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Recall the method of bounded differences; for a RV Z of the form

Z = f (ξ1, . . . ξn); for independent (ξi )

where f has the property

|f (x)− f (x′)| ≤ 1 whenever x, x′ differ in only one coordinate

we have
P(|Z − EZ | ≥ λn1/2) ≤ 2 exp(−λ2/2).

Basic example of a general concentration inequality – a key point is
that one can bound on a difference |Z − EZ | even when you don’t know
EZ .

I will present a simple but very specialized concentration inequality, with
2 + 2ε applications.
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Consider a finite-state continuous-time Markov chain and a hitting time
T = TA on some subset A of states, and suppose

h(i) := EiT <∞ ∀i .

Neither “finite” nor “continuous” is actually important here. What is
important is the next assumption:

h(j) ≤ h(i) for each possible transition i → j . (1)

This is a very restrictive assumption – not obvious that any “interesting”
chain satisfies this assumption.

Lemma

Under condition (1), for any initial state,

var T

ET
≤ max{h(i)− h(j) : i → j a possible transition}.
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We can rewrite this as

κ := max{h(i)− h(j) : i → j a possible transition}

s.d.(T )

ET
≤
√

κ

ET

where the right side is always ≤ 1. So we get a weak concentration
inequality if κ/ET is small.

The proof is easy if you think martingales. We have a chain
(Xt , 0 ≤ t <∞) with transition rates q(i , j). There is a martingale

Mt := E(T |Xs , s ≤ t) = h(Xt∧T ) + t ∧ T (2)

and M2
t has a Doob-Meyer decomposition of into a martingale Qt and a

predictable process. We can write expressions for dMt and for the
predictable process, then applying the optional sampling theorem leads to
the general formulas
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ET = E
∫ T

0

b(Xt) dt, var T = E
∫ T

0

a(Xt) dt

a(i) :=
∑
j

q(i , j) (h(i)− h(j))2

b(i) :=
∑
j

q(i , j)(h(i)− h(j)).

Setting

κ = max{h(i)− h(j) : i → j a possible transition}

we clearly have a(i) ≤ κb(i); note this is where we use the monotonicity
hypothesis (1).
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Our applications are all in the context of chains (Zt) whose values are
subsets S of a given discrete space and whose transitions are of the form
S → S ∪ {v}. In words “increasing set-valued processes”.

And our applications use hitting times T of the form

T := inf{t : Zt ⊃ B for some B ∈ B}

for a specified collection B of subsets B.

The rest of the talk is example which fit this context, ordered as

uninteresting/interesting/uninteresting/interesting.
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Example: a general growth process (Zt) on the lattice Z2.
The states are finite vertex-sets S , the possible transitions are
S → S ∪ {v} where v is a vertex adjacent to S . For each such transition,
we assume the transition rates are bounded above and below:

0 < c∗ ≤ q(S ,S ∪ {v}) ≤ c∗ <∞. (3)

Initially Z0 = {0}, where 0 denotes the origin. The “monotonicity”
condition we impose is that these rates are increasing in S :

if v , v ′ are adjacent to S then q(S ,S ∪ {v}) ≤ q(S ∪ {v ′},S ∪ {v , v ′}) .
(4)

Note that we do not assume any kind of spatial homogeneity.

Proposition

Let B be an arbitrary subset of vertices Z2 \ {0}, and consider
T := inf{t : Zt ∩ B is non-empty.}. Under assumptions (3, 4),

var T ≤ ET/c∗.
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Proof. Condition (4) allows us to couple versions (Z ′t ,Z
′′
t ) of the process

starting from states S ′ ⊂ S ′′, such that in the coupled process we have
Z ′t ⊆ Z ′′t for all t ≥ 0. In particular, h(S) := EST satisfies the
monotonicity condition (1). To deduce the result from Lemma 1 we need
to show that, for any given possible transition S0 → S0 ∪ {v0}, we have

h(S0) ≤ h(S0 ∪ {v0}) + 1/c∗. (5)

Now by running the process started at S0 until the first time T ∗ this
process contain v0, and then coupling the future of that process to the
process started at S0 ∪ {v0}, we have h(S0) ≤ ES0T ∗ + h(S0 ∪ {v0}).
And ES0T ∗ ≤ 1/c∗ by (3), establishing (5).
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Two recent recent arXiv posts deal with specific models of such
non-homogeneous growth processes.

