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A Problem concerning 2-Dimensional Random Posets :
notes by Aldous/Brightwell.

A partial order on [n] induces a partial order on any subset A ⊂ [n]. Given
two partial orders on [n], say �1 and �2, we can defined their “subset of
maximum coincidence” as

coin(�1,�2) := max{#A : �1 and �2 are identical on A}.

Given a probability measure µn on the space of all partial orders on [n], one
can define a random variable Xn ∈ {1, 2, . . . , n} by

Xn = coin(�1,�2),

where �1 and �2 are chosen uniformly from µn.

We seek to study Xn in the case where µn is the random 2-dimensional
partial order � on [n]. This random partial order has two equivalent de-
scriptions [?, ?, ?].
(i) Take two independent uniform random permutations π′, π′′ on [n]. De-
clare i � j iff π′i ≤ π′j and π′′i ≤ π′′j .
(ii) Take n points (Ui, Vi) distributed uniformly independently in the unit
square [0, 1]2. Define i � j iff Ui ≤ Uj and Vi ≤ Vj .

Conjecture 1 There exists a constant c0 such that as n→∞

EXn ∼ c0n1/3 and n−1/3Xn
p→ c0.

We will outline proofs of the bounds

lim sup
n

n−1/3EXn ≤ c+ := 3.85 (1)

lim inf
n

n−1/3EXn ≥ c− := 0.728. (2)

It will be clear that the numerical bounds could be improved. Intriguingly,
different approaches to bounds lead to different subproblems; we give only
suboptimal solutions to the subproblems. Our methods do not seem sharp
enough to get the (presumed) correct limit c0.
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0.1 Motivation

If instead of partial orders we consider two uniform random total orders on
[n], then the analog of Xn has the same distribution as

Ln := length of longest increasing subsequence of a random permutation of [n],

for which it is known [?, ?] that ELn ∼ 2n1/2, and whose more refined
properties are of current interest as part of a circle of ideas surrounding
the topic of largest eigenvalues of random matrices [?, ?, ?]. We do not
know whether our Xn has any analogous connection to other mathematical
structures. Our methods conceptually parallel bounds obtained in the early
history ([?]; [?] section 6.7) of the study of Ln, before it was discovered
that the limit constant was 2. Hammersley’s ingenious representation of
Ln in terms of a two-dimensional Poisson processes enables the subadditive
ergodic theorem to be used to prove existence of the limit limn n

−1/2ELn,
but we do not know any such argument to prove existence of a limit c0 in
Conjecture 1, nor do we have any conjecture for the numerical value of c0.

0.2 Lower bound 1

Subproblem 2 Let Bm be the random {0, 1}-valued m ×m matrix whose
entries are independent and equal 1 with probability a/m. Let Ym be the
maximal number of 1’s in a {0, 1}-valued matrix A ≤ Bm such each row and
column of A has at most one 1. Show that

m−1EYm → α(a)

for some explicit constant α(a).

We will prove instead the bound

lim inf
m

m−1EYm ≥ α−(a) := a−1(1− e−a)2. (3)

Define A by: A has a 1-entry at (i, j) iff Bm has a 1-entry at (i, j) and Bm

has no 1-entries at any (i′, j) with i′ < i or any (i, j′) with j′ < j.
Clearly

P (Aij = 1) = a
m(1− a

m)i+j−2

and it easily follows that

lim
m
m−1E( number of 1-entries of A)
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= a

∫ 1

0

∫ 1

0
exp(−a(x+ y)) dxdy = α−(a).

To obtain the lower bound, fix b, take m = m(n) ∼ bn1/3 and divide
the unit square into m2 subsquares of side 1/m. Think of each random
partial order as being obtained from n random points in the unit square.
The chance that the i’th point falls into the same specified subsquare in
both processes = m−4. So the event that a given subsquare contains, for
some i, the i‘th point in each process has chance ∼ nm−4 ∼ b−3m−1. The
indicators of these events form a m×m matrix, in the format of Subproblem
2 with a = b−3 (the slight dependence here has no effect). Clearly

Xn ≥ the Ym defined in Subproblem 2

and so in terms of the putative limit α(a) therein,

lim inf
n

n−1/3EXn ≥ b lim inf
m

m−1EYm = bα(b−3).

In terms of the lower bound α− at (2) we now see that (2) holds for

c− := sup
b
bα−(b−3)

which works out numerically as ≈ 0.407. We get a better bound in the next
section.

