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Abstract
We discuss a generalized model for probability suitable for representing

relations between members of populations. The study of such relations via
a certain sampling procedure is equivalent to studying multiply indexed arrays
of random variables {X, ). . whose distributions are invariant

i, 000, "1, 000,11 €N

1 n 1l n
under permutations taking il’ ceo, i.rl to 'ﬂ(il), cee, w(in), m a permutation of
IN. Relations are also closely related to arrays satisfying similar partial
exchangeability conditions. By a measure algebraic analysis of relations we show
that such arrays as we have mentioned may be represented as functions of
i i.d. or equally simple arrays. This implies a generalization of a recent

theorem of D. J. Aldous.

1. Introduction

A random variable may be thqught of as a measurement on some population.
The moving idea of this paper is to consider and analyse probabilistically relations
among individual members of populations. We do this using the following
framework, invented by H. J. Keisler ([8]). (Our whole point of view on

relations is a development of his ideas).



l.1. Definition: (a) A graded probability space (g.p.s.) is a structure
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o e where for each n, (@, “%n’ Pn) is a probability space, and

this sequence of probability spaces satisfies the Fubini Property (namely,
the conclusions of Fubini's Theorem), i.e., for each m,n e N,
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(b) An (n-dimensional) relation on , or arelationon € , is an

. n . .
Jn—measureable random variable on Q" (with values in some complete

separable metric space). @

The obvious example of a g.p. s. is (SZ,Jn, Pn)nG where (@,F, P) is

IN

a probability space, and Jn, Pn are the usual product o-algebras and

probabilities. The idea of allowing F to be bigger than Jzn X ‘;{m is

n+m



to leave room for more general relations. That there is some advantage in
this should become clear in the course of the paper.

With a single random variable, there is, from a probabilistic point of
view, really nothing of interest but the distribution. A relation is a more
complex object. One would like to know its symmetries (how it varies under
permutation of the coordinates of .Qn), how its sections X( ,3), D e Qm,

m < n, are related, etc. The simplest way tofind out about these things to
look at the distribution of various arrays of random variables obtained by a
sampling procedure analogous to the method of producing a sequence of i.i.d.

random variables from a single random variable X by letting
X () = K@) oea |

(There are more complicated ways expressing probabilistic facts about a
relation, but they come to the same thing; see [7]).

1. 2. Definition: (a) For ne N, we will also let n denote the set
{1,...,n}. Inthe same spirit, we will let nX m denote the Cartesian product
of the sets denoted by the two numbers (and similarly for IN Xn), and n! to
denote the permutations of n, IN! those of IN, (INxn)! denotes the restricted

permutations of IN X n, namely those of the form
m{m, i) = (Tri(m), i) melN, i<n

for m, € N}
(b) J]N is the smallest o-algebra on o™ such that G = {o e,

(wi EERPH ) e G} is JT]N measurable and P_. is the unique probability on

1 n N



J__ such that P (5) =P (G) foreach n, i,...,i ¢IN, Ge F . Define
IN n 1 n n

IN
- . INXn . o
J‘]an and P]an on similarly.
(c) we will use the letters o,r to denote finite sequences of natural
, ol , n T
numbers, i.e., members of IN , for some n. If o ¢ IN , meN!, o is

the sequence (n(c(1)),...,w(c(m))). If = ¢ (INxn)!,
L (o
o = (Trlo(l)),..., nn(o (n))) .

. N m
we will use s,t,u,v to denote sets of natural numbers and define s , me NV,

similarly.
. n
(d) Let X be a relationon @ , (Q, J‘m, Pm)meIN a g.p.s.
(i) {XD?h}0 (NT is the array of random variables on QIN which

X induces by simple sampling; i.e.,

X (@) = Xl D), .., 0lom), o ¢ N,

ED
}
a

(i) {x o ! is the array of random variables on Q]NXH induced

from X by ramified sampling, i.e.,

X (@)= X W,1),...,00M0),0), oN . @

{XED} (we will explain the superscripts DRE and ED presently) can

o
tell us rather less about X than {XDI;E} can; for instance one cannot derive

from it the joint distributions of (Xw :wen!) (where X" is defined analogously

DRE
} .

to F' in L 1(a)(i), though one can from {X o

The ramified sampling



would be particularly appropriate when the symmetries of X were not of
interest, for instance if the different coordinates of o are meant to
represent different kinds of things not to be compared with one another.
But in any case it is useful because it isolates the structure of X which is
relevant to dimension (see §5).

Now {X?Rh} has the symmetry property
RE DRE
(1) xPREy CPREy o
g (0)

(where ~ indicates that the two arrays have the same distribution), whereas

D
{XG } has the stronger property

X)) (x5D)

- w e (INXn)!
o]

(this is stronger since it allows different permutations of IN to be applied to

each blace in a sequence o). Both have the further property that

(2) {x } o isidependent of {XO}

o o€ oe(INem)1 *

(A1l this follows directly from the Fubini Property.) Now these properties
have been considered before: A distribution with property (1) is essentially
what was called a symmetric measure model by Gaifman [4]; (1) plus (2) is
the notion of symmetric product measure of Krauss [9]. Arrays with the
property (1)' have been called row column exchangeable (RCE for short, see
Aldous [1]), those with (1)' plus (2) exchangeably disassociated (ED--see

Silverman [14]). In conformity with the latter terminology we will call




property (1) relationally exchangeable (RE) and (1) plus (2) dissociated
relationally exchangeable (DRE).
Consider also a third type of array: {YS :sC N, |s| = n} is said to

be weakly exchangeable (WE; see Eagleson and Weber [3]) if {Ys} ~ {Ysﬂ}’

me IN! . Such arrays may also be obtained (essentially) by sampling
relations: for suppose X Q" = R has X" = X, men! ., Then when we
form {XDRE}, if o is one-to-one, X?Rh does not depend on the order

of (o(l),...,o(n)) but only on the set {o(l),...,o(n)}. Thus, if we define
{x DWE} by XDWD XDRF, where s = {o(1),...,0(m)} , this array is
weakly exchangeable, and also dissociated in a sense similar to (2) (hence
DWE).

The study of relations as we propose it, reduces then to the study of
arrays with the exchangeability and dissociation properties we have outlined.
In fact, there is an equivalence, because every DRE, ED, or DWE array
has the same distribution as our array induced by a relation on a g.p.s.
via the corresponding sampling procedure (Theorem 4.1). From the point
of view of studying these kinds of arrays, the formulation as a relation on
a g.p.s. provides a sort of concreteness and an appropriate framework
that makes many things obvious which would not otherwise be so. It shows
the single concept on which ED, DRE and DWE vary,

As we said in §4 we show that every ED, DRE, or DWE array is
induced by sampling. This requires a special technique for constructing

probability spaces, the method of ultraproducts. In our context this construction



amounts to a method of forming limits of probability spaces which coordinates
properly with weak convergence of random variables. This is contained in
§3.

The main aim of this paper is to prove a theorem about the measure
algebraic structure of relations which, transferred to arrays, implies a
generalization to n indices (and to DRE arrays) of the recent theorem of

Aldous ([1]) which states that if {X, .}

i1, jeN is ED, then it may be functionally

represented as {Xij} ~ {f(éi, nj, Uij)} where f is Borel measureable and the
family {&,i, nj, Uij 1i,j ¢ IN} is i.i.d. §5 contains results about how relations
interact with relations of lower dimension (generalizing Lemma 3.6 of (1,
and §6 some fairly simple, measure algebraic results, which are needed as
technical tools. The theorem itself is proved in §7. There we also
characterize when two functional representations induce the same distribution;
this answers a question of Aldous.

Versions of all our results follow for RCE, RE, and WE arrays (i.e.,
without dissociat‘ion). This requires only a simple device: any RCE (or DRE

or WE) array {XO} R C3D be considered to be {Y )} for an array

{y }

TT e]Nn+

(0,1
1 which is ED (DRE, DWE).

An earlier, more primitive version of most of the results in this paper
was announced in [6]. This version, especially §5, has been improved by

ideas from Aldous' paper.



2. Further Preliminaries.
Notation, conventions, and some results we will use.
2.1. Notation and conventions:
(a)(i) We will be using many different probabilities in this paper, and at
least some of the time it will be useful to distinguish their expectations.
Therefore if P is a probability, and X a real random variable, P(X)
will denote the expectation of X with respect to P, and if ﬁ is a o=-field,
P(Xl.g) is the conditional expectation with respect to /J (in the P-measure).
(ii) If X 1is an M-valued random variable, j a o-field, P a
probability, then (X I,ﬂ) is the conditional distribution of X with respect

to /&’ i.e., a ,&-measureable random measure such that
O x| @) = Plex)|4)

for any bounded continuous @ : M — IR. (Of course, this notation is
inconsistent with (i).)
(iii) If X and Y are random variables, X ~Y means they have the

same distribution.

