
Recall from Lecture 1:

Convergence Gn → G∞ of locally finite rooted
graphs means:

for each fixed r, for n > n0(r) there is an iso-
morphism between Ball(Gn; r) and Ball(G∞; r).

Local weak convergence Gn →LWC G∞ means

Gn[Un]
d→ G∞

where Gn is a random n-vertex unrooted graph
and Un a uniform random root.

By definition LWC gives first-order limits for
any “local statistic” of the network, for in-
stance

n−1E(number of degree-j vertices of Gn)

→ P (root-degree(G∞) = j)

n−1E(number of triangles in Gn)

→ 1
3
E(number of triangles in G∞ containing root)

under a UI condition.
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Lecture 2: An “Elementary” Illustration

of the Local Weak Convergence Method-

ology to Combinatorial Optimization over

Random Data

The topic is Maximum Partial Matchings on

Random Trees: from Aldous-Steele (2003).

Start with an artificial deterministic CO prob-

lem.

• n-vertex graph G

• positive weights ξe on edges e

• partial matching S is a vertex-disjoint set of

edges, and its weight is wt(S) =
∑
e∈S ξe.

So associated with the weighted graph G is a

number

M(G) = max{wt(S) : S a partial matching }.
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We study this under the Probability Model:

• Edge-weights (ξe) are i.i.d.
ξ > 0, Eξ <∞, dist(ξ) non-atomic.

• G is a random tree Tn uniform on all nn−2

trees on vertex-set [n].

It takes 10 seconds to conjecture
Theorem n−1EM(Tn)→ c as n→∞
where the limit constant c depends on dist(ξ).

We will outline a proof and a fairly explicit
characterization of c.

Note intuition: The deterministic CO problem
on a tree should be easy – recurse somehow –
and similarly the random setting should have
some recursive decomposition (cf. problems
on Galton-Watson BPs). So what exactly is
this recursion?
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(Deterministic setting:)
On a rooted weighted tree T define the bonus B(T ) by

B(T ) = max weight of matching
− max weight of matching not using root.

An arbitrary edge e of T defines two rooted subtrees –
call them T big(e) and T small(e). An elementary argument
[on blackboard] gives an explicit criterion for whether e
is in the max-weight matching M:

e ∈M iff ξe > B(T small(e)) +B(T big(e))

(assuming cannot have =).
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The maximum weight M(T ) is obtained by summing ξe
over e ∈ M. Rephasing in terms of a uniform random
edge e leads to

M(T )
n−1

= E [ξe 1(ξe > B(T small(e)) +B(T big(e))) ]

where the only randomness is from “uniform random

edge e”.
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Now take some probability model for a random

n-vertex tree Tn, and i.i.d. edge-weights (ξe).

Then ξe is independent of
(
B(T smalln (e)), B(T bign (e))

)
.

So if we can prove joint convergence(
B(T smalln (e)), B(T bign (e))

)
d→ (Y, Z) (∗)

and identify the limit distribution, then we have

proved the Theorem:

lim
n
n−1EM(Tn) = E[ξ 1(ξ > Y + Z)]

with ξ independent of (Y, Z).

Note we have not yet appealed to a particular model of

random n-vertex trees Tn.

But are we getting anywhere? We have just re-

duced study of expectation of M(Tn) to study

of distribution of B(T bign (e)) etc which is a (small)

difference of two (large) random quantities.

These look like harder questions!
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Let us forget “bonus” for a minute; think about

the subtrees themselves. For the particular

model “a random tree Tn uniform on all nn−2

trees on vertex-set [n]” we saw in Lecture 1

that there is the following n→∞ LWC limit :

(T smalln (e), T bign (e))
d→ (T small∞ , T big∞ )
d
= PGW(1)× PGW∞(1).
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Look first at small subtrees. Certainly we have B(T small

n )
d→

B(T small

∞ ). Although the realizations of T small

∞ can be any
finite tree t, we don’t need to calculate B(t) for every
finite tree, because we have a recursion. For a finite
tree t with first generation subtrees ti,

B(t) = max(0; ξi −B(ti), i ≥ 1).
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Apply to T small

∞ : bonus Y = B(T small

∞ ) satisfies

Y
d

= max(0, ξi − Yi, 1 ≤ i ≤ Pois(1))

where (ξi, i ≥ 1) are i.i.d. with given weight distribution,

and (Yi, i ≥ 1) are i.i.d. with the unknown distribution

of Y . This is a prototype of a recursive distributional

equation. In this context, knowing tree is a.s. finite,

easy to show ∃ unique solution Y , depending on dist(ξ).
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Recall T bign
d→ T big∞ , where limit T big∞ is a infi-

nite sequence of PGW(1) trees attached to a

baseline. What about the bonuses?