Asymptotic behavior of the Eden model with positively homogeneous
edge weights by Bubeck and Gwynne

Nucleation and growth in two dimensions by Bollobas et al.
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Example: A multigraph process

Take a finite connected graph (V,E) with edge-weights w = (we),
where we > 0 ∀e ∈ E.

Define a multigraph-valued process as follows. Initially we have the
vertex-set V and no edges. For each vertex-pair e = (vy) ∈ E, edges vy
appear at the times of a Poisson (rate we) process, independent over
e ∈ E.

So at time t the state of the process, Zt say, is a multigraph with
Ne(t) ≥ 0 copies of edge e, where (Ne(t), e ∈ E) are independent
Poisson(twe) random variables.
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Background motivation: model of imperfectly observed network. How
well can we estimate some aspect of the true network from observed
multigraph?

Leads to a huge range of questions; one basic issue is to say something
about connectivity properties of true network. This must relate to
connectivity properties of the observed multigraph.
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We study how long until Zt has various connectivity properties.
Specifically, consider

T ′k = inf{t : Zt is k-edge-connected}
Tk = inf{t : Zt contains k edge-disjoint spanning trees.}

Here we regard the Ne(t) copies of e as disjoint edges. Remarkably,
Lemma 1 enables us to give a simple proof of a “weak concentration”
bound which does not depend on the underlying weighted graph.

Proposition

s.d.(Tk)

ETk
≤ 1√

k
, k ≥ 1.

Via a continuization device, the same bound holds in the discrete-time
model where edges e arrive IID with probabilities proportional to we .

We conjecture that some similar result holds for T ′k . But proving this by
our methods would require some structure theory (beyond Menger’s
theorem) for k-edge-connected graphs, and it is not clear whether
relevant theory is known.
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Proof. Here the states S are multigraphs over V, and h(S) is the
expectation, starting at S , of the time until the process contains k
edge-disjoint spanning trees. Monotonicity property is clear. What are
the possible values of h(S)− h(S ∪ {e}), where S ∪ {e} denotes the
result of adding an extra copy of e to the multigraph S?

Consider the “min-cut” over proper subsets S ⊂ V

γ := min
S

w(S ,Sc)

where w(S ,Sc) =
∑

v∈S,y∈Sc wvy . Because a spanning tree must have at
least one edge across the min-cut,

ETk ≥ k/γ. (6)

On the other hand we claim

h(S)− h(S ∪ {e}) ≤ 1/γ.

Given this, Lemma 1 establishes the proposition.
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Claim : h(S)− h(S ∪ {e}) ≤ 1/γ.

To prove this, take the natural coupling (Zt ,Z
+
t ) of the processes started

from S and from S ∪ {e}, and run the coupled process until Z+
t contains

k edge-disjoint spanning trees. At this time, the process Zt either
contains k edge-disjoint spanning trees, or else contains k − 1 spanning
trees plus two trees (regard as edge-sets t1 and t2) such that
t1 ∪ t2 ∪ {e} is a spanning tree. So the extra time we need to run (Zt) is
at most the time until some arriving edge links t1 and t2, which has
mean at most 1/γ. This establishes the Claim.
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Example: Coverage processes. The topic of coverage processes is
centered upon spatial or combinatorial variants of the coupon collector’s
problem. Classical theory concerns low-parameter models for which the
cover time Tn of a “size n” model can be shown to have a limit
distribution after scaling: (Tn − an)/bn →d ξ for explicit an, bn. In many
settings, Lemma 1 can be used to give a weak concentration result for
models with much less regular structure. For instance, a one-line proof
gives

Proposition

Let G be an arbitrary n-vertex graph, and let (Vi , i ≥ 1) be IID uniform
random vertices. Let T be the smallest t such that every vertex is
contained in, or adjacent to, the set {Vi , 1 ≤ i ≤ t}. Then
var T ≤ n ET .

For a sequence (Gn) of sparse graphs, ETn will be of order n log n, so the
bound says that s.d.(Tn)/ET = O(1/

√
log n).
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Main example: the general FPP model. Start with a finite connected
graph (V,E) with edge-weights w = (we), where we > 0 ∀e ∈ E. To the
edges e ∈ E attach independent Exponential(rate we) random variables
ξe . For each pair of vertices (v ′, v ′′) there is a random variable X (v ′, v ′′)
which can be viewed in two equivalent ways:

viewing ξe as the length of edge e, then X (v ′, v ′′) is the length of
the shortest route from v to v ′;

viewing ξe as the time to traverse edge e, then X (v ′, v ′′) is the
“first passage percolation” time from v to v ′.