(b) Let (Q,Eﬁ, P) be a probability space
(i) If X is an .ﬁ-measureable random variable, #(X) denotes the
o-field generated by X |
(ii) ¥ A is a sub-o-field of S, and T, ¢ J for each icl, then

,ﬂ(F :iel) is the smallest o-field containing /g/ and {F tie I},



(iii) U® denotes the complement of the subset U of
(iv) If F isa field, o(F) denotes the o-field generated by \7“ .
(c) Conventions: we use numbers to denote sets:
(i) n={1,...,n}
nXm={(i,j):i<n, j< m}, the cartesian product of n and m
(likewise IN X n).
n'™ is the m-fold Cartesian product of n with itself (the sequences
from n of length m).
(ii) P(n, m) denotes the set of 1~1 sequences from n of length m.
C(n, m) denotes the subsets of n of cardinality m. P(IN, m),
P(INXn, m) etc. are defined similarly.
(iii) n! denotes the set of permutations of n, IN! those of N,
(INXn)! the restricted permutations of IN X n (i.e., essentially (]N!)n).
A permutation w is said to be finite if it fixes all but finitely many elements.
(iv) The letters s,t,u will denote subsets of IN or IN X n. The
notations sm, P(s, m), s!, etc., are extended to these in the obvious way.
(v) Let(sz,q"vn, Pn)ne]N b/eg}.lp. s. For sgIN or Nxn, € isthe
space of sequences from € indexed by s, :758 is the smallest o~algebra

S . ,
on £ such that for cach 11, oo, 1n"€ 8, n< IS ':

G = {o eQ® . (w(il), .o .,w(in)) ¢ G} ¢ J;;

for every G e Jn' P the unique probability such that Ps(a) = Pn(G) for

each such G. PS is countably additive by A. Ionescu-Tulcea's Theorem.
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(vi) If wef® , Test, then w' is given by
W () = w(rd)  iel
F"={0" 1w e} Fe .

But for o ¢ IN°, 7 ¢ IN! |

o) = wlo() (or vi(o(i)), if we (INXs)!), ies.

(vii) We will assume that all relations on @ take values in [0,1]. There is
no loss of generality in this, since we are dealing only with distributions, and
every complete separable metric space is Borel isomorphic to [0,1]. @@

DeFinetti's Theorem says tk;at the distribution of any exchangeable

3,

sequence of random variables (i.e. X n <IN such that {Xn} ~ {Xw(n)
for every m ¢ IN! ) is a mixture of i.i.d. distributions. For arrays the
properties RCE, RE, and WE are analogs of exchangeability which take into
account the array structure, and ED, DRE, DWE are the respective analogues
of i.i.d. Thus we have the following analogue of de Finetti's Theorem.

2.2. Theorem: Let {XO_}OEan

complete separable metric space M

be an RCE array, with values in a
N
(i) P({XG} ¢ B) = fQ(B)du(Q) for each Borel set BC M, where p
is a probability on (the weak -Borel sets of) the ED distributions Q.
(ii) This p is unique.
\

(i) ¥ T = @f {X_ :0c(N-m"}, then (X }[1) is ED almost

surely, and its distribution is the same as .
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The obvious analogues hold for RE/DRE and WE/DWE, [ ]

A proof of this theorem can be obtained by an almost mechanical
adaptation of any of the usual proofs of de Finetti's Theorem (as may be
found in Hewitt-Savage [5] or Loeve [11]). A proof of what is essentially the
RE/DRE case of the theorem is found in Krauss [9], but we think changes
needed are small enough for the proof of 2.2 to be omitted.

The Hewitt-Savage zero-one law extends immediately to ED, DRE,
and DWE arrays.

2.3. Theorem. Suppose X is ED (resp. DRE) for m e IN, let

n
ém be the g-algebra of sets of the form {w ; {Xo} ¢ B}, where BC B

is Borel and

{"“{Xg} ¢ B} = {“‘{Xaw} ¢ B}

for every weINXn! (resp. IN!) which fixes every element of (IN-m) X n
(resp. IN-m),

/ Then for every E ¢ 5 = Q gn , P(E) is zeroor one. [

This follows by the proof of the usual Hewitt-Savage zero-one law,

with no essential change.
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3. Ultraproducts of Graded Probability Spaces

The results in this section are just a treatment of certain facts we
need from logic and nonstandard analysis (namely, parts of the Los Ultraproduct
Theorem, Loeb's theorem on standardizing nonstandard measures, and an
observation of Keisler on Fubini's Theorem for Loeb measures of nonstandard
product measures), which we mean to make accessible to the probabilistic
reader who is not familiar with either logic or nonstandard analysis. Fuller

treatments of these three topics may be found in Chang and Keisler [2], Loeb [10],

2

and Keisler [8], The Ultraproduct Theorem particularly is more elegant

given a prior development of first order logic.

3.1. Definition: Let I be a set. An ultrafilter on I is a set D of

subsets of I, such that
() For U,...,U ¢D, U N...NU_ 49,

(ii) For each UCI, either UeD or U® ¢ D. g |

3.2. Proposition: (a) ¥ D is an ultrafilter then
(i) UeD, VOU implies Ve D,
(ii) If U,V eD, then U/ V eD,.
(b) Any set of subsets of I satisfying 3.1(i) i contained in an ultrafilter on L

Proof: (a) is easy; (b) is easy using Zorn's Lemma.
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3.3. Definition: I.et I be an index set, D an ultrafilter on I.

(i) If re]O, 1JI then
e (e(i)® = sup{r' ¢ [0,1]:{i : r(i) > r'} ¢ D}.

(ii) If G is a set, then GD=T|— G

p & the ultrapower of G, is the

product GI modulo the equivalence relation

fap g i (i) = g) «D  (£,g G,

%D is obviously symmetric and reflexive; it is transitive, since if f %D g

and g %D h, then
{i:f£6) = g} Dl rd) = g} N g@) = (i)},

so {i:f(i)=h@)} «D by (a) of Prop. 3.2. Write fD for the equivalence
class of f modulo %D.
\ . D D )

(iii) If Mi): G —~[0,1] for each ic¢I, then A\~ :G -— [0,1] is

defined by
i) = o ewn® .

That this definition is independent of the representative of fD used on the
right again follows easily by Prop. 3. 2(a).

D

(iv) If F@H)C G for each ieI, then FANL is the subset F of G

D
whose characteristic function Xgp is (me) , the ultraproduct of the
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characteristic functions of the F(i)'s. Thus

2 (ran” it (i) e FAQ)) ¢ D .

D
Since F = GD iff {i: (@) =G@)} eD, ultraproducts of sets of

sets may be defined similarly.

(v) Given any sets F(i), i ¢ I, we can define their ultraproduct (ZIE‘(i))'D = FD

by considering F(i) as subsets of U F(i) ; likewise we can define ultra-
iel
products of functions, sets, and sets of sets on F(i), ic<Il. &

3.4. Lemma: For r ¢ |0, 1]I

rP = int{qe P, 1) : {i:q> r(i)} ¢ D)

Proof: Let q> rD. Then {i:r(i)>q-c¢} ,é'D, for some ¢ > 0. Hence
{i:r)>q} D, andso {i:q>r()} «D (the last two inferences both by
Prop. 3. 2(a)). [ ]

3.5. Proposition: ¥ @ ¢ C([0,1]"), r,, ..., 1« 10,111, then

<P(ri:), . rr]?) - (@e ()., rn(i)))D .

Proof: Fix e¢> 0, and choose 6 > 0 such that if max Iq.-r].)[ <6
j<n :
?D)I <c. By the definition of r>, Lemma 3.4,

)

q-l) LEL LY qn € [0) ]-],v Lhen I(P(a) - ([)(

and Prop. 3.2(a), {i: lrj(i)-r;.)l <68, 1<j<n}eD. Hence

D D) I

° . <
1 T e} eD,

G oty o0 v (@) - olr
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and.the proposition follows. ]

Before proceeding to g.p.s.'s, we will discuss ultraproducts of
brobability spaces. The ultraproduct of a g.p.s. (@, %n’ Pn)neIN is
obtained by just putting together the ultraproducts of its layers (Qn, Jzn, Pn),
n ¢ IN,

3.6. Definition: (a) An ultrafilter D on I is said to be countably
incomplete if there are Un €D, ne¢lN, such that Q Un = ¢,

(b) Let (i), FE), PH) i« I, be probability spaces, D a countably
incomplete ultrafilter on I. The ultraproduct of (i), F(i), P(i)) with

respect to D is the probability space (2,3, P), where Q = (SZ(i))D,

A = 0((5‘(1))1)), and P is the unique extension of PD to f

We can see that countably ircomplete ultrafilters exist on any infinite
index set I, for if we write I = U In as the countable union of nonempty
n

disjoint sets, then the set {U :m N}, U = U I , canbe extended to
m m St "

an ultrafilter, which must be countably incomplete siuce m Um = ¢,
m

The following proposition shows that part (b) of this definition actually

makes sense:
" D, o \
3.7. Proposition: (a) F~ is a field of sets.
D . - " i D
(b) P is a finitely additive probability measure on JF
(c) (Loeb's Theorem [10]). PP s countably additive on .}'ﬁD, hence

has a unique extension to o (JrD).

Proof: (a) Let F = (F(:‘L))D ¢ JD . By Prop. 3.5,
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D D
X c = 1 = X]_T' = (1-X11\(1)) = (X C) s
F g F(i)

> - D .
hence FC = (F(1)%)" « :7D. Similarly F /) G ¢ I for F,Ge JD

(b) Prop. 3.5 also implies that F,G ¢ A° are disjoint iff

{i: PA) /) GGE) = ¢} ¢ D, and that in this case

PP + PP(@) = (PENTFG) + PONGH)Y

it

(P )(F )G

PD(FU G).

(c) If we show PD is countably addive on jD», then PD will have a
unique extension to c(}D) by the Caratheodory-Hopf extension Theorem. It
suffices to show that if F_¢ #°, F DF _, nelN, and [ \F =4,

n n="ntl n B
D .
then P (Fn) — 0. We will show that in fact Q Fn = ¢ can happen only if
Fm = ¢ for some m ¢ IN, which will suffice to prove the result. For suppose

F_ 4 ¢, neN. Choose w e T[—Q(i) such that
iel

sn = {i :wn(i) ¢ I*;l(i)} eD .

