graph structure on the two pre-

viously disconnected components at an earlier

time.

t
t

t
�
�
�
���

�

6

t

?

�
�
�
�
�
�
�
 B

B
B
B
B
B
BM

-

���
���

��:

�
�
�
�
�
�
�
�3

t
6

t�

t
�
�	

�

�������) @
@
@

@@I

�
�
�
���t

t���
tBB

BM

�
�
�+

�
�
�
�
�
��


@
@
@

@
@
@
@I

t
H

HH
HHY

t ��	
�

?HH
H

HHY

-

�
�
�

��	

t
��

�����a

b
c

29



. . . . . . these edges have expanded at time 0−
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and more vertices have joined these compo-

nents by time 0−
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Now ∅ arrived and is assigned random link-
lengths and random neighbors.
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∅

For each neighbor w there are separate random
choices; whether or not to put an edge of our
random graph from ∅ to w, and whether or
not to copy existing edges (w, y) to new edges
(∅, y) . . .
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. . . and here are the choices made.
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So here is the state of the random graph after

∅ arrives.
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This may seem insanely complicated, but as

said before:

We are accustomed to models which are simple

to state but complicated to analyze. In con-

trast, this model is conceptually sophisticated

to state but easy (in some respects) to analyze

and get explicit formulas. That is, explicit for-

mulas in the PWIT model, representing n→∞
asymptotics in the finite model.

Tractable because

• everything is time-invariant, so can immedi-

ately write down various equations, e.g. for

out-degree D

D
d
=

∞∑
i=1

Bin(1 +Di, αλe
−λξi) [low]

• the process “1 + in-degree(v) at time t” is

precisely a Yule process.
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End talk with

GALLERY OF EXPLICIT FORMULAS
exact in n→∞ limit.

Recall the two parameters enter via the func-
tion

p(r) = min(1, αλe−λr), 0 ≤ r <∞.

We will need to distinguish between a low clus-
tering region with parameter ranges

0 < α < 1, 0 < λ ≤ 1/α [low].

and the complementary high clustering region
where αλ > 1. In the latter case
p(r) = 1, r ≤ η := λ−1 log(αλ)
and it is convenient to reparametrize using η

in place of α, making the parameter range

0 < η < 1, η + 1/λ < 1. [high].

Greek letters denote quantities computable from
parameters.
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The two parameters control mean degree
and clustering.

First consider Din and Dout, the random in-
degree and out-degree of a typical vertex. Then

EDin = EDout = ∂̄ =


α

1−α [low]
η+1/λ

1−η−1/λ [high]
(1)

Second, define a normalized clustering coeffi-
cient κcluster as

The proportion of directed 2-paths v1 →
v2 → v3 for which v1 → v3 is also an
edge.

Then

κcluster =


α(1−α)λ
2−α2λ

[low]

(η+ 1
2λ)(1−η−1

λ)

(η+1
λ)(1−η− 1

2λ)
[high]

(2)
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By solving (1,2) we find that every pair of val-

ues of ∂̄, κcluster in the complete range

0 < ∂̄ <∞, 0 < κcluster < 1

occurs for a unique parameter pair (α, λ) or

(η, λ). Moreover the two regions can be spec-

ified as

0 < ∂̄ <∞, 0 < κcluster ≤ 1
∂̄+2

[low]

0 < ∂̄ <∞, 1
∂̄+2

< κcluster < 1. [high]

So the two model parameters α, λ have fairly

direct interpretations in terms of mean degree

and clustering; of course we could re-parametrize

the model in terms of ∂̄ and κcluster, but the

internal mathematical structure is more conve-

niently expressed using the given parameters.
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Distribution of in-degree

The distribution of Din is specified as

1 +Din
d
= Geo(e−βT ) where T

d
= Exp(1)

and where

β =

{
α [low]

η + 1/λ [high]

This works out explicitly as

P (Din = d) =
Γ(d+ 1)Γ(1/β)

β2Γ(d+ 2 + 1
β)
, d ≥ 0 (3)

with asymptotics

P (Din = d) ∼ β−2Γ(1/β) d
−1−1

β .

Formula (3) appears in recent proportional at-

tachment models, but in fact is a famous 80-

year old calculation.
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Distribution of out-degree

Distribution of Dout determined by the identity

D
d
=

∞∑
i=1

Bin(1 +Di, αλe
−λξi) [low]

where D, Di, i ≥ 1 are independent with the

distribution of Dout and where 0 < ξ1 < ξ2 < . . .

are the points of a rate-1 Poisson point process

on (0,∞).

We do not know how to extract a useful ex-

plicit formula from the identity, but we can

compute moments. For instance

var Dout =


α(1−α+α2λ/2)

(1−α)2(1−1
2α

2λ)
[low]

(η+ 1
2λ)(2−η−1

λ)

(1−η− 1
2λ)(1−η−1

λ)2 [high]

Note also

Din and Dout are independent.
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Densities of induced subgraphs

Let G be a finite directed acyclic graph. We
expect a limit

χ(G) = lim
n

#subgraphs of Gn isomorphic to G

n
.

For the complete directed acyclic graph Kr on
r ≥ 2 vertices,

χ(Kr) =
r−1∏
u=1

βu

1− βu
.

βu :=

{
u−1αuλu−1 [low]
η + 1

uλ [high]

For the complete bipartite directed graph K2,2,
for β2 <

1
2 (which always holds in the low den-

sity case), the corresponding limit for “sub-
graphs including K2,2” is

1
2χ̄(K2,2) =

∂̄β2(β2 + 1
2∂̄β)

(1− 2β2)(1− β2)
.
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Triangle density as a function of degree

The parameter κcluster gives an overall measure

of triangle density. A more detailed description

is provided by statistics C(k), k ≥ 2 defined by

C(k) =
E(# triangles contain. random degree-k vertex)(

k
2

) .

In principle could obtain exact formula for C(k),

but easier to get the tail property

C(k) ∼
2β2

β − β2
×

1

k
as k →∞.

Relates to suggestion that property C(k) ∼ c/k
indicates “hierarchical structure” in complex

networks.
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Edge-lengths

Our model has a “metric structure”, meaning
that there is a distance dmetric(v, w) between
any two vertices which does not involve the
realization of edges in the random graph. So
each edge (v, w) of the graph has a real-valued
length dmetric(v, w), and so a typical edge has
a random length L. The probability density
function for L is given by the formula

1− α
α

∞∑
i=0

(i+ 1)Γ(α+ 3) (−λx)i

Γ(i+ α+ 3)
, 0 < x <∞ [low].

and f(x) ≈ exp(−(λ ± o(1))x) as x → ∞. In
the underlying metric space, the number of
vertices within distance k of a typical vertex
grows as ek. So one can give a rough reinter-
pretation of the tail behavior of f(x) as

the chance that a vertex has an edge to its
k’th nearest neighbor should scale as k−λ−1.

Note this property appears without being ex-
plicitly built into the model.
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Advantages/disadvantages of the model:

• it has the three qualitative features desired in
a complex networks model (power-law degree
distribution, clustering, small diameter)
• it fits the complete possible range of mean
degree (or scaling exponent) and clustering pa-
rameters
• it permits a broad range of explicit calcula-
tions.

****************************************

• Gn is not connected (for large n).
• There is no power law for distribution of out-
degree.
• in-degree and out-degree are independent.
• The scaling exponent for in-degree is deter-
mined by the mean degree; one might prefer
a model where these could be specified sepa-
rately.
• In the n → ∞ limit not every finite graph is
possible as an induced subgraph.
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