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Mixing Times and Hitting Times

Old Results and Old Puzzles

Levin-Peres-Wilmer give some history of the emergence of this Mixing
Times topic in the early 1980s, and we nowadays talk about a particular
handful of motivations for studying the subject. I’m going to start this
talk by relating how I got into this topic. The questions now seem
somewhat peripheral to the main themes of the topic, but perhaps should
not be completely forgotten.
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Donnelly, Kevin P. (1983) The probability that related individuals share some
section of genome identical by descent.
Let {X (l), l ∈ L} be a random walk indexed by a finite set L = {li}, l ≥ 0,
1 ≤ i ≤ 23, of line segments. The biological significance of li is that they are
fixed (map) lengths of (human) chromosomes: a chromosome Ci , 1 ≤ i ≤ 23,
is thought of as a line segment [0, li ] which may be broken and exchanged by
crossover. If the parent chromosomes are labeled by 0 (female) and 1 (male),
then the crossover process (or the gene flow) can be described as a continuous

parameter random walk on the vertices of a hypercube H = {0, 1}C
+

, where C+

is the chromosome pedigree structure without the subset F of founders.

Let F be a mapping F : H × C → F (with the meaning “founder being copied

from”) which allows one to define the “identity by descent”. Under some

special biological assumptions, one can say that two chromosomes C1 and C2

are “detectably related” if and only if by “time” li the random walk X has hit

the set G = {h ∈ H : F (h, C1) = F (h, C2)}. The mathematical problem is the

computation of the hitting probabilities (G is assumed to be an absorbing set)

and the distribution of the absorption time. The inherent difficulties are

reduced by introducing a group of symmetries of H which induces a partition of

the set of vertices into a set of orbits. Computations are done for the obvious

pedigree relationships (e.g., grandparent-, half-sib-, cousin-type, etc.). The

probability that an individual with n children passed on all his (her) genes to

them equals 0.9 for n = 13 and 0.03 for n = 7
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The math structure in this particular problem is:
Continuous-time random walk on n-dimensional hypercube {0, 1}n.
Given a subset of vertices A ⊂ {0, 1}n, want to study distribution of
hitting time τA from uniform start.
In this particular problem n is small, (n = “distance in family tree” = 4
for cousins) A is small and has symmetry, (e.g. A = {0000, 1010})
and we can get explicit answers.

Back in 1981, this prompted me to ponder

Instead of some special chain think of a general chain: finite state
space Ω, stationary distribution π. To avoid periodicity issues work
in continuous-time.

In principle can calculate dist. of τA exactly. But except in special
cases, answer (formula for generating function in terms of matrix
inverses) not human-readable.

What can we do instead of exact formulas?

Somehow . . . . . . I started the following line of thought.



Mixing Times and Hitting Times

Consider mean hitting times EiτA as a function of starting state i . This
function has “average” EπτA =

∑
i πi EiτA which by analogy with IID

sampling we expect to be of order 1/π(A) in the case π(A) is small. This
“π(A) small” case seems the only case we can hope for general results.

Suppose for each initial state i we can find a stopping time Ti,π at which
the chain has distribution π, and set

t∗ = max
i

EiTi,π

[On the hypercube we can actually calculate t∗ which reduces to study of
the 1-dimensional birth-and-death Ehrenfest urn chain; it is order n log n.]
Observe upper bound

EiτA ≤ t∗ + EπτA.

General principle (function or RV): if maximum only just larger than the
average, then most values are close to average; one implementation give∑

i

πi

∣∣∣ EiτA

EπτA
− 1
∣∣∣ ≤ 2 t∗

EπτA
.

This result is not so impressive in itself, but is perhaps the first (most
basic) result using what we now call a mixing time, in this case t∗.
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Repeating in words:
for any chain, for any subset A with π(A)� 1/t∗,

Ei τA

EπτA
≈ 1 for most i .