Let U ¢D, nelN, (YU =4, andlet
n n' n

T = (s v

k<n

Define w(i) by
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w(i) = w (i) for ieTn-T

n n-+l

it

wl(i) i {Tl .

Since Trl are decreasing and QTH = ¢, w(i) is well-defined for each

iel. Now
{i:w()e Fn(l)} _Z_)Tn e D

for each ne¢ N, so oD emFD . B
!
Now we connect ultraproducts with weak convergence,
3.8. Proposition: (a) Suppose X(i), i ¢ I, are JF(i)-measureable random
. . D, A D . D
variables on Q(i). Then X~ is A-measureable and P(X7) = (P(l)(X(1)))
(b) Suppose < is a partial order making (I, <) a net such that
(i) X(i) converge weakly, and
(i) {j:i<j}eD for each iel.
Then X(i) converge weakly to XD.

Proof: Write X = XD .

_ D o . 1 .
(a) {X>r} ~Q (Fn(l)) , where Fn(l) = {X{@) >r - o }, so X is F-measureable.
kK k+l

Let Ik,n = [n’ > ). Then
n k
P(X)=lim 2 =PXel )
n k, n
n-—+o k=0
n
= lim lim % -EP(( XM e -e)P)
n—o ¢}0 k=0 0

n k D
lim lim 2 = (P)(X() ¢ Il - €))
n=+-co EJ‘O k=0 n 1

1
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n

=lim lim (3 SPOKO L )P (by Prop. 3.5
n—w g |0 k=0 " -
- @ EO”,
1 n k 2
since for e< o, IP(i)(X(i))-k‘:ZO o POEX() e — )| < =

(b) If PUN@(X(i)))—r, then for each ¢ >0, {i: |[PUN@X(D))-r|<e} ¢ D,
i D
so (PEN@X@N)™ = r. A
Now we consider ultraproducts of graded probability spaces. But

first note that ultraproducts commute with set products: that is, (Q(i)n)D

is in 1-1 correspondence with ((Sz(i))D)n by

. D oD D
(wl(x), e, con(l)) ((wl(l)) e, (wn(l)) )
Henceforth we will identify the two sets via this correspondence.

3.9. Definition: If (i), Jn(l), ]Tn(l))nGIN isa g.p.s. for each iel
then their ultraproduct with respect to the countably incomplete ultrafilter
D on I isthe g.p.s. (, .?'n, P ), where «", J'n’ P ) is the ultraproduct
of (Q(i)ll,%n(i),Pn(i)) for each ne¢IN. 8

Thié, too, makes sense:

3.10. Proposition (Keisler [8]): (@, Jn’ Pn)ne]N as defined in 3.9 is
a g.p.s.

Proof: We already know that each (Sln, Sﬁn’ Pn) is a probability space,
so we just need to check the I'ubini Property. It will suffice to show that the
various clauses of the property hold of each F ¢ (.}n(i))D , since (‘71n(i))D
is a field generating }n .

i) ¥ F = (PO e (}n(i))D _ then
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P = (P O@EmN® = @O = PE"

@ 8 FeF @, 3= @0 0™, then v-,3) -
FEEC,3ONT € (an(i))D, since T, B(1)) eJrn(i) for each icI.

(3) {3ea™: P_(FY @) >r} = m (G (1)) c,f} , Wwhere

Gk(i) = {BH) ei)™ . Pn(j,)(jﬁ‘(i)(. B > - i.)}

(4) P )= GO = (P OEOC,S0E,_0Eo)”
= [P (F(,B)NP_(w)

by two applications of Prop. 3.8(a). @

Now we want to prove a result iike Prop. 3.8(b) but for arrays. It
will follow easily from the following.

3.11. Definition: Let X :" — [0,1] be a relation on a g.p.s.
(Q,Jn, Pn). For o e¢IN", ke IN, define xP (o k) (X "(0", k)) on

© ) (resp. (@, &, P)) by

nxk’ Jnx k’ nxk

Plo, 1)@ = X, (1)), « . ., wln, o(n))

i

(resp. XOPP (6 K@) X(o(D), . . ., olom)) . @

3.12. Proposition: Let o,,...,0 ¢ kn
1 m

@ &2 Py &P e, xER e
o) o] 1 m

1 m :
(b) The same holds with DRE replacing ED.
Proof: Immediate from the definitions and the Fubini Property. BB



20

3.13. Proposition: Let D be a countably incomplete ultrafilter on

I, X3) :e@ — [0,1] relations on graded probability spaces

. . . . _ D } o
(1), }m(l), Pm(l))me]N , iel, X=X the ultraproduct of X(i), ie¢I, on
(Q,.}m, Pm)meIN the ultraproduct of (Q(i), ;Wm(l), T m(l))me]N , iel

. j ¥ N DY ]
(a) For each ke¢IN, o ¢ kn, X D(cr,k) = (X(i)T‘D(O‘,k))D , and
DRE D

06,10 = &P 6,10
(b) If (I,<) isanetand {j:i< j} ¢D for each icI, then if {X(l)Or }oeINn

ED
}

converges weakly, it converges weakly to {X'0 (the same holds with

oeNT
DRE instead of ED).

Proof: (a) is immediate. To prove (b), we nced only, by Prop. 3.12,

n
1,...,0'mek ,

k) QD(XED(GI, k), ... XED(om, k)

to show that for each ¢ ¢ C(]0, 1]n), kelN, o
LED B

@ XKW 0,1, ., X0

(or the same thing with RCE instead of ED). But this is immediate by (a)

and Prop. 3.12. @
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4. Representation by Sampling

The main result of this section is that every DRE array, and hence
every ED or DWE array has the same distribution as an array induced by
sampling a relation on a g.p.s. We will state the theorem for countable
families of arrays; by adding some slight further considerations, this could
be modified to give the same result for arrays taking values in any complete
separable metric space. With a slight change in the proof, we could also
show that the theorem holds for uncountable families of arrays.

The theorem appears in [7], cloaked in different terminology.

4.1, Theorem (Sampling Representation Theorem): (a) The family of

]Nn(k), k DRE

arrays {Yg k,n(k) e N} is DRE iff {Y§}~{ ) } where

k n(k)

X :Q — [0,1] are relations ona g.p.s. (Q \7 Py ne]N

!
(b) {Y; ¢ 5 ¢ C(IN,n(k)) k e N} is DWE iff {Y } o~ {X '} for some family of

relations Xk, k ¢ IN, such that (Xk)Tr k for all = e n(k)! , k ¢ IN.

Proof: In (b) let {Y } be the DRE arrays induced by {Y } by Y1 =

YZ where s = {o(i) : i <n(k)}, If {(Xk DRF} K

w

{Y *} then clearly (L_X =X
a.s. for men(k)!, k ¢eIN, So if we just let Xk = rnin{(Xk)'Tr : m e n(k)t} for each
k ¢ IN, then {XL;} ~ {Yz}. Hence (b) will follow from (a).

k = w1(k) - = - .
(a) Let Yo : Q2 —[0,1], 0 ¢ IN , ke IN, (2,5, P) a probability space. The
"if'"part is immediate by the Fubini Property, as was remarked in the
introduction. To prove the "only if"', let &, Em m e¢ IN, be as in 2.3. The
DRE version of the Hewitt-Savage 0-1 L.aw and a routine reverse martingale
. n(ki)

k, ¢IN, GiClN

argument show that if ¢ <C([0, l]f), k1 peeen Ky , 1<i< ¢, then

b
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_ kl ka . kl k!
() POY .o, Y N =P@Y ..., Y )| E) a.s.
o o o o
1 1 1 2
- kl kl
= lim Py *,..., Y DE ) a.s.
o o m
m 1 {
1 kl k
=lim — 2 @Y ,...,Y.ﬂ) a. s.
m ™ qem! o 9y
_ kl k!
Choose w €2 such that this equality holds of (P(YO‘, e, Yo ) for each
1 I
ori € ]Nn(ki), kl’ tea, kl‘ £ ¢IN, and @ in a countable dense subset D1 of
£ . .
C([0,1]7). For m ¢ IN, define a g.p.s. (Q(m),a‘(m)n, P(m)n)neIN and
relations Xk(m) on Qn<k) by: £(m) = m, ﬁ(m)n = (7)(1nn), the set of all

subsets of mn, and let ZP(m)n be the uniform probability on m";

s

k k
X (mXi,,...,1 ) =Y, . (), i,...,1 <m.
1 n(k) (11, cee, 1n(k)) 1 n(k)
n(k)
We show that for each kl’ cen, kl’ o, € N , L elN, ¢ ¢ D!’ k = max(ki),
kl DRE k! DRE
P(m)(X(m)) = P(m)(@((X “(m)) ‘J(crl, k), ..., (X "(m)) 4(01, k)))
- k1 kf _
= PEY ", ..., Y ")) = P(Y )
o 7, SRR

1) ook, 1
: 1 A
Plm)(X(m)) = ==~ = X(m)(p)
m 'f}emk
— lim ~& 1,{)' Lz X (m) (P)
m * PpeP(m, k) -
: 1
=lim = 2 Y w (@)

L] 0‘ * s O
m rem’ 1’ !
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0'1,000,0'1

by (*). Thus {(X(m)k)?RE} converges weakly to {Yi:}. Soif D is a

countably incomplete ultrafilter on IN, (Q,;??n, Pn) the ultraproduct of

nelN
= (x5(m))P

k then it

?

(Q(.m),;%(m)n, P(m)n) with respect to D, and X

follows easily by Props. 3.12, 3.13(a), and 3. 8(b) that {(xk>?m“}~{x:_} . B

4.2. Remark: This is probably a good place to discuss a couple of
facts about arrays, as they may be compared with the corresponding facts

about relations.

