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A Problem concerning 2-Dimensional Random Posets :
notes by Aldous/Brightwell.

A partial order on [n] induces a partial order on any subset A C [n]. Given
two partial orders on [n], say <! and <2, we can defined their “subset of
maximum coincidence” as

coin(=<!, <?) := max{#A : <! and <? are identical on A}.

Given a probability measure i, on the space of all partial orders on [n], one
can define a random variable X,, € {1,2,...,n} by

X, = coin(jl, 52),

where <! and <? are chosen uniformly from fi,.

We seek to study X, in the case where u, is the random 2-dimensional
partial order < on [n]. This random partial order has two equivalent de-
scriptions [?, 7, ?].

(i) Take two independent uniform random permutations 7/, 7" on [n]. De-
clare i < j iff ] < 7r§- and 7} < 7r§-’ .

(ii) Take n points (U;, V;) distributed uniformly independently in the unit
square [0,1]2. Define i < j iff U; < Uj and V; < Vj.

Conjecture 1 There exists a constant cq such that as n — oo
EX, ~ con1/3 and n_l/an LN cp.

We will outline proofs of the bounds
limnsup n"Y3EX, < ¢t:=385 (1)
limninfn_l/?’EXn > c_:=0.728. (2)

It will be clear that the numerical bounds could be improved. Intriguingly,
different approaches to bounds lead to different subproblems; we give only
suboptimal solutions to the subproblems. Our methods do not seem sharp
enough to get the (presumed) correct limit cp.



0.1 Motivation

If instead of partial orders we consider two uniform random total orders on
[n], then the analog of X, has the same distribution as

L,, := length of longest increasing subsequence of a random permutation of [n],

for which it is known [?, ?] that FL, ~ 2n'/2, and whose more refined
properties are of current interest as part of a circle of ideas surrounding
the topic of largest eigenvalues of random matrices [?, 7, ?]. We do not
know whether our X,, has any analogous connection to other mathematical
structures. Our methods conceptually parallel bounds obtained in the early
history ([?]; [?] section 6.7) of the study of L,, before it was discovered
that the limit constant was 2. Hammersley’s ingenious representation of
L, in terms of a two-dimensional Poisson processes enables the subadditive
ergodic theorem to be used to prove existence of the limit lim, n~Y2EL,,
but we do not know any such argument to prove existence of a limit ¢g in
Conjecture 1, nor do we have any conjecture for the numerical value of cg.

0.2 Lower bound 1

Subproblem 2 Let B,, be the random {0, 1}-valued m x m matriz whose
entries are independent and equal 1 with probability a/m. Let Y,, be the
mazximal number of 1’s in a {0, 1}-valued matrix A < By, such each row and
column of A has at most one 1. Show that

m 1 EY;, = a(a)
for some explicit constant a(a).

We will prove instead the bound
lin}ninf m 1 EY,, > a_(a) :=a (1 —e )2 (3)

Define A by: A has a l-entry at (i, 7) iff B,, has a l-entry at (¢, 7) and By,
has no l-entries at any (i, j) with ¢’ < ¢ or any (7, ') with 7' < j.
Clearly
P(Aj;=1) = (1)

m

and it easily follows that

lim m ™' F( number of 1-entries of A)
m



= a/)l /01 exp(—a(z +y)) dedy = a_(a).

To obtain the lower bound, fix b, take m = m(n) ~ bn'/3 and divide
the unit square into m? subsquares of side 1/m. Think of each random
partial order as being obtained from n random points in the unit square.
The chance that the i’th point falls into the same specified subsquare in
both processes = m™*. So the event that a given subsquare contains, for
some 1, the i‘th point in each process has chance ~ nm™* ~ b=3m~1. The
indicators of these events form a m x m matrix, in the format of Subproblem

2 with a = b=3 (the slight dependence here has no effect). Clearly
X,, > theY,, defined in Subproblem 2
and so in terms of the putative limit a(a) therein,
limninf n'PEX, > blimminf m L EY,, = ba(b™3).
In terms of the lower bound a_ at (2) we now see that (2) holds for

c_ = supba_(b~3)
b
which works out numerically as =~ 0.407. We get a better bound in the next
section.