There’s a more natural question in this setting. By analogy with IID
sampling we expect the distribution of τA to be approximately
exponential; though local dependence will typically change the mean
away from 1/π(A). Slightly more precisely, we expect:

if EπτA � (a suitable mixing time) then the distribution (starting from
π) of τA should be approximately exponential with its true mean EπτA.

[Note: then, by previous argument, true for most initial i .]
Here’s a brief outline of an argument.
Take tshort � tlong � EπτA and divide time into short and long blocks.
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tshort tlong

Enough to show, from any state i at start of short block,

Pi (visit A during next long block) ≈ c ∀i .

[Note: chance τA is in some short block ≈ tshort/(tlong + tshort), by

stationarity, so neglect this possibility.]

Write c = Pπ(τA ≤ tlong) and note left side = Pρ(i,tshort)(τA ≤ tlong)

where ρ(i , tshort) is time-tshort distribution of chain started at i .

So what we need to make the argument work is that total variation
distance ||ρ(i , tshort)− π||TV is small ∀i .

This (and many similar subsequent arguments) motivated definition of
“total variation mixing time” tmix. The argument relies on
tmix � tshort � tlong � EπτA and leads to a theorem of the form

sup
t
|Pπ(τA > t)− exp(−t/EπτA)| ≤ ψ(tmix/EπτA)

for a universal function ψ(δ)→ 0 as δ → 0.
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(∗) sup
t
|Pπ(τA > t)− exp(−t/EπτA)| ≤ ψ(tmix/EπτA)

for a universal function ψ(δ)→ 0 as δ → 0.

I once published a crude version of this via method above, but . . . . . .

Open Problem 1: Prove a clean version of (*).
You may change left side to some other measure of distance between
distributions; you may change definition of mixing time; but want optimal
order of magnitude for ψ(δ).

Turn to reversible chains. Recall the notion of spectral gap λ;
characterized e.g. via “maximum correlation for the stationary chain”:

max
f ,g

corπ(f (X0), g(Xt)) = exp(−λt).

λ has dimensions “1/time” ; to get a quantity with dimensions “time” set

trel = 1/λ = “relaxation time”.

For reversible chains there is a remarkable clean version of (*)

sup
t
|Pπ(τA > t)− exp(−t/EπτA)| ≤ trel/EπτA
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For a reversible chain with relaxation time trel

(∗∗) sup
t
|Pπ(τA > t)− exp(−t/EπτA)| ≤ trel/EπτA

This has a “non-probabilistic” proof (see Aldous-Fill Chapter 3).

Open (no-one has thought about . . . ) Problem 2:

In the setting of (**) give a bound on the dependence between initial
state X0 and τA, for instance

max
f ,h

corπ(f (X0), h(τA)) ≤ ψ(trel/EπτA).

Some “probabilistic” proof of (**) might also answer this.
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I have shown 3 results using 3 different formalizations of mixing time.
Back in 1981 this was a bit worrying, so I put a lot of effort into thinking
about variants and their relationships.

tmix involves choice of “variation distance” as well as arbitrary
numerical cutoff.

t∗ = maxi EiTi,π is less arbitrary, but harder to use.

Another view of the concept of a mixing time t:
“sampling a chain at time-intervals t should be as good as getting IID
samples at these intervals”.
Different choices of what you’re wanting to do with the samples lead to
different definitions of t; considering mean hitting times leads to the
definition

thit = maxi,A π(A) EiτA

Aldous (1982) shows: for continuous-time reversible chains, these 3
numbers tmix, t∗, thit are equivalent up to multiplicative constants.

Lovasz-Winkler (1995) studied other mixing times based on hitting times.
In the non-reversible case, there are 2 families of internally-equivalent
parameters, and the families “switch” under time-reversal.
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Bottom line:
Nowadays we have settled on a definition of “total variation mixing time”
tmix as smallest time t for which

max
i
||Pi (Xt ∈ ·)− π(·)||TV ≤ 1/(2e)

(or ≤ 1/4 in discrete time, more commonly). The type of results just
mentioned (equivalence up to constants) provide some justification for
“naturalness”, though

Puzzle 3: the actual results seem rarely useful in bounding tmix.