() DRE arrays: Let {X )} _on be DRE. If o ¢N" has ofi) = ofj) for
some i< j<n, then obviously there is no = ¢ IN such that c“(i) to TT(j)
hence {X0 : o(i) = 0(j)} bears no special relation to {XG to(i) / ofj)} beyond

being jointly dissociated. In fact we can dissect X into a family of arrays
{Y":~ an equivalence relation on n, ¢ ¢ P(IN, n)}

where YGN =Y, , 8(i) = o(j) where j is the least number such that i~j,
and any such DRE family {Y;} can be used to construct an {XO.} in this way.
This is related to the following fact about relations: suppose X st — [0, 1]

is a relationona g.p.s. (€, g'n’ Pn) and Pl(w) = 0, for every w ef.

nelN

Then if D = {8 < Q" tw(i) = w(j) for some i< j}, Pn(D) = 0., Hence we can

change X on D (and hence change {XO_ : 0(i) = g(j)for some i< j})

DRE} ,
o oe¢P(IN, n) *

Since it is inconvenient to deal with an object affected by change X on a set

DRE
}

however we like, without changing the distribution of {X

of measure zero, we will henceforth consider only {X as

oeP(IN, n)
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the DRE array induced by X, and we will generally consider DRE arrays

{XO} as defined only for ¢ ¢P(IN,n), unless specified otherwise. With this

DRIE DRE
" } {Yo }

restriction, X = Y a.s. implies {X

(2) ED arrays are a special case of RCE arrays, so Theorem 4.1 implies

DRE }
o geN1

relation X. Let us consider this situation a little further.

that any ED array has the same distribution as {X for some

1 E . n — 1 » - 1 o' D S
(i) If X:Q [0,1] is a relation on (Q,dfn, I n)neIN , then

ED
}

DRE
{XG n™~{Y R }

n
oelN o oeIN" ’

BF P )

Q
where Y on ( e’ Enm melN

is defined by

Y(wl, cee, wn) = X(wl(l), . ,wn(n)) W, ¢ Q

DRE
}

(i) If {XO oelN

n is actually ED, then
ED DRE
{X 7 X
o o

This follows easily using Prop. 3.12.

(iii) For o ¢ N , define f(o) by

£(0)(1) = o(D)n + i

Then if ¥ =Xo0 4 ¢ N then
o f(o)

v ) ~ (D)
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Thus the ED array induced by X is in a sense contained in the

induced DRE array. &
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5. Results on o-Fields,
This section contains technical results about the relationships between

. X
a relation X ona g.p.s. (€, ‘ﬁn’ ]?n), and various ¢g-ficlds on SZIN n which

ED
}

o seIND Most of these

are defined either from Jm meIN, or from {X
results state that some o-field contains all the information (in a non-technical,
heuristic sense) about X, or {X([:D} that some other o-field does; the

main result is that all the information about X contained in a certain o-field
defined from <‘7'n :m ¢ IN) is contained in a o-field of similar form defined
from X. This and its ancillary results are the main tools in the analysis

of relations and arrays carried out in section 7.

In this section we shall be mainly concerned with ED arrays (because
they contain less  information about the relations that induce them than do
DRE arrays). Hence,in this sectiori'only, if X is a relation, shall we write
(X} for {x'P). |

The formal notion of conditional independence embodies the heuristic
notion of "containing all the information'.

5.1. Definition: (1) Let (@, P) be a probability space, &, H, il
sub-o~algebras of 5‘. We say that ﬂi , iel, are c.i. given j if IO

is a finite subset of I, H, ¢ %Z’]., iely,

P([Ta|D =TT P(Hilﬁ) :
ieIO iGIO

In the case where I = {1,2}, a simple computation shows that this is

the same as saying
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P|#,, ) = PEH|Y)

for every H e X

15 in this case we will often use the terminology " 7 is

independent of ﬁé given J", as if the relation were not symmetric.
Of course, we extend the definition to random variables in the obvious
way.

(2) Let €, Jn’ Pn)ne be a g.p.s.

X
(3) A relation on Qn, Sz]N, or SZ]N s supported by, or has support in

IN

tgn if X(®) = X@'") whenever

(%) @) =0'1),  iet.

We will identify any such X with X' on ©°, t<s suchthat X@) = X'@"),

for ©,B' satisfying (%).
(4) If s€n (or IN, or IN X n) identify .55'8 with the class of &*_ (or

. N
0 which have support in s.
or 5"7]an)- measureable subsets of @ (etc.),/ For s a set of subsets of n,

etc., let

(5) For X a relation on Qn, S a S.et of subsets of IN X n let ’J}S{ denote
the g-algebra
MDA F )= () FE s e stm{lol, i< nr o),
m m

where S(m) = {s U(IN-m) Xn:se¢S}, If S={s}, we write ,JSXfor /JSX

(6) Call US=U s the support of S.
seS
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. - N
5.2, Example: (a) ‘%C(n,l) = (0{1) .
(b) ¥ X=C(INXn, n=-1), ‘;‘S ig "all the n-1 dimensional information', and is
X
/2’ g ""all the n-1 dimensional information which {Xc} knows about
itself. For n = 2 this JS is the same asg the ""shell" o-algebra of
Aldous| 1 ].

5.3. Remark: Clearly if

{fu:rdseSat.ucs))c{u: JteT s.t. ugt}

then /jggfj,l}f 7]

X .

g T.ct

In the following we will write /J for J({Xo,})- /&é for j
7 denote the nullsets of P]N><n

5.4. Lemma: Any G« JJS is fixed by any finite, strict permutation
which fixes the support of S.

Proof: Suppose w is a finite strict permutation which fixes (JS and
any element outside m X n. By definition, any G e )&S has support in
USU@N-m) Xn; clearly w fixes any set which has support in the subset
of IN Xn fixed by .

5.5, Proposition: (a) For each S of finite support, ’JS is essentially

’

contained in \;t'q , i.e.
.

A e FN .

(b) If tC IN Xn is finite, ’&S (resp. .}’;S) is c.i.of jt given 'ant (resp.

ant) where Snt={sNt:s eS8},

(c) (a) and (b) hold without finiteness conditions on US or t.
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Proof: (a) Let G e /&S . We will show that for each ¢ > 0 there is
an fff's-measureable function Z such that P(|Z-G|) <.

Let USgmXn, andlet Y be a bounded &N yS(m) ~measureable
function (where S(m) is as in 5.1(5)) such that IP( IY-G l) <e. We may take

Y to be of finite support t, since /én JS(m) is generated by sets of finite

support. Let us write

Y@) = Y(<:31, )

2

- mX
w, € “:}esz

t-(mXn)
1 ’ 2 ’

Let ™o i1 e¢IN be a sequence of strict finite

permutations of IN X n, fixing m Xn, but such that, for i% j,

Tri(t-(an))/') 'n'j(t-an) = ¢

., .
Then for each fixed '<f>1, the sequence Y(o".)‘l,foz) 1. Y(cﬂl,'dgzl), ielIN, is
i.i.d. (by the Fubini Property), and so by the weak law of large numbers,
m.
1
N n v*t converges in probability, say to Z(Sl), which we may take to

T i<N
be bounded.

0

P(|Z-G]) < lim P(lﬁ Y 'a]) = P(|Y-G]) <,
N i<N
(the equality since G is fixed by each ’Tl‘i). So it will suffice to show

that Z 1is essentially 3”8 measureable. Now since



there is, by the Fubini property, a fixed @ M=mIXn b that

OG

5 iiN ¥@, 3,0~ 2@) as @),
™.
But each Y wl,wol) is E'/fS-measureable.
(b) The idea is basically the same as in (a). The two cases for /&é and
51'8 are similar, so we will do only the former. If t<€ m X n, it will suffice
to show that for every G e AN Jz S(m)’ P(Gljt) is "JS/M\/)? measureable,

since it follows by (a) that /é}' SNt is essentially contained in f C jt .

We may take G to be of finite support, as &) ‘%@(m) is generated by

such sets. Write G@) = (z(&)‘ "\7) 'Zf)'l eﬂt , o, eQu”t where u is a finite

support of G. As in (a), let ™ ieIN be strict finite permutations of
™, ™, .
IN Xn fixing t, such that G($1,'o§2) e G(o’?l,"oﬁzl), ieIN, are i.i.d. for each fixed )

assume also that ‘vi(u-t) € (IN~i) X n, Then by the strong law of large numbers,

w,
lim: za@) L= p@|H) as. .
N | t
N 7 i<n

the left-hand side, however, is JJS(}L ~-measureable,
(c) The point is then we can now get our hands on a fact which seems obvious
but is not quite, namely that »é% is essentially generated by those of its

members which essentially have finite support (this follows directly from the

definitions for JS). For if G e ﬁé ,



31

2 P(Gl?’NXn) = lim PG|F . ) a.s.

by the martingale convergence theorem. By (b), P(G]é?lan) may be

taken ,anran—measureable. Thus

() S- \/ S/ mxn V7.
Hence

G e \/ Sﬂan\/W < \n{ JS()an\/V: JS V7z

the set containment following by (a). And

P(Glg‘frt) = lim P(G|# () s
m
= lim P(G |4
o SNtAm
= lim P Gl;&
o snt)

by (*). The same holds with ':%S replacing /&S A

5.6, Corollary: (a) F is c.i. of ’&S given ant (resp. F

t S

given jS()t)
(b) If for each i4jel, t,N tj € s for some s ¢S, then ,é{ iel (resp.

jt,i:f-l), are c.i. given ’&S ([7118)
i

(¢) If X and Y are relations, S={sCNxn; |s|<n, [sOINX{i}]| <1, 1< n},
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X ) Y
(B 145 )}ce]NnN{HWO MS »Oemn,

x .
then {XO}N{YG} (same with replacing & and ,&Y
Proof: We will use )é, throughout, as the proofs are the same with

</ replacing ,é’

(a) Immediate from Prop. 5.5,

t,
i

Y, is c.i. of Yj’ jti, given

(b) For iel, 1let Y, be J -measureable, and let Ti = {tj : j 4 i}. Certainly

SUTi . But

;14 SUT )= D, I"é((swr m a. 8.