B(T big∞ ) =∞−∞ = ?????

But suppose heuristically B(t) makes sense for

suitable infinite trees. Again we get a recur-

sion, which now is

B(t) = max(ξ −B(tinfinite), B(tfinite)).
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Apply to T big∞ : suggests Z = B(T big∞ ) satisfies

Z
d
= max(ξ − Z′, B(T small∞ ))

where B(T small∞ )
d
= Y and ξ independent, known

distributions; Z′
d
= Z, unknown distribution.
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1-slide outline of rigorous analysis here (not

representative of general methodology).

We recognize equation

Z
d
= max(ξ − Z′, Y )

as equation for stationary distribution of the

Markov chain z → max(ξ − z, Y ) on [0,∞).

For this special chain, easy to give quantitative

bounds: within δ(k) of stationary distribution

after k steps, regardless of initial state.
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For large n, one step of the chain represents (approx)

how B(T big) changes as a root is moved one step to the

left along baseline. Fix k. We can’t directly analyze the

n → ∞ limit of B(T big) at baseline position k. But we

don’t need to; the mixing of the chain ensures we are

within δ(k− 1) of stationary distribution at position 1.

9



So we have proved

Theorem n−1EM(Tn)→ c = E[ξ 1(ξ > Y +Z)]
where Y and Z are solutions of

Y
d
= max(0, ξi − Yi, 1 ≤ i ≤ Pois(1))

Z
d
= max(ξ − Z′, Y ).

Can do explicit calculations in the special case
where ξ has exponential(1) distribution:

P (Y ≤ y) = exp(−ce−y), y ≥ 0

P (Z ≤ z) = (1− be−z) exp(−ce−z), z ≥ 0

where c ≈ 0.7146 is the strictly positive solu-
tion of c2 + e−c = 1 and b = c2

c2+2c−1
≈ 0.5433.

So

lim
n
n−1EM(Tn) =

∫ ∞
0

se−sds
∫ s

0
c(e−y−be−s) exp(−ce−y−ce−(s−y)) dy

≈ 0.2396.
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This example illustrates the two steps common

to uses of LWC in CO problems over random

data.

An inclusion criterion for whether an edge

is in the optimal solution. This was explicit-

implicit; an explicit condition in terms of implicitly-

defined other quantities.

Recursive distributional equations. When

the limit structure is tree-like, these other quan-

tities of interest can often be expressed in terms

of solutions of RDEs. That is, an “unknown”

distribution X satisfies

X
d
= g(ξi, Xi,1 ≤ i ≤ N)

where the distribution (N ; ξi,1 ≤ i ≤ N) and

the function g(·) are given, and (X; Xi, i ≥ 1)

are i.i.d.
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Lecture 2, part 2. Move on to a slightly more

sophisticated setting: the “mean-field model

of distance” – will continue into Lecture 3.

Recall Yule process. One individual at time 0.

Each individual v gives birth at ages ξv1, ξv2, . . .

distributed as a Poisson (rate 1) process on

(0,∞).

Associated tree typically drawn (blackboard)

on “absolute time” scale. We want to view

it as a “spatial” tree; when individual v gives

birth to w at age `, draw an edge (v, w) of

length `. Call this the PWIT (Poisson weighted

infinite tree). It’s best viewed as a Java simu-

lation.
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Take the complete graph on n vertices. To

each of the
(
n
2

)
edges e assign i.i.d. lengths

`e with Exponential(mean n) distribution. Call

this network Gn. Easy to see:

Gn →LWC PWIT.

This provides one motivation for study of PWIT.

More generally, for problems about random points

in d dimensions where one wants to calculate

numbers – which is usually impossible – the

PWIT provides an artificial but mathematically

tractable alternative – a “mean-field model of

distance”.

Illustrate by outlining proof of a celebrated re-

sult of Frieze. Writing MST for minimum

spanning tree,

n−1E len(MST (Gn))→ ζ(3).
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Consider a finite network, generic edge-lengths.

The MST is by definition the ST of minimum

total length; elementary that it can be found

by either a local or a global greedy algorithm.

Here’s a slight variant of the textbook lemma.

Lemma (inclusion criterion). Define t as the

set of edges (v, w) with the property:

there does not exist a path v = v0, v1, v2, . . . , vk =

w such that each `(vi, vi+1) < `(v, w).