For instance one can choose an arbitrary distribution ρ instead of π and
bound tmix via constant times maxi EiTi,ρ. (This is closely analogous to
the standard treatment of recurrence for general-space chains.) But there
are very few examples where this method is useful.

Anyway (*), there is a unique “order of magnitude” for tmix for families
parametrized by size, for instance order n log n for the n-dimensional
hypercube {0, 1}n, and the typical modern use of mixing times is, within
a family parametrized by size, to use known order of magnitude of mixing
times to help estimate order of magnitude of some other quantity of
interest.
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The relaxation time trel is usually different – order n in the hypercube
case – though (as here) usually not much different from tmix.

Very vaguely, the “equivalence” theory for tmix is working in the L1 and
L∞ worlds – look at maxi ||Pi (Xt ∈ ·)− π(·)||TV , whereas the relaxation
time trel is working in L2 theory – look at

max
f ,g

corπ(f (X0), g(Xt)) = exp(−t/trel).

Puzzle 4: Why isn’t there a parallel L2 theory, for reversible chains at
least, relating the relaxation time trel to non-asymptotic L2 properties of
hitting times?

There are many equivalent characterizations of trel, but not in terms of
hitting times.
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Hitting times is itself just a small topic within Markov chains, but it does
relate to some other topics.

Coalescing random walks.
Reversible continuous-time Markov chain with finite state space.
Start one particle from each state; particles coalesce if they meet.
Study random time C at which all particles have coalesced into one.

Model interesting for two reasons:

Dual to voter model

Kingman’s coalescent is “complete graph” case.

Parameter µ = mean time for two π-randomly started particles to meet.

Open Problem 5: Suppose µ� trel. Under what extra assumptions can
we show EC ≈ 2µ?
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We expect this because

Meeting time of 2 particles has approx. Exponential (mean µ)
distribution

with k particles, there are
(
k
2

)
pairs, each pair meets at Exponential

(mean µ) random time, so if these times were independent then the
first such meeting times would have approx. Exponential (mean
µ/
(
k
2

)
) dist.∑

k≥2 1/
(
k
2

)
= 2

and proved by Cox (1989) on torus Zd
n , (d ≥ 2 fixed) using more explicit

calculations.

Previous results/problems relevant to understanding what happens
starting with fixed k, w.l.o.g. k = 3 (different argument needed to show
contribution from large k is negligible).
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Meeting time of 2 particles is a hitting time for the bivariate process
(X 1

t ,X
2
t ), which is reversible with the same relaxation time trel, so from

stationary π × π start we do have the Exponential (mean µ)
approximation.

For 3 particles, first meeting time of some 2 particles is a hitting time for
the trivariate process (X 1

t ,X
2
t ,X

3
t ), which is reversible with the same

relaxation time trel, so from stationary π × π × π start we do have the
Exponential (mean =????) approximation.

But . . . . . . why is mean ≈ µ/3 – do we need to go via proving some
explicit approximate independence property for the 3 meeting times
(Open Problem 2) or is there a direct way?

And . . . . . . after the first coalescence, need some “approximate π × π”
for the distribution of the 2 particles, to use the 2-particle result.

Is there is an elegant argument using trel? If we work with tmix we can
just combine the ideas above with the crude short block/long block
argument.
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Cerny - Gayrard (2008) Hitting time of large subsets of the hypercube.

Summary: “We study the simple random walk on the n-dimensional
hypercube, in particular its hitting times of large (possibly random) sets.
We give simple conditions on these sets ensuring that the properly
rescaled hitting time is asymptotically exponentially distributed, uniformly
in the starting position of the walk. These conditions are then verified for
percolation clouds with densities that are much smaller than (n log n)−1.
A main motivation behind this article is the study of the so-called aging
phenomenon in the Random Energy Model (REM), the simplest model of
a mean-field spin glass. Our results allow us to prove aging in the REM
for all temperatures.
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