0.3 Lower bound 2

Think of each random partial order as being obtained from n random points
in the unit square. Write (u},v}) and (u?,v?) for the points associated with
element i. As in the first lower bound, we find a “coincident” subset A C [n]
by considering some i’s whose two points (in the two processes) are close
together; but now we don’t discretize.

For real u!,u? write [u',u?] for the interval [min(u',u?), max(u!, u?)].

Say i and j interfere if the intervals [u},u?] and [ujl,ui] intersect, or the
intervals [v},v7] and [v}, v?] intersect. If A is a subset such that no i and j

in A interfere, then A is a coincident subset.

Write u; = |u} —u?| and v; = |v} — v2|. For small u,v, the conditional
distribution of (u},v},u?,v?) given (u;,v;) = (u,v) is (very close to) the

distribution of (U, V,U £+ u,V £ v) where U and V are independent U (0, 1)
and the choices of + are independent uniform. It is then easy to see

P(i and j interfere|u;, v, uj,vj) = u; + v + uj + v;



provided the right side is small. We now define a coincident subset A by
first ordering [n] so that u; + v; is increasing; then include ¢ in A iff no
previously-included j interferes with 4.

Within this scheme, write f,(t) for the chance that an element with
u + v = t in not interfered by any previous element. Since the density of
points (u,v) equals 4ndudv, we get an approximation (for small ¢)

1= fult) = / /1- o Andrdy fu(ety) (@ by 6), (4)

Here 4n dxdy f,(x+y) gives the density of previously-included points (z, y),
so the integral gives an upper bound on the probability that (u,v) is inter-
fered with. So a more precise interpretation of (4) is that we can arrange
to include elements in A so that (u,v) is included with probability approxi-
mately fp(u+ v).

Setting x + y = s, equation (4) becomes

1—fu(t) = n/ot 4s(s+1t)fn(s) ds.

Continue until the time ¢} when f,(¢) = 0; then size of A is about
24

n 4sfn(s) ds.
0

Rescale to set f,(t) = f(tn'/3). Then equation above becomes

t
1= f(t) = / 4s(s + 1)1 (s) ds.
0
This can be rephrased as the ODE
"4+ 8t2f +20tf =0; f(0)=1,f(0)=0.

For the coincidence sets A,, constructed this way we have n3EA, — c_
for
t*
c_ = 4t f(t) dt
0

t* :=inf{t: f(t) = 0}.
Numerically, c_ = 0.728.



0.4 Lower bound 3

Subproblem 3 In two independent random 2-dimensional partial orders on
[n], what is the mazimum size Z, of a subset A C [n] such that each partial
order restricted to A is the trivial partial order (i.e. A is an anti-chain in
each order)?

Obviously this Z,, is a lower bound for X,.

We can find a lower bound for Z,, in a way parallel to that used in the
previous section. Think of each random partial order as being obtained from
n random points in the unit square. Consider the two points associated with
element i, and write x; and y; for the absolute distances from those points
to the reverse diagonal u + v = 1, measured orthogonally. Note the density
of (z;,y;) is approximately 8dxzdy for small z,y. For two elements i,j € [n]
a brief calculation shows

P(i and j not anti-chain in one order) ~ v/2(max(z;, z;) + max(y;, y;))-

when the right side is small. Now order [n]| so that z; + y; is increasing.
Construct a subset A, which is an anti-chain in each order by the greedy
algorithm: inductively, include ¢ if possible.

The mean size F' A, can be analyzed as in the previous section, starting
by writing f,,(z,y) for the chance that a point with to-diagonal distances
(x,y) is accepted. We end with

lim FA, =c_ := //f(x/,y') dx'dy’
n
where f(x,y) is the solution of
LS = [ [ fay)sdedy Ve(max(a,a') + max(y. ).
@'ty <z+y
I haven’t tried to evaluate this numerically.

0.5 Upper bound 1

Subproblem 4 Write p(m) for the probability that two independent uni-
form random 2-dimensional partial orders are identical. Show

p(m) = (B+ o(1))™/(m!)* as m — oo

for some explicit constant 3.