Then t is the MST.

[blackboard – this does define a ST.]
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Useful to restate Lemma as follows. Network

G, vertex v, length s. In the subnetwork of

edges with length < s, write c(G, v, s) for the

component containing v.

Lemma (inclusion criterion). In a finite net-

work, the MST is the set of edges (v, w) with

the property:

c(G, v, `(v, w)) 6= c(G,w, `(v, w)). (1)

On a typical infinite network, all STs will have

infinite length, so we don’t have an obvious

notion of minimum-length ST. But we can use

criterion (1) to define an object called the min-

imum spanning forest. We consider only the

PWIT.
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Definition. MSF(PWIT) is the set of edges

(v1, v2) such that

(i) c(PWIT, v1, `(v1, v2)) 6= c(PWIT, v2, `(v1, v2))

(ii) these two components are not both infi-

nite.

Heuristically, this is the “wired at infinity” ST.

From definition, easy to check it is a spanning

forest whose tree-components are all infinite.

From Java simulation, we see it’s not a single

tree (paths directed to infinite boundary).

We observed before that, for Gn = complete

graph with random edge-lengths,

Gn →LWC PWIT.

Now we assert more:

(Gn,MST (Gn))→LWC (PWIT,MSF (PWIT ))

where e.g. we indicate edges of MST by 0− 1

marks.
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How to prove

(Gn,MST (Gn))→LWC (PWIT,MSF (PWIT ))?

If an edge of the PWIT is in the MSF, this fact

is “witnessed” by some finite region, and so

the corresponding edge must eventually be in

MST (Gn). Converse not obvious; but enough

to show that mean degree of MSF equals 2,

which is consequence of explicit formulas be-

low.

To exploit this convergence, start (as with the

“partial matching” example) by expressing

Elen(MST (Gn)) in terms of a uniform random

vertex Un. For any finite network,
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2 len(MST )) =
∑
v

∑
e
`(e)1(e∈MST )1(v∈e)

and in terms of the uniform random vertex Un

2
n len(MST )) = E

∑
e
`(e)1(e∈MST )1(Un∈e)

= E
∑
e3Un

`(e)1(e∈MST ).

The right side is “local” around Un, so applying

to Gn, the LWC gives

2 lim
n

1
nE len(MST (Gn)) = E

∑
e3root

`(e)1(e∈MSF )

up to checking UI. The right side refers to the

PWIT, and so Frieze’s theorem reduces to ex-

plicit calculations with the PWIT.
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Now the edge-lengths at the root form a rate-1

Poisson process, so by conditioning on length

s we can write

E
∑

e3root
`(e)1(e∈MSF ) =

∫ ∞
0

h(s) s 1 ds

where h(s) is the chance that a length-s edge is

in the MSF. By a familiar property of the Pois-

son process, after conditioning on existence of

an edge of length s, the other points are Pois-

son distributed, so conditionally we see two

independent copies of the PWIT linked by an

edge of length s. [blackboard]. The subtree

of a PWIT consisting of edges of length < s is

just PGW (s), so by definition of MSF

h(s) = 1− q2(s) where

q(s) = P (PGW (s) is infinite).
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Now reduced to a hard homework problem. We’ve got
the limit constant c as

c = 1
2

∫ ∞
0

s(1− q2(s)) ds

and we know from BP theory that q(s) = chance of
non-extinction satisfies a certain equation, which works
out to be

q(s) = 1− exp(−sq(s)).

Integrate by parts

c = 1
2

∫ ∞
0

s2q(s)q′(s) ds

write s in terms of q

s = − log(1−q)
q

and change variables to q; we find

c = 1
2

∫ 1

0

q log2(1−q)
q2 dq.

Change variables again to u = − log(1− q):

c = 1
2

∫ ∞
0

u2 e−u

1−e−u du

= 1
2

∫ ∞
0

∑
i≥1

u2e−iu du

= 1
2

∑
i≥1

2i−3.
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The technical gap is a UI argument to go from∑
e3Un

`(e)1(e∈MST (Gn))
d→

∑
e3root

`(e)1(e∈MSF (PWIT ))

to convergence of expectations.

If UI automatically held, then for any sequence

G∗n converging LWC to the PWIT, the mean

length of MST (G∗n) would grow as ζ(3)n.

But this isn’t true, e.g [blackboard] for two

complete graphs connected by a single edge.

So do need a technical argument (in this case,

already known as part of Erdos-Renyi compo-

nent size analysis).
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