By 5.5(b), (c). But since every tin tj , i%3j is contained in a member of

s, /&(SUTi)f\ti =/gfsmi. But by 5.5, again,

Y'/JS(H B’(Y I_,J) a. s.

(c) The distributions of {XO} and {YU} are determined by the distributions

of their conditional distributions: for if §01, o, <Pm ¢ C([0,1]), then

ti

P(‘P1<Xc ). . P X )
1

m

P(P(<P1(X01). , .cpm(xonz | g

P(Q, (X |,./§f ) (by (b))

i
A

i
T

l,éfs @) . m
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Our aim now ié to prove that any Gedis c.i. of JS given % ,
for S any set of subsets of IN Xn. We will begin by proving by induction a
case where S is finite. In this induction the following lemma will provide
the induction step.

Let T denote the sequence (1,...,1) ¢ IN

5,7, Lemma: Let X, F be relations on o' such that ¥ has support

in sgn. Thenif S5 is a set of subsets-of 1 Xn suchthat 1 XseS, then

. . o Xy :F‘ 2 o r ey -~ X \ iq 1
X'f is c,i. of S(1) given *&é = JS , where S(1) is as in 5.1(4).
Proof: Let us write X for X-»lx , for simplicity. Since JS(i)

is generated by the semi~field of sets of the form GH, where G ¢ )ﬁf)ﬂs(l) .
‘ I
H e jF (for since IN X s ¢ S(1), 4 =,&§(1)) both have finite support,

it will suffice to show that

P(P(X)GH) = P(P(P(X) I,&S)GH) for such G, H and @ e C([0,1]).

Let G, H have supportin m Xn. Now let m be finite restricted permutations

of INXn fixing IN X g, such that wi(mX(n-s)), ieIN, are digjoint, It
.,

follows by Corollary 5. 6(b) that (@P(X)G) : , iel, are c.i. given INxs *

Now for N ¢ IN

P(P(X)GH)

1

.
=3 PUOX)GH) Y
i<N :

m.
= & 3 PUQX)G) ),
i<N

Zi=
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the first equality by the Fubini Property, the second since ™ iel, fix H.

,
But since (P(X)G) * are c.i. given JﬁINXS , it follows by an application of

Chebyshev's Inequality, conditional on ’%XS . that
L " ,»{&
- - P
N z [(([)(X)G) P(( X)G ]NX‘S

<N

3 111+ o - 3 a¥al i
converges to zero in probability. Since each i fixes %\TXS , P{o(X)G IJ]NX )

= PW(X)GIJ&]NXS) ! , i el. Hence, since everything is bounded,

1 i ™
P(S 2 [(@X)G) ' - PU@XG) "%\m”m
iKN
1 TTi 1 ,J 1T1
== 2 PU@X)G) H) - = 2 PP@OXG] )
N <N N ien INX

i

P(@X)GH) - P(P@X)G | g, IH)

tends to zero. Being independent of N, it is zero. But

i

PQ(X)G | JH) = PPPOXIG |4, D Fee) )

by 5.5(b), (c)

S(1)

[}

P(PQX) [ ;) )GH)

i1

P(P(Q(X) | & )GH)

by Prop. 5.5(b). B

5,8. Theorem: For S a setof subsets of INXn, X =X= is c.i. of

1
jS given "gS
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Proof: By Prop. 5.5(b), we may as well take S to be a set of subsets
of 1Xn, and therefore finite. We will prove by induction on ITI, that
fér each TCS, any Y with supportin 1Xn is c.i. of 5",1. given
,2!5 . This is trivial if T is empty. Suppose then that it holds for
TES, s¢3-T, and we will prove it for T U{s}. Since %

Tu{s} *°

generated by the semi-~field of sets of the form FF! , Fe 548 , F' e ‘;ZT ,

it suffices to show

PIAYIFF') = PP@Y) | SIFF)
for such F,F', and ¢« C[0,1]. But

F
PAYIFE') = PIP@WT) o )

by induction hypothesis

Y, |
= PPly) [ g~ IFFY)

= PPV | S IFm)

by Lemma 5.7, &

5.9, Corollary: ,J, is c.i. of JS given ’JS,’ S any set of subsets
of IN Xn, :

Proof: We show that G e )J of finite support, sayin tC IN X n, is
independent of J‘S given )&S . By Prop. 5.5(b) we can take US Ct. Let

t = {t .,tm}. Induce G' on 2™ by

1,00

Glwp, vey0 ) = G@') ,
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where &'eQ , W (ti) = s i<m, Let g:INXm-—INXn be abijection

such that g(l,1) = t, i<m, and g(i, j) has the same first coordinate as

g(i,k) for i,j,k ¢ N. Then G = (¢")® and it follows
easily from the definitions that (J(G") ¥ e ., and (F 8= F..
cgg-~1 =78 Sg-l S

So it follows by the theorem that G is c.i. of ..-71q given (G

g8l

hence given ’&S . [ ]

The reader will no doubt anticipate that the foregoing analysis must
somehow apply to general arrays, and not just to those induced by a relation
ona g.p.s. Soif forany ED or DRE array, or for RCE or RE arrays

we define

_ﬁ?%dgﬁy=@ha(xo :BsesSwhmM'wgn

(o(i), 1) € s U (IN=m)Xn)

then by the Sampling Representation Theorem we easily get the following
result:

5.10. Corollary: (a) If {(X, Z)G} is ED (or DRE) then for S a set
of subsets of INXn (IN), X is c.i. of /&SX’ z given aég’éx
(b) Cor. 5.6(b)(c) hold in general for ED arrays.

(c) (a) and (b) hold even for RCE (and in (a), RE) arrays.
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Proof: (b) and the ED case of (a) are immediate from results for
arrays induced by sampling., To get the DRE case of (a), consider the

ED array {YO} = {Y(Tr)o. :ment}, given by

Yimy = X ()

where
T(w)(i) = (o (w(i))=D)n + (i)

Then /&’ X =,.£IY where
S T’
T={tCINXxn:t={(k, i) :3Ji(lci<n and knties) for some s ¢ S} .

The result now follows by the ED case.

(c) Suppose for simplicity that {Xa}oe n is RCE. Define an ED array

}O-G]Nn E
(X, ;) is distributed as {X_}. We may assume {X

IN

i’r}'re]NnH so that {X ieIN, are independent and each

(o, i)

(0,1)} = {Xo} . Then

for each set S of subsets of INXn, if S'= {sU ({ntl} X1):s ¢S}, then
S -~
BLEly VIR i 1d.
But {X } is independent of {557 : 7(n+l) 4 1} so

FUx AL 1 =pux by ) s

Now (a) and (b) for {X } follow from (a) and (b) for {:ZT} . W
This corollary generalizes Lemma 3.6 of Aldous [1]. The following

corollary generalizes Aldous's Cor. 3.12.
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Let us make the convention that for t¢ n, an array {Xo}crelN‘t will
be identified with the array {X"I'}TL‘]Nn given by Xfr = X_ where o is the
restriction of v to t.

5.11. Corollary: (a) Let U be a reclation on Qn with support in
t ¢ n. The following are equivalent

() The induced array {U_:o c N} on @™ ig 114,

(2) The induced array {UO} on QJNXH is independent of ”?;S’
S={sUNX(n-t) : scINxt, |s]<|t]}.

(3) ﬁ(U)S is trivial.

(b) £ U i<k, are relations on o with support in ti_(_:n, such that
03 X‘.
ti+tj,1_<_i<‘j5_k, and for each i, the array {U;} on N4 ig i, i.d.,

' 1 k -
then {(U,..., U )o}ae]Nn is independent of \%S , where

S ={s: IS/I(IXti)'”l < lti" i < k for every w a finite, strict permutation of INxn},

Proof: (a) (3) implies (2) by Corollary 5.9. (2) implies (1) by
Corollary 5. 6(b). (1) implies (3), because if o, ieIN is any enumeration

of I , ’&S is contained in the tail of {UG :1e INJ,
i

(b) We will prove this by induction on k. We may assume that tk}gtj

for any j< k. It follows that ,tjn tk] < |t | for each j<k. Hence if
T={sUNx@-t): |s] <[t]}, then SCT, and tieT, j<k, so F € Fop
and {(Ul,...,Uk"(lj} is JT-measureable. Hence, by (a), {UL{} is
independent of ;é?(Ul, cen, Uk-l) \/:7—48 . By inductive hypothesis, (Ul, cee, Uk_l)

is independent of ‘%S' Therefore the result follows by the following lemma.

5.12. Lemma: Let X, Y be random variables. If X is independent
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of F(Y)y K, and Y is independent of #, then (X,Y) is independent
of f(

The proof of this is obvious.