0.3 Lower bound 2

Think of each random partial order as being obtained from n random points
in the unit square. Write (u1i , v

1
i ) and (u2i , v

2
i ) for the points associated with

element i. As in the first lower bound, we find a “coincident” subset A ⊂ [n]
by considering some i’s whose two points (in the two processes) are close
together; but now we don’t discretize.

For real u1, u2 write [u1, u2] for the interval [min(u1, u2),max(u1, u2)].
Say i and j interfere if the intervals [u1i , u

2
i ] and [u1j , u

2
j ] intersect, or the

intervals [v1i , v
2
i ] and [v1j , v

2
j ] intersect. If A is a subset such that no i and j

in A interfere, then A is a coincident subset.
Write ui = |u1i − u2i | and vi = |v1i − v2i |. For small u, v, the conditional

distribution of (u1i , v
1
i , u

2
i , v

2
i ) given (ui, vi) = (u, v) is (very close to) the

distribution of (U, V, U ± u, V ± v) where U and V are independent U(0, 1)
and the choices of ± are independent uniform. It is then easy to see

P (i and j interfere|ui, vi, uj , vj) ≈ ui + vi + uj + vj
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provided the right side is small. We now define a coincident subset A by
first ordering [n] so that ui + vi is increasing; then include i in A iff no
previously-included j interferes with i.

Within this scheme, write fn(t) for the chance that an element with
u + v = t in not interfered by any previous element. Since the density of
points (u, v) equals 4ndudv, we get an approximation (for small t)

1− fn(t) =

∫ ∫
x+y<t

4ndxdy fn(x+ y) (x+ y + t). (4)

Here 4n dxdy fn(x+y) gives the density of previously-included points (x, y),
so the integral gives an upper bound on the probability that (u, v) is inter-
fered with. So a more precise interpretation of (4) is that we can arrange
to include elements in A so that (u, v) is included with probability approxi-
mately fn(u+ v).

Setting x+ y = s, equation (4) becomes

1− fn(t) = n

∫ t

0
4s(s+ t)fn(s) ds.

Continue until the time t∗n when fn(t) = 0; then size of A is about

n

∫ t∗n

0
4sfn(s) ds.

Rescale to set fn(t) = f(tn1/3). Then equation above becomes

1− f(t) =

∫ t

0
4s(s+ t)f(s) ds.

This can be rephrased as the ODE

f ′′ + 8t2f ′ + 20tf = 0; f(0) = 1, f ′(0) = 0.

For the coincidence sets An constructed this way we have n−1/3EAn → c−
for

c− :=

∫ t∗

0
4tf(t) dt

t∗ := inf{t : f(t) = 0}.

Numerically, c− = 0.728.
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0.4 Lower bound 3

Subproblem 3 In two independent random 2-dimensional partial orders on
[n], what is the maximum size Zn of a subset A ⊂ [n] such that each partial
order restricted to A is the trivial partial order (i.e. A is an anti-chain in
each order)?

Obviously this Zn is a lower bound for Xn.
We can find a lower bound for Zn in a way parallel to that used in the

previous section. Think of each random partial order as being obtained from
n random points in the unit square. Consider the two points associated with
element i, and write xi and yi for the absolute distances from those points
to the reverse diagonal u+ v = 1, measured orthogonally. Note the density
of (xi, yi) is approximately 8dxdy for small x, y. For two elements i, j ∈ [n]
a brief calculation shows

P (i and j not anti-chain in one order) ≈
√

2(max(xi, xj) + max(yi, yj)).

when the right side is small. Now order [n] so that xi + yi is increasing.
Construct a subset An which is an anti-chain in each order by the greedy
algorithm: inductively, include i if possible.

The mean size EAn can be analyzed as in the previous section, starting
by writing fn(x, y) for the chance that a point with to-diagonal distances
(x, y) is accepted. We end with

lim
n
EAn = c− :=

∫ ∫
f(x′, y′) dx′dy′

where f(x, y) is the solution of

1− f(x, y) =

∫ ∫
x′+y′<x+y

f(x′, y′)8dx′dy′
√

2(max(x, x′) + max(y, y′)).

I haven’t tried to evaluate this numerically.

0.5 Upper bound 1

Subproblem 4 Write p(m) for the probability that two independent uni-
form random 2-dimensional partial orders are identical. Show

p(m) = (β + o(1))m/(m!)2 as m→∞

for some explicit constant β.
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It is plausible this holds with β = 1; we give an upper bound β ≤ 3 below.
To derive an upper bound, for two independent random 2-dimensional

partial orders on [n] consider the quantity

E( number of size-m subsets where the two partial orders coincide).