It is plausible this holds with § = 1; we give an upper bound 5 < 3 below.
To derive an upper bound, for two independent random 2-dimensional
partial orders on [n] consider the quantity

E( number of size-m subsets where the two partial orders coincide).
This equals (")p(m); on the other hand it is at least
m m

This inequality implies

max 7(ET)§H)
W () =

Since (") < n™/m!, assuming the result of Subproblem 4 for some j gives

x! (m!)? A
s (x —m)!n™(5 + o(1))™ s 1w = (BXa)l (5)

Stirling’s formula gives
n~3log(an'/?)! = a(tlogn +loga — 1) + o(1).

Taking m ~ bn!/3 and 2 = EX,, ~ en'/3 for some 0 < b < ¢ < oo, and
applying n~/3log(-) to each term of (5), a short calculation leads to

sup 2blogb — (¢ —b)log(c —b) —3b—blog B + cloge < 0. (6)

0<b<c

This argument, appropriately rephrased, shows that if 8 is an upper bound
in Subproblem 4 then an upper bound ¢t in (1) is given by the smallest ¢
for which (6) holds. Numerically,

if 3 =3 then ¢" =3.85; if 3 =1 then ¢t = 2.67.

0.6 Upper bound in Subproblem 4.

Here we prove 8 < 3; precisely

Proposition 5 p(m) < (m + 1)3™/(m!)2.



Let G(n) be the number of 4-tuples of linear orders on [n] such that, for
each pair i, j from [n], i is below j in exactly two of the four orders (say the
4-tuple is balanced). It is easy to check that G(n) is equal to the number of
4-tuples (L1, Lo, L3, Ly) such that L1 N Ly = L3N Ly (since this is equivalent
to (L1, Lo, L%, L}) being balanced, where L* denotes the reversed order). So
p(n) = G(n)/n!%

Also let F'(n) be the maximum, over all 4-tuples (Lq,..., Ly) of linear
orders on [n], of the number of 4-tuples (I3, ...,I4) of subsets of [n] such
that each I; is an initial segment of L;, and every element of [n] occurs in
exactly two of the I; (say (I1,...,1s) is equitable.

Claim 1. G(n) < G(n—1)F(n —1).

Claim 2. F(n) < 6("1?).

It follows from these Claims that G(n) < 3"(n + 1)In!, so p(n) < (n +
1)3™(n!)=2.

Proof of Claim 1. For every balanced 4-tuple (L1, ..., Ls) of linear orders
on [n], we can obtain a balanced 4-tuple of linear orders on [n—1] by deleting
the occurrence of n from each linear order. Conversely, given a balanced 4-

tuple (M, ..., My) of linear orders on [n — 1], inserting n into a slot above
the initial segment I; of M; (for each j) gives a balanced 4-tuple iff every
element of [n —1] occurs in exactly 2 of the I; —i.e., (I1,..., 14) is equitable.

By definition there are at most F'(n — 1) equitable 4-tuples, and the claim
follows.

Proof of Claim 2. By induction on n. True for n = 1, since F/(1) =6 <
18.

Given any fixed 4-tuple (Lq,...,L4) of linear orders on [n], and any
equitable 4-tuple (I,...,I4), removing n from each linear order (and from
the two I;’s in which it appears) leaves a (fixed) 4-tuple (M, ..., My) of
linear orders on [n — 1], and an equitable 4-tuple (J1,...,Js). There are
at most F(n — 1) possible equitable 4-tuples (Jp,...,Js). How can a 4-
tuple (Ji,...,Js) arise from 2-different equitable 4-tuples (11, ..., 1;)? This
is possible only if, for two of the linear orders, wlog L1 and Lo, n is the
element immediately above J; in L; and immediately above J in Lo, so
that we could have either Iy = J; U {n} and Iy = Jy or vice versa. But this
is possible for only at most n + 1 pairs (I3, I4), since |I1| + ... + |[I4] = 2n
for all equitable 4-tuples. We now see that the number of equitable 4-tuples
(It,...,Is) is at most F(n — 1) +6(n+1) < 6("3") +6(n +1) = 6("1?) -
4-tuples (Ji,...,Js) arising from more than two equitable 4-tuples give an
overcount here.

Comments. Claim 2 isn’t sharp: the right answer must be about 2(n +



1)2, with the worst case being (L, L, L*, L*). It might be possible to reduce
this to about n?, under some suitable additional assumption.