While we are on the subject of relations inducing i.i.d. arrays, let

us give this useful result:

" Corr L ot ,
5,13, Proposition: Let U:Q [0,1] be a relation on (£, "Z;m’ Pm)meIN

with U independent of ‘?IC(n-H n) * and let Fk € Jn , ke IN. Then forv

almost all w, U(',w) : Q" — [0,1] is independent of A (F) :k eIN),

(n, n-1)
and P_(¢(U(+, w))) = P4 ®(0) for every ¢« C([0,1]).
Proof: It will suffice to prove this where there are only finitely many

F,, k< M. Butin this case we may take {Fk} to be a partition of £,

Then if G ¢ ‘}"C(n, iy F e 571(F1{:1<51V1), @ e C([0,1]), then

Pn(sf)(U(-,w»GF): b P(cp(U(-,m))GFk) a.s. ()

Fcr D
I

so it will suffice to prove for a single F that for each G, @,
P @U(-, 0))GF ) = P (@U(:,0))P (GF ) a. s. ()
If this fails we may take it that P(B) > 0, where

B = {o: P @UC,0)GF) > P QU+, )P (GF)} .

But B X GF ¢ j'C(nJrl, n and



40

P, (P(UNBX(GE)) - P (@(UNP_, (BX(GF))

n+l

; fB (P @(U(,w))GEF) - P_(@(U(", ) )P (GT)AP ()

v
o

But this contradicts the hypothesis that U is independent of Jic(m_l n)
What I have shown of course includes the fact that for any ¢ e C([0,1])

Pn((P(U(° ,w))) = PnH((p(U)) for almost all w, hence for all ¢ ¢ C([0,1]),

since we need only consider ¢ in a countable dense set. @&
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6. Atomless Spaces.

We are now in a position to directly give a proof of the structural
characterization of ED and DRE arrays which we are after, but we will
not do this. Instead, we shall first introduce some measure-algebraic
material which will enable us to prove a stronger theorem with a slightly
simpler proof; in any case, it seems necessary to introduce some measure
theory in order to characterize equivalent representations.

The results summarized in this section are adaptations of well-known
facts about atomless measure spaces, These are fairly simple, and must be

folklore, but we do not know a source for them.

6.1. Definition: Let (2, &, P) be a probability space & a o -algebra

contained in %

(a) F is said to be atomless over JJ if for every F o) Fn ¢ & and

1, L
,27(17‘1, veo, Fn)-measureable function £:92 — [0,1], there is F ¢ % such that

PE|GE,....,F D=1 a.s.

(b) Let « be an infinite cardinal. F is «-atomless over z&iff whenever
Fi € 9@, iel, with I of cardinality less thanb k, Jh is atomless over
,,aff(Fi:i e I). (Observe that atomless = ?‘((')-atomless, where ,‘(O is the
cardinal of IN.)

(c) Let us say that Ui € 3;, iel are independent over ,ﬁ if ,,J Ui’ iel

are mutually independent.
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6.2. Terminology: A well-known theorem of von Neumann (see Royden
[13]) says that whenever 1\/.[1, 1\/[2 are complete separable metric spaces and

by, b, are atomless measures on the Borel sets of M’l’ 2 respectively,

then there is a bijection ¢ : 1V[1 - 1VI2 such that ¢, @ ~ are Borel measureable,
and measure preserving with respect to the given measures. Thus if X is
an Ml-valued random variable there is an Mz-valued random variable Y = @(X)
which is measure-algebraically equivalent to X, and if the distribution of
X 1is atomless, we may choose Y to have any atomless distribution on 1\/12.
We shall refer to the process of obtaining Y from X as recoding. &
The various degrees of ""atomless over" have this simple characterization:
6.3. Proposition: Let )7 denote the nullsets of P. & is atomless
over /&’ iff for every F e P, F / 77, the principal ideal (F) = {H ¢ : H & F}
is not generated (as a o-algebra) by less than « elements over (i.e. together
with) (F)N (A v,

Proof: (=2>) is trivial. (<=) follows by a simple modification of the

proof of Maharam [12], Lemma 2.

The following characterization in terms of sets independent over ,)J
will be the most useful in connection with g.p.s.'s.

6.4, Proposition: \71 is atomless over _,4'7 iff there are Un’ P(Un) =
re(0,1), nelN, independent over ,,é’

Proof: (=2>) follows easily by iterated application of the defining property

of ""atomless over'.
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(<= Suppose to the contrary that for some T ¢ J, P(F) > 0, () is generated

by Hl’ coe, Hn over /&n (F) v )7 . Wemay as well agsume that H Hm

1;"‘;

form a partition of I and P(Hl) > 0 . Thus there are

G_ < 2 such that

(1) HIU = HlGn a.s., nelN,
Thus 1
(2) HU =HU G a.s., ne¢lN,
l1™n l ' nn
But by the weak law of large numbers,
() lim P(T = HU )= rP(H)
n n<N

1 .
$ Y™ -l ] ol
lim F (N = II1 Un(xn) by (2)
n n<N

i

r 1im1% = P(HlGn)
n n<N

by WLLN conditional on /g . But
(%) = lim = = PEG), by ()
N 1™n
n n<NN
Thus P(Hl)=r P(Hl), a contradiction, since 0<r<1. B
Now we work in the converse direction, to show that when cf1 is
atomless over .»ff, any f—measureable function can be written in terms of

,Zf and sets independent over )g

6.5. Lemma. Let (, F,P) be a probability space, J atomless over

.»Zf - 5" Then for any I ¢ H , € >0, there are Ul’ coe, Um € J independent

over ;Z/, such that for some Y ¢ ,g(Ui : 1< m), P(IF-—YI) <g,
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Proof: For r¢[0,1] meIN, let [r]m denote the greatest number

lrin’ k¢ IN, which is no larger than r. Given ¢, let m be the least integer

such that P(]g-[g]ml) < ¢, where g = P(F[J). Since < is atomless over

,-Zj, we may choose in turn U1 , 1<k <m, sothat

: ok ,_5_ kil
P(Uk ]/é{(]?, UJ.:J < k)) = g on F [} {g m - —=)}
ko ko kH
" m g){[m’ m)
=0 elsewhere,
Then
. R S I 0 B,k ki
PO U= 2o g e ) TOIPE L Uakio) +5 (gf 1 500}

(g e kil

2

U

But it follows from the definition of Uj , J<k, that each Vj = - i

is ¢,i. & F, Ui’i< Jj, given /J, and hence VJ., j<k,and F are c.i.

given ,.Zi/ But
. K
(g« 15 SEPE LW 30 - g ¢ B 2y p0m] 0w 40

hence

oy gk kL ke ko kH
PU U <k0) = 7 (g e [, o 0e + 1o {e f 0 500)
- L
mb

Thus Uk is independent of J(Uj:jd() for each k< m, and it follows that
Uk’ k < m, are independent over /-é/

Now if
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Lo ok kAL

Y~Uk if ge[m,m) 1<k < m,
=1 if g=1

=0 if g=0

then Y GJ(Uk:k<m), Y<F, and

P(|F-Y]) = P(P(F-Y|.&))

- P(g-[g]") <«

’

as was desired. i
6.6. Definition: A random variable is uniform if it is uniformly

distributed on [0,1].

6.7. Proposition: Any ./-measureable random variable is of the
form X = £(Z, U), where Z is ,&-meagureable, and U is uniform and

independent of )&
Proof: Recode X as X i {0, 1}1N . X = (}—{-i:ielN). Enumerate IN
as in ne IN so that each ie¢ IN appears as in for infinitely many n. Now

proceed inductively: Suppose that before the nth step we have chosen

1
mj, j<n, U, k< m. _q independent over /J, such that P(Um) = j<n,
— i
and P(IXij - YJ.[) < '%“ for some Yj ¢ ,éf(Ul, voe, Um ), j<n-l. Now choose
J
m > mn”1 s Uk’ mn_1 < k< mn independent over /47 such that

—

_ 1 | . .
P(lxin -Y )<=, forsome Y <(U,. “'Umn-l) ,
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. . : : 21 .

and choose Um independent of /Zy(Ul, cen, Um _‘1), P(Um ) = 5 But
n n n

Ul’ cooy Um are independent over ,s"f Thus we construct Un , nelN,

such that for every i ¢ IN, }?i is approximated arbitrarily closely by sets

in J&(Un :ne IN ), and for each n, P(U )= Hence there is

L
m 2°
— — S n —
Yi ¢ J(Un :ne¢N) such that Xi = Yi a. 8, Recoding (Yi i1 e IN) we get

Y suchthat X =Y a.s. But U= (Ui :1¢IN) hag an atomless distribution
on {0, 1}]N (since P<Ui) ='21" for infinitely many i), hence may be recoded

as a uniform random variable U, Butthen Y = £(Z, U) for some Borel

measureable f, )J-measureabl.e Z.,
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7. Structure Theory.

We now apply the results of the last two chapters to g.p.s.'s and
relations on them to obtain a structural characterization of the relations
in terms of relations independent of sets with support smaller than their own.
This <yields by sampling a representation theorem for ED and DRE arrays
in terms of i.i.d. uniform arrays; this can be extended to RCE and RE
arrays. We also determine when two different representations produce
equivalent arrays.

Let (Q,qrtn, Pn)ne be a g.p.s. and let us write n77<n for &

C(n, n-1)
tcmelN ,(Jq = {¢,02}). We

N
n <IN, and analogously JQ for J;C

(t, t-1)’
want to work in the situation where J@m is atomless or ?le-atomless over
cf'<m (where ?q is the least uncountable cardinal--i.e. fm is atomless

over J<m(Fl{:ke]l\T) whenever B e ‘%m’ k ¢ IN) for each m < n. The
following results shows that it is easy to arrange this.

7.1. Proposition: Let (%, c}’;n, Pn)ne be a g.p.s. If there is

N
Uce Jn , 1> P(U) >0, which is independent of ‘56<n (in particular, if Jn

is atomless over 54<n), then ‘%m is Hl-atomless over, ‘77;<m’ for

each m < n.

