
Lectures discuss one idea, reinvented often un-

der different names, which I call local weak

convergence (LWC).

Setting: given a random finite structure, which

either includes an n-vertex graph or to which

we can naturally attach an n-vertex graph, want

to study n → ∞ asymptotics. Do this by con-

sidering distributions of structure in neighbor-

hood of a random vertex.

One purpose: sometimes one can get limit

behavior of “global” statistics out of this “lo-

cal” limit.

My own main focus has been on

• combinatorial optimization over random data

• in particular, within ”mean-field model of distance”.

(lectures 2 and 3) but other areas include
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• (pure probabilistic combinatorics): fringe
subtrees of random trees (lecture 1); ran-
dom quadrangulations etc

• deterministic approximate counting: of span-
ning trees (Lyons); of independent sets and
colorings (Bandyopadhyay - Gamarnik)

• involution invariance as “stationarity” for
countable random graphs; Benjamini-Schramm
and Aldous-Lyons

• in modeling complex networks (lecture 3)

Lecture 1 gives set-up and basic examples –
very easy, no serious theorems, just “a way of
looking at things”.

The serious theorems require different ad hoc
technical methods; LWC is just a starting place.
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Stuff you already know about weak con-

vergence

Consider an abstract space S (complete separable

metric space) with a notion of convergence xn → x.

There is a notion of convergence of probability

measures on S which respects the topology: all

reasonable definitions are equivalent and the

most intuitive is

µn → µ∞ iff there exist S-valued random vari-

ables X ′n such that

dist(X ′n) = µn; P (X ′n → X ′∞) = 1.

This is called weak convergence; but rather

than naming distributions explicitly we typically

write Xn
d→ X to mean dist(Xn) → dist(X)

and call it convergence in distribution.
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Conceptual point: In our context of a ran-

dom finite structure, we get to choose how

to represent it as a random element of some

abstract space S of our choice.

Having done that, we don’t need to think about

what convergence of distributions means.
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Digression on definitions: consider Chung’s

definition of a random variable.

A real, extended-valued random variable is a

function X whose domain is a set ∆ in F and

whose range is contained in R∗ = [−∞,∞] such

that for each B in B∗ we have

{ω : X(w) ∈ B} ∈∆ ∩ F

where ∆ ∩ F is the trace of F on ∆.

Easy to poke fun but illustrates a genuine issue

– do you want to cover every possible variant

in an initial definition?
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Stuff you already know about graphs.

A graph G has vertices v and (undirected)

edges e. degree(v) = number of edges at v.

A root is a distinguished vertex (for now, as-

sume other vertices unlabeled).

Distance d(v, w) is (as a default) number of

edges on shortest path.

Can define a subgraph Ball(G; r) on the ver-

tices at distance ≤ r from the root. Say G

is locally finite if each Ball(G; r) is finite (i.e.

finite number of vertices). If G is connected

then “locally finite” equivalent to “each v has

finite degree”.
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Stuff you probably haven’t thought about

We can define an abstract space

S = {locally finite rooted graphs}

after identifying isomorphic ones. This has a

natural topology:

Gn → G∞ means that for each fixed r, for

n > n0(r) there is an isomorphism between

Ball(Gn; r) and Ball(G∞; r).

This space S is nice enough; so we automati-

cally have a notion of convergence in distribu-

tion for random locally finite rooted graphs.

Note: typically Gn finite, G∞ infinite.

Analogous to convergence of infinite sequences

of integers.
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A complication; often we will deal with a net-

work, that is a graph with extra structure, typ-

ically marks or numbers attached to edges or

vertices. Hard (cf. Chung) to choose a level of

generality in which to write down a definition.

Extend previous definition

Gn → G∞ means that for each fixed r, for n > n0(r) there

is an isomorphism between Ball(Gn; r) and Ball(G∞; r).

by requiring that marks converge too (under

isomorphism).

But a special rule comes into play when edge-

marks are lengths. Then distance d(v, w) is

shortest route-length and this distance is used

in definition of Ball(G; r) and hence in the mean-

ing of “locally finite” and the topology of con-

vergence of locally finite rooted networks. Call

this the “continuum setting” in contrast to

“graph setting”.
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Given n-vertex network Gn (deterministic or

random) let Un be uniform random vertex. Write

Gn[Un] for Gn rooted at Un.

Definition. If Gn[Un]
d→ some G∞, call this

local weak convergence (LWC) of Gn to G∞
and write Gn →LWC G∞ .

Formalizes the idea: for large n the local structure of Gn

near a typical vertex is approximately the local structure
of G∞ near the root.