Taking the latter view, we call this the FPP model, and call X (v ′, v ′′)
the FPP time and ξe the traversal time. This type of model and many
generalizations have been studied extensively in several settings, in
particular

FPP with general IID weights on Zd

FPP on classical random graph (Erdős-Rényi or configuration)
models

and a much broader “epidemics and rumors on complex networks”
literature.
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However, this literature invariably starts by assuming some specific graph
model; we do not know any “general results” which relate properties of
the FPP model to properties of a general underlying graph. As an
analogy, another structure that can be associated with a weighted finite
graph is a finite reversible Markov chain; the established theory
surrounding mixing times of Markov chains does contain “general results”
relating properties of the chain to properties of the underlying graph.
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Here we study the “weak concentration” property: when it is true that
X (v ′, v ′′) is close to its expectation? We can reformulate the FPP model
as a set-valued process and then Lemma 1 immediately implies the
following result, classical on Zd .

Proposition

var X (v ′, v ′′) ≤ EX (v ′, v ′′)/w∗ for w∗ := min{we : e ∈ E}.

The Proposition implies that on any unweighted graph (we = 1 for all
edges e), the spread of X = X (v ′, v ′′) is at most order

√
EX . For many

specific graphs, stronger concentration results are known.

For Z2 there is extensive literature on the longstanding conjecture
that the spread is order (EX )1/3.

For the complete graph and for sparse random graphs on n vertices
the spread of X/EX is typically of order 1/ log n.
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In contrast, we study the completely general case where the edge-weights
we may vary widely over the different edges e ∈ E. Here is the main
result (conjectured several years ago). Given a pair (v ′, v ′′), there is a
random path π(v ′, v ′′) that attains the FPP time X (v ′, v ′′). Define
Ξ(v ′, v ′′) := max{ξe : e ∈ π(v ′, v ′′)} as the maximum edge-traversal
time in this minimal path. Recall the “L0 norm”

||V ||0 := inf{δ : P(|V | > δ) ≤ δ}.

Theorem

There exist functions ψ+ and ψ− : (0, 1]→ (0,∞) such that ψ+(δ) ↓ 0
as δ ↓ 0, and ψ−(δ) > 0 for all δ > 0, and such that, for all finite
connected edge-weighted graphs and all vertex pairs (v ′, v ′′),

ψ−

(∣∣∣∣∣∣∣∣ Ξ(v ′, v ′′)

EX (v ′, v ′′)

∣∣∣∣∣∣∣∣
0

)
≤ s.d.(X (v ′, v ′′))

EX (v ′, v ′′)
≤ ψ+

(∣∣∣∣∣∣∣∣ Ξ(v ′, v ′′)

EX (v ′, v ′′)

∣∣∣∣∣∣∣∣
0

)
.

In words, X/EX has small spread if and only if Ξ/EX is small. Intuition
for this result comes from the “almost disconnected” case where the path
π(v ′, v ′′) must contain a specific “bridge” edge e with small we ; if 1/we

is not o(EX ) then the contribution to X from the traversal time ξe is
enough to show that X cannot have weakly concentrated distribution.
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This FPP model fits our “increasing set-valued process” framework by
considering Zt = the set of vertices reached by time t. This requires our
Exponential assumption.

The issue is the upper bound. Details of proof are rather intricate (8
pages).

Outline of proof. Step 1 is to make an “approximate” version of our
Lemma 1; this shows it is enough to prove that in most transitions
S → S ∪ {y} the decrements h(S)− h(S ∪ {y}) are o(ET ).

So suppose not, that is suppose that for some transitions S → S ∪ {y}
the decrements h(S)− h(S ∪ {y}) are Ω(ET ).

(rest of proof is special to this example).
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So suppose not, that is suppose that for some transitions S → S ∪ {y}
the decrements h(S)− h(S ∪ {y}) are Ω(ET ).

Step 2 shows that in some such transitions, the used edge vy will (with
non-vanishing probability) have traversal time ξvy also of order Ω(ET ).

(This is not obvious because, although the weight wvy on the used edge
must have 1/wvy = Ω(ET ), the actual realization of the r.v. ξvy might
perhaps be much smaller.)

Step 3 shows that some such edges will (with non-vanishing probability)
be in the minimal path.

(This is not obvious because the set-valued process (Zt) may have many
more transitions than are in the minimal path from v ′ to v ′′).
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