Proof: Suppose we are given Fl € c?‘m , keIN, Then by Prop. 5.13
<

we may successively choose 31 ¢ sz“'m, ie¢IN, such that Ui = U ,$i) has

o} = .o : inde R S . .
}n(U) Pm(U( ,wi)) and Ui is independent of <m(Fk’ Uj.l«: eIN, j<i).

Then Ui , 1e¢IN, are independent over ‘56<n (F{:ke]N), so the result follows

1
by 6.4. @i

7.2, Definition: (a) Let Ut, t &n be a family of uniform relations on

Q" (i. e. uniformly distributed random variables with values in [0, 1]). We



48

We call {Ut 1t g n} an independent family if for each t, Ut has support

in t and {(Ut)ED}cht is i.i.d. It follows easily from Cor. 5.11(b) and

t,ED
}

Cor. 5.6(b) that {(U) t ¢ n, are mutually independent .
o &

oelND
tom  w(t) . ot
(b) If also (U) =TU for each wen!, t €n then we say {U :tcn}
t, DWE
Y.}

is symmetric independent. It follows that {(U S tcn, are

seC(IN, t)
each i.i.d., and independent of each other. This of course determines the

DRE
)

e g |
distribution of {(U :t ¢ n) ) N

(c) If {{Vz} : tEn}oean are ED (resp. DRE) and have the same distribution

} (resp. {(Ut ite n)?RE}),

ED
as {(U*; t&n) where {U': tcn} isan
independent family (resp. symmetric independent) then we will call

{{Vg} it ¢ n} an independent (resp. symmetric independent) family of arrays.

(d) If {Vt :t < n} is also an independent (or symmetric independent) family

of relations which are independent of {Ut : tg_,n} we Qill say that

{Ut, vt C n} is jointly (symmetric) independent. {(Ut, v . t ¢n} actually

satisfies the conditions of the definition of (symmetric) independence, except

that each random variable (Ut, Vt) is uniformly distributed on [0, 1]2. ]
Since any two symmetric independent f\amilies induce DRE arrays

with the same joint distributions, writing a relation as

X = #(U" : ¢ 4t € n)

DRE )
o

determines the distribution of {X

. |

7.3. Theorem: (a) If jn is atomless over c7'<n, then for any

relation X on o s
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X=f(Ut:¢#tgn) a. s.

where f is Borel measureable and {Ut 1t < n} is a symmetric independent
family.

(b) If Jn is ;ﬂ~atom1ess over oin and {U%: t &n} is independent (or
symmet'ric independent) then for any relation X on Qn, there are Vt, tCn
t

such that {Ut, V' :t<n} is jointly independent (or symmetric independent)

and
x = f(u, v' ¢ 4tcCn)

for some Borel measureable f.
Proof: Let us start with the non-symmetric case of (b). We will prove

by induction on m< n, that given relations 7 , 8¢ C(n, m), each with

support in s, there are vt , ten, |[t| < m, such that {Ut, vt :tCn

3

[tl < m} is jointly independent (except that it is not defined for all t <n) and

11

gs , 8 e C(n, m), Borel measureable such that 7.8 gs(Ut, Vt : ¢ + t €s) for

each s. (Thus the theorem is the case m=n, X = Zn, f= gn). By Prop. 7.1,
F is . -atomless over &% _, andso'is F_ over F , se¢C(n, m)
m 1 <m S <s

since (‘;m’ 5’1<m) is isomorphic to .:(5’S , \54<S). Thus by Prop. 6.7 we can

~J) ”~t oy
write Z° =hS(WS,VS) where W° is J<S(US) measureable, and V° is

uniform and independent of u"‘(q(US

[=

). But for each s,

ucs, |ul=m-1),

S
where W° have support in u. For each u, we can recode (W s 2Ju)

into a single [0, 1]-valued random variable Wu, so0 we may as well assume
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k¥ (w", u

e

rugs, |ul=m-1).
But by induction each
t .t
Wu=gu(U,V rd$tcu)

for some partial jointly independent {Ut, vt [t| < m -1} . Butby Cor. 5.11(b)

t

{Ut, V' :t<m} is jointly independent, and for each s,

t

N
I

=080t v e dtew, UR i uca), V)

Wt v dig e .

11

as desired.

The proof of the symmetric case of (b) needs an extra wrinkle to get
{Vt: t Cn} to be symmetric, but because {Ut : t < n} is symmetric, a
simpler induction will do. We show by induction on n that the statement is

true of any relation X. By Prop. 7.1, J5. is atomless, hence there is a

1

uniform F -measureable Y :Q — [0,1]. Now if for each wen!,

1t

Z(v)(wl, oo ,wn) X(ww_](, soe,w g ) if Y(wl) < ... < Y(wn)

1) (1)

11

0 otherwise,

then X = £ 2Z(m)" a.s. Hence it will suffice to prove the result for
wen! _ ‘
Z = (Z(w) : m ¢ N!). By recoding and Prop. 6.7, we can write

Z=g(W}Un,'\7:i~_<_n) a. s.



where W' has support in n - {i}, and V is uniform and independent of

n .
}<n(U ). By recoding, we may suppose Y'@) = Y(wi) is a function of

W1+l (Wl, if i = n) for each i. Since Z is zero unless Y(wl) <,.. < Y(wn),
if we let

n ~ . . . .-
\4 (wl, oo, wn) = V(wﬂ(l), voo, wﬂ(n)) if there is a (necessarily unique)

m ¢n! suchthat Y ,,.<...
(1)

i

0 otherwise,

then

Z =h(w,, ", v?ii<n) a.s.

ewWh Ut VR ri<n) it V<., <Y"

0 otherwise .

Now V" is uniform and symmetric, and since -.7"<n(Un)Tr = J(n((Un)w) =
5‘<n(Un) for each = en!, itis also independent of the latter o-algebra.
n .n. . . o 2
Hence (U, V') is symmetric, uniform on [0,1], and independent of ‘;<n .
For i< n, let T, € n! be the permutation which transposes i and n and fixes
. m

everything else, and let W = (Wl)i .
By induction and recoding, there is vty ¢ n -1} such that

. _

{Ut, V' :t¢n -1} is jointly symmetric independent, and

Wit viisdten-1 i<n.
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IR
If for t<n, [t] <n, wedefine V' = (V ') for any w such that
m(t) €n -1, then, by symmetry of {Vt :t<n -1}, the new Vt's are well-

t

defined, and {Ut, V' it cn} is symmetric independent. Thus

a) i) o

Z=hgw' ,v' :ten-1, UV :i<n)

'—'f(Ut,Vt:(ﬁ%t_C_:_n)

Part (a) is similar, but a little simpler. [
7.4. Corollary: (a) {XU} saNn 18 ED iff there is a independent
family of arrays {U:cy :t ¢ n} such that {Xo }~ {YO} where

¥ = (Ut td4ten),
g g

f Borel measureable.

(b) {X } is DRE iff {X }~{Y } for
g (02 [e)
Y =80 :¢4tcn),
(0 o -

f Borel measureable, {(U:Cy 1t € n)} symmetric independent

(c) {XS} is DWE iff {XS}N{YS}

seC(IN, n)

Ys=f(U‘;:Ms5n)

{(UtS : t < n)} symmetric independent, and

" (t)

£( :¢+’c_<_:n)=f(xt:¢>#t_c_:n)

for each wen!,

Proof: (<==) is trivial in all three cases. (=)
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(a) Let {U0 }oeINn be i.i.d. and independent of {XO_ }, with each UO.
uniform. Then {(XO , ﬁc )} is ED. By the Sampling Representation,

{(XO, U_ )}~ {(YO_, U, )}, where {(YO‘ U, )} is obtained by ED sampling of
relations Y, U on " for some g.p. 8. («, Jgn, Pn)' By Cor. 5.4(a), U

is independent of \7z<n . Recoding U as a uniformly distributed {0, I}IN-valued

relation (U, :i¢IN), U, ¢4 are independent of J , and P _(U,) =
1 1 <n <n n i

™o b

Hence by Prop. 6.4, \%<n is atomless over L;/'<n . Hence by 7.3

Y = f(UJu :¢ $tCn) as for some independent family {Ut :t< n} and f Borel

Ut)ED
o

measureable. If {Uz} = {( } for each t<mn, then {(U(: :tcn)} is

independent, and

Y = Ut t¢4ten) a.s. o eIN,
(e} o .

and the result follows by changing YO on a set of measure zero.
(b) Is similar.

(c) By (b), we may assume that {Xcr }, the DRE array induced by {XS},
is induced by some relation X = g(U‘t :t &n) where {Ut, t €n} is, symmetric
independent.

Then X" = X a.s. for each ¢ n!, sb 'if

1
n!

ZA g(xﬂ(t)
men!

f(xt:t(_:n,t+¢)= :tCn, t{9¢),



then
Y =f(Ut'qS#t§n)=X a. s.
s s’ s

for each s, and f has the desired symmetries. §

7.5. Corollary: {XG} is RCE (RE) iff {Xg}N{YG} where
YO = :?(UfI :tCn) (i.e. including t = ¢)

where f is Borel,.
t ¢ 9

{(U0 : ¢ $tcn)} is independent (symmetric independent) and UG = U is

uniform and independent of {(U; :tCn)}. The analogous result for WE
arrays also holds. |

Proof: We use the same device as in Cor, 5.10(c). Let us assume
{XO}MNn is RCE; RE is similar and WE follows from RE as DWE

from DRE in the theorem. Form {Bz'r}'re}NnH as in Cor. 5.10(c). Since it

is ED, {;{T}N{i_} where

. = {vy d
as in the theorem. But {XO } {Yo} {Y(o,'l)}oean , an

— =t

Y :f(U(G’l):¢+t_C_n+1).