Note odd syntax; convergence of finite unrooted net-
works to an infinite rooted network

Intuition: in models where degree(Un) is tight as n→∞
we expect LWC to some limit infinite network. More
precisely, in the “plain graph” setting the condition

for each r the size of Ball(Gn[Un]; r) is tight

is the condition for compactness, i.e. for some conver-

gent subsequence.
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The rest of Lecture 1 is playing around with

this definition.

Let’s start with a simple deterministic example;

consider the discrete d-dimensional cube graph

of side-length m:

Cdm = [0,1, . . . ,m− 1]d; n = md.

Clearly as m→∞ we have

Cdm →LWC Zd rooted at 0.

Now make Cdm into a random network by at-

taching IID marks to edges; clearly we have

LWC to Zd with IID marks on edges.

What happens if the edge-marks are random

but not IID? Let’s think about the d = 1 case

and forget graphs for a moment.
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For each n let (Xn,1, . . . Xn,n) be arbitrary R-

valued. Take Un
d
= Uniform[1, n] and suppose

(Xn,Un, n ≥ 1) is tight .

Then there is a subsequence in which

(Yn,i,−∞ < i <∞) := (Xn,Un+i,−∞ < i <∞)
d→ (Yi,−∞ < i <∞)

where the limit process is stationary; moreover

every stationary process arises this way.

v v v v v v v v v v v vXn,0 Xn,n

Yn,0

Xn,Un

Could view example as random network over

line graph.
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Conceptual point: In LWC the possible lim-

its (random rooted infinite networks) are the

network analogs of stationary processes.

Note also that LWC provides a sense in which

sampling without replacement converges to sam-

pling with replacement.

Returning to the discrete cube graph

Cdm = [0,1, . . . ,m− 1]d; n = md

take IID edge-lengths (Le). Provided Le strictly

positive, we do have LWC in the “continuum

setting” to the obvious limit – Zd with IID

edge-lengths.
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Consider a point process model: intuitively, n
random (independent, uniform) points in square
of area n “converges” to Poisson point process
of rate 1 on R2.

One way to state this: from the n points
(ξn,i,1 ≤ i ≤ n) pick a random point ξn,Un and
look at displacements

(ξn,i − ξn,Un, i ≤ i ≤ n).

These converge (usual sense of weak conver-
gence of point processes) to Poisson point pro-
cess on R2 with a point planted at 0.

Equivalently if we take the complete graph on
the n points (ξn,i, i ≤ i ≤ n) with edge-lengths
= Euclidean lengths, then this random network
Gn converges (LWC in continuum setting) to
the complete graph on the Poisson point pro-
cess on R2.

This example indicates why the continuum set-
ting is useful; can be applied even when limit
graph has infinite degrees.
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Similarly, fix c > 0 and consider the random

geometric graph Gn,c on the n points (ξn,i,1 ≤
i ≤ n) where [definition] Gn,c contains only

edges of length ≤ c. Then

Gn,c →LWC G∞,c

the limit being the random geometric graph on

the limit Poisson process.
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In practice thinking in terms of LWC doesn’t

add anything to these examples, but . . . . . .

Conceptual point: convergence of Zd-indexed

processes and convergence of point processes

on Rd can often be viewed as special cases of

LWC.

Note the word local in LWC is intended to con-

trast with global weak convergence, exempli-

fied by convergence of random walk to Brow-

nian motion, in which the entire finite random

structure is rescaled.
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Roughly speaking, every bounded-mean-degree

sequence of deterministic or random graphs

has some local weak limit. Here are 2 more

deterministic examples (do on blackboard).

Balanced finite binary tree.

de Bruijn graph.
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The (implicitly) classic example concerns the

sparse Erdos-Renyi random graph G(n, c/n).

Recall this has n vertices, and each possible

edge is present independently with chance c/n,

for fixed 0 < c <∞. We have

G(n, c/n)→LWC PGW(c)

where the limit is the Galton-Watson branch-

ing process (viewed as a rooted tree) with Poisson(c)

offspring.

(PGW stands for Poisson-Galton-Watson).

Why is this true? – outline on blackboard.
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Digression; every freshman probability/statistics

course should include an example like “family

size distributions”:

if (p(i), i ≥ 0) is distribution of “number i

of children per family”, then the distribution

(p̃(j), j ≥ 0) of “number j of siblings of ran-

dom child” is

p̃(j) ∝ (j + 1)p(j + 1).

. . . a basic instance of size-biasing; cf. internet

search session lengths.
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There are a variety of models G(n,q) on n ver-

tices which formalize the notion “random sub-

ject to degree distribution approximately the

prescribed distribution q = (q(i), i ≥ 0).

All such models have the property

G(n,q)→LWC GW(q, q̃)

where the limit is the Galton-Watson branch-

ing process with q offspring in the first genera-

tion and q̃ offspring in subsequent generations.

In particular, for a random r-regular graph the

LWC limit is the (deterministic) infinite r-regular

rooted tree.
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An example to be used in Lecture 2.

Cayley’s formula says that the number of trees

on n labeled vertices equals nn−2 (unrooted) or

nn−1 (rooted). For a uniform random such tree

Gn we can write down many explicit formulas

“just by counting”. For instance, the chance

we see

��
��
63 ��
��
25 ��
��
41

root
other n− 4 vertices

��
��
18

equals (n−4)(n−4)−1

nn−1 . Removing labels, the chance

we see

��
��
��
��
��
��

root
other n− 4 vertices

��
��

equals (n−4)(n−4)−1

nn−1 × (n)4 ∼ e−4.
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Now the chance the PGW(1), drawn in an un-

usual way, is

��
��
��
��
��
��

root

��
��

equals e−1/2×e−1×1·e−1×e−1×2 = e−4, the fi-

nal ×2 because either first-generation offspring

could have the child.

Repeating the argument with an arbitrary finite

rooted tree shows the following. Let Gn = uni-

form random tree on n labeled vertices (then

delete labels). Let Un be uniform random ver-

tex. Delete largest component attached to Un,

and write Gsmalln [Un] for remaining rooted tree.

Then

Gsmalln [Un]
d→ PGW(1).

This idea goes back to Grimmett (1980).
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This isn’t quite LWC, but by continuing these

combinatorial arguments, or by a general result

mentioned below,

one can show

Gn →LWC PGW∞(1)

where the limit is as follows. Take one-sided

infinite path from root; attach i.i.d. “bushes”

which are independent PGW(1).

l l l l l l l l l l l
l l ll l

AA ��

ll
AA ��

AA ��

l l
l l
AA ����

lAA ��

l l
l
l
l
��

l
l

root
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Though not the most interesting setting, it

turns out (Aldous 1991) there’s a “general the-

ory” of LWC when the given graphs Gn are

(rooted) trees, and this parallels the example

above. Each vertex v of a finite rooted tree de-

fines a subtree rooted at v. Take some model

of random n-vertex rooted tree Gn; pick v = Un

uniformly at random to get the random fringe subtree

Fn.

Empirical Observation. For most “natural”

families of random trees,

Fn d→ F (say), as n→∞

where the limit is a finite random rooted tree

but with infinite mean number of vertices.

Note (blackboard) the path and the star are

extreme “bad” examples. To illustrate what’s

going on, consider the Crump-Mode-Jagers

general continuous-time branching process, i.e.
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The Pessimist’s View of Life

1. You’re born; you have a random number of

children at random times; you die.

2. Your children behave in the same way, in-

dependently of you.

Model. Continuous-time BP where each

individual has C children (EC > 1) at times

(ξ1, ξ2, . . . , ξC) (arbitrary distribution) after own

birth.
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Standard facts. Under minor technical assump-

tions, conditional on non-extinction:

1. (Number born before t) := N(t) ∼ Zeθt for

a certain constant θ.

2. Pick individual at random from those born

before deterministic time T ; look at individual

and descendants born before T . As T → ∞
this “random family tree” FT has the following

limit F:

Start the BP with 1 individual and watch for

an Exponential(θ) time.

Note the “infinite mean” size of F arises as∫
EN(t) · θe−θt dt.

Point. Many of the tractable models of com-

binatorial random trees are tractable precisely

because they are similar to critical or super-

critical branching process models.
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Example: greedy undirected tree.

n vertices, one distinguished (root). Start with
no edges. Repeat n− 1 times
add edge, chosen at random (uniformly) from set of all

edges whose addition would not create a cycle

to get random tree Tn.

Fact. random fringe subtrees Fn d→ F where
F is family tree of the following multitype BP.

Type space (0,∞). Type s individual has:
Poisson(λ(s)) offspring of type s

Poisson (rate ρ(s∗)) process of offspring of types
s∗ < s

Progenitor type has density ν(s).

(Explicit formulas for ν, λ, ρ omitted).

So asymptotic proportion of leaves in Tn equals
chance progenitor in F has no offspring∫ ∞

0
exp

(
−λ(s)−

∫ s
0
ρ(s∗)ds∗

)
ν(ds) ≈ 0.408.
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Recall setting: underlying network Gn is itself

a random tree, so can define random fringe

subtree Fn.

A (perhaps) surprising Theorem is that con-

vergence of random fringe subtrees to some

limit Fn d→ F∞ implies the (a priori stronger)

LWC of Gn to a limit T∞ determined by F∞.

The limit always has the same qualitative struc-

ture as in previous two examples:

semi-infinite path with finite bushes attached

to baseline. Bush at root is F∞.
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