Now I-J-({;l-]-ll)} , (Ut UtU{nH}), ¢ % teno e NG satisfy what the Corollary

(o, 1) (o, 1) (ot} )
. vt n ‘ —{n+l} —tu{n+l , n
requires of Ucr ,tCn o ¢IN , except that (U(G’ 1)’ U(O‘,l) ), ten, o e lN

are uniformly distributed on [0, 1]2. We can recode them as {(U:Cj 1 % t ¢ n)}
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(independent) and let Uds = ﬁ(imll)} . Then
t n
Y =#U :tgn), o eN,
o [¢)
as desired. B
7.6. Corollary: If (1, c‘fvm, Pm)me]l\] isa g.p.s. with ‘;n atomless

over & , and {X } is DRE (or {X } n is ED) then
<n o o ogelN

oeP(IN, n)
there is a relation Y on ©" with {XO‘}N {Y?RE} ({XG}N{YSD}).

Proof: By Cor. 7.5 we can assume that for each o, X0 = f(U(tj 1 ¢ * t $n),
where {'(Uzr 1t < n)} is symmetric independent. It is implicit in Theorem 7.3(a)
that there is a symmetric independent family {Vt :t<Sn} on o, put
Y = f('Vt :t<n) (ED case similar). B

Corollaries 7.4 and 7.5 generalize 'I‘helor'em 1.4 and Prop. 3.3 of
Aldous [1]. In any of the cases covered by those corollaries, we will call
f(Ug : t €n) a (structural) representation of {XO}.

Two natural questions about structural representations arise.

(1) When does a relation X have a representation f(Ut :ted)

for some given set S of subsets of n ?

(2) When do two representations induce arrays with the same

distribution? (Asked by Aldous)

We can give a satisfactory answer to (2), but we do not have a good answer to

(1); perhaps some light would be shed on the matter by careful consideration

of the answer to (2). But we can make some gimple observations about (1).
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The first is that if S is a set such that t € s ¢S implies te¢ S, then
if X is z?f(X)S measureable, then clearly X has a representation
f(Ut : 1 ¢ S). One might hope that a sort of inversion of this, that if X is

independent of ¢ (X) , then X has a representation i“(Ut 1t £S), would

S

hold, but it does not. Any ideas in this line are foiled by counterexamples of

the following simple kind (elaborating one used by Aldous): Let

1 .23
or U,U <=

i

2
Lu®®y =1 o u®®s

=
f\.lr—‘

X = f(

i

0 otherwise

Then

1
PX|#) = [ 20", x)dx = -51- = P(X)
2

so X is independent of 551 ; it is likewise independent of \74{2 3} But
as it ig j{{l}, (2, 3}}-measureable, it must be represented in some form
like that it is in.
Furthermore X may have a representation in which one variable does
not appear, and another in which it occurs nontrivially., Thusif f is as before,

and

gx) =1 if x>

N]»—-‘

ol
01fx<2.

il

then f(Ul, Ulz) and g(Ulz) induce ED arrays with the same distribution.
Before answering the second question we will prove a further fact about

g.p.s.'s.
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7.7. Theorem. Let (Q, ..Zm, mmc]N be a g.p.s. such that \;n is

X -atomless over 5;<n . If X is a relation on Q" , and {()I?O, 3?0)} is a

1
DRE
}~

DRE array with {X {}-ZO} (resp. ED array with {XED}~{}_Z 3]

?RE DRE }’V{(X Y )}

then there is a relation Y on 8 with {«

ED ED

(resp. {(Xcr )}’V{(X ,Y ).

To prove this, we will need the following Lemma (which was proved
in [7], though not explicitly stated).

7.8. Lemma: If {(X Y((Il))} (N

DRE (resp. ED) arrays such that {X 1)}N {X(2 } then there is a DRE

and {(X c(12)>} v are

(resp. ED) array {(X Y ZO.)}
(2) ( ))}.
0'

g such that {(Xo-' YG)} ~ {(X(r , Y((jl))}

and {X Z )}N{(X

1 XYV~ Y

(2) - (2)

(2) (X, Z2)~ (X )

(3) P(Xe¢B,YeB Ee133)

1 2’

= P({}z € Bl}P(g ¢ lef-{“)P(-Z-«-e B3 |§—§-)).

. .
B, Borel sets in IR]N (i.e. combine (X(l),Ym

@ ,
1
)

) and (X )

(2)

independently over the identification of X and X '), This defines a
consistent distribution, which is clearly RE (resp. RCE). By the
deFinetti theorem 2,2, P is a mixture of DRE (resp. ED) distributions

Q; by the uniqueness of the mixture, since (i, 'gf:) and (}—i_, Z) are DRE,
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Q 1is the same as P on (5{-, Y) and (}-Z, Z) almost surely with respect to
the mixing measure. Choose such a Q as the distribution for a DRE (ED)

array {(Xo’ Yo‘ , Z(T )}oean . This array satisfies the conclusions of the

Lemma. &

Proof of 7.7: Let X = £(U': ¢ 4 ten) a.s. where {U':tecn} is

symmetric independent. Amalgamate {(X, Ut te n)?RE}

{(5{-0 , .hY.(I )} as in the Lemma to get {('}“ic , fJ'(tI Y i ¢ 1 ten)} with the indicated

and

marginal distributions: we may assume that this is the DRE array induced

o~ o
by relations X,Ut,f, ¢ 4t<n, onsome g.p. 8. (SZ ’&m Q ) with

’&/n Xl-atomless over ’JCn' Thus we can write Y = (ﬁtff tdftc a, s.
ot

where {ﬁt, \4 1

there exist VJc on o satisfying the same properties as '\?t. Then if we define

Y = g(U V ¢ %t &n), (X, Y)DR]‘AJ(}-E, ?)DRE. The ED case is similar. 5

tc n} is symmetric independent. But by ~ -atomlessness

7.9. Remark: (a) The same proof shows that 7.7 also holds with

X, }_(—, Y replaced by countable families of relations of varying dimension.

(b) Natural generalizations of 7.7 hold with suitable hypothesis of «-atomlessness,
kK any uncountable cardinal, replacing H]-atomlessness. If we say that for

(2, J n neIN a g.p.s., (5?1: n ¢ IN) is k-homogeneous if for each n

Jn is r-atomless and generated by « sets over ‘in’ then one can

easily prove a measure-algebra isomorphism theorem generalizing that of

Maharam [12]; but, although such « - homogeneous spaces do exist, this does

not seem to lead simply to any classification theorem, as does Maharam's.
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Now we can conveniently settle the question about when two representations

may represent the same array.

7.10. Theorem: (a) Let {(U(t7 : ¢ $t<n)} be an independent family

of arrays. Then
{f(U; : ¢ 3 ’c_cj._.n)}'V{g(U:C7 :¢$tcn)}

iff there are measure preserving functions T

LE
Tt : ([0,1]2)'a -{d)}-> [0,1] (2‘C = set of subsets of t), ¢ $+ t < n,

such that

w U } s8¢ £))dx’ %¢ is a.s. constant for every
@ e C(0,1]), tCn,
(2) f(xtztb%tgn):g(Tt(xs,;S:¢+s_c_:_t):t_gn) a. 8.
(b) If instead {(Uz 1t Cn)}  is symmetric

independent, then the same holds, with the extra condition that
(3) ".{'Tr(t)(}::s,-}-i'S :s gmt) = Tt(xw(s);rr(s) s Ct).
Proof: In both cases (<==) is straightforward: if {Uo’ U, ¢ 4 t<n}

. I . . t .
is independent or symmetric independent, then since each T is measure

preserving,
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will be uniform, (1) quarantees that {VZ‘}O'dNt, t € n, are independent and

each i.i.d., and in the DRE case condition (3)
makes vt o= V:(t), men! . Thus

oall

{f(U'Z ttcn)} = {g(VZr st En)t {g(Uz tten)} .

(=>) By Lemma 7.8 and Cor. 7.6 we can assume that we have independent
(and in (b) symmetric) families of relations {Ut:t <n}, {V‘E :ten} ona
g.p.s. (L, ‘Sém, Pm)meIN such that ‘%n is Kl-atomless over aan and
f(Ut :tCn) = g(Vt :t €n). By Theorem 7.3(b), there are Borel-measureable

functions Tt, t ¢n, and an independent (and in (b) symmetric) family

(ot t ¢ n} which is jointly independent with (ot t €n}, such that

THU®, 05 s gt) = V!
(in (b) since THUS, T° ;s ct)™ = TH(US) (T, s ctb)
= T EIgTE) g ey
; Vﬂ(f;)

)

1T(t)( ,xS 18 ¢ w(t)) = t( “(g);"(o)

we may assume T X 1 s ct))

Now since (US,T._IS : 8 ¢t) and V are both uniformly distributed on

. . t ‘ . .
their respective ranges. T must be measure preserving; and since also

#ut it gn) = g(THUST® i s 2t) : t cn),

{ : t<Xs —s

3

f(x :d4ten)=g(T $4sct):d4tecn) a.s.
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n
with respect to Lebesgue measure on ([0, 1]2)2- -1 . And because VJc is

independent of ‘ﬁt , for every @ e C(]0,1)),

P | F ) = [omD® 4 5 s g axs

is constant a.s., and this implies (1).
This result, too, generalizes straightforwardly to RCE and RE
representations.
The criterion is simplest in the BD case when n = 2, Then, by
5. 6(c), {f(U UJ U )} {g(U 1J2)} iff there are T, T, measure

perserving such that

fcp( (x xz X ))dx f(P(g(T (x X ) '],"‘z(xz,;c-z),xlz))dx12 a. s.

for every bounded continuous @.
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