This equals
(n
m

)
p(m); on the other hand it is at least

E

(
Xn

m

)
≥
(
EXn

m

)
.

This inequality implies

max
m

(EXn

m

)(n
m

)
p(m)

≤ 1.

Since
(n
m

)
≤ nm/m!, assuming the result of Subproblem 4 for some β gives

max
m

x!

(x−m)!

(m!)2

nm(β + o(1))m
≤ 1; x = (EXn)!. (5)

Stirling’s formula gives

n−1/3 log(an1/3)! = a(13 log n+ log a− 1) + o(1).

Taking m ∼ bn1/3 and x = EXn ∼ cn1/3 for some 0 < b < c < ∞, and
applying n−1/3 log(·) to each term of (5), a short calculation leads to

sup
0<b<c

2b log b− (c− b) log(c− b)− 3b− b log β + c log c ≤ 0. (6)

This argument, appropriately rephrased, shows that if β is an upper bound
in Subproblem 4 then an upper bound c+ in (1) is given by the smallest c
for which (6) holds. Numerically,

if β = 3 then c+ = 3.85; if β = 1 then c+ = 2.67.

0.6 Upper bound in Subproblem 4.

Here we prove β ≤ 3; precisely

Proposition 5 p(m) ≤ (m+ 1)3m/(m!)2.
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Let G(n) be the number of 4-tuples of linear orders on [n] such that, for
each pair i, j from [n], i is below j in exactly two of the four orders (say the
4-tuple is balanced). It is easy to check that G(n) is equal to the number of
4-tuples (L1, L2, L3, L4) such that L1∩L2 = L3∩L4 (since this is equivalent
to (L1, L2, L

∗
3, L

∗
4) being balanced, where L∗ denotes the reversed order). So

p(n) = G(n)/n!4.
Also let F (n) be the maximum, over all 4-tuples (L1, . . . , L4) of linear

orders on [n], of the number of 4-tuples (I1, . . . , I4) of subsets of [n] such
that each Ij is an initial segment of Lj , and every element of [n] occurs in
exactly two of the Ij (say (I1, . . . , I4) is equitable.

Claim 1. G(n) ≤ G(n− 1)F (n− 1).
Claim 2. F (n) ≤ 6

(n+2
2

)
.

It follows from these Claims that G(n) ≤ 3n(n + 1)!n!, so p(n) ≤ (n +
1)3n(n!)−2.

Proof of Claim 1. For every balanced 4-tuple (L1, . . . , L4) of linear orders
on [n], we can obtain a balanced 4-tuple of linear orders on [n−1] by deleting
the occurrence of n from each linear order. Conversely, given a balanced 4-
tuple (M1, . . . ,M4) of linear orders on [n− 1], inserting n into a slot above
the initial segment Ij of Mj (for each j) gives a balanced 4-tuple iff every
element of [n−1] occurs in exactly 2 of the Ij – i.e., (I1, . . . , I4) is equitable.
By definition there are at most F (n − 1) equitable 4-tuples, and the claim
follows.

Proof of Claim 2. By induction on n. True for n = 1, since F (1) = 6 ≤
18.

Given any fixed 4-tuple (L1, . . . , L4) of linear orders on [n], and any
equitable 4-tuple (I1, . . . , I4), removing n from each linear order (and from
the two Ij ’s in which it appears) leaves a (fixed) 4-tuple (M1, . . . ,M4) of
linear orders on [n − 1], and an equitable 4-tuple (J1, . . . , J4). There are
at most F (n − 1) possible equitable 4-tuples (J1, . . . , J4). How can a 4-
tuple (J1, . . . , J4) arise from 2-different equitable 4-tuples (I1, . . . , I4)? This
is possible only if, for two of the linear orders, wlog L1 and L2, n is the
element immediately above J1 in L1 and immediately above J2 in L2, so
that we could have either I1 = J1 ∪ {n} and I2 = J2 or vice versa. But this
is possible for only at most n + 1 pairs (I3, I4), since |I1| + . . . + |I4| = 2n
for all equitable 4-tuples. We now see that the number of equitable 4-tuples
(I1, . . . , I4) is at most F (n − 1) + 6(n + 1) ≤ 6

(n+1
2

)
+ 6(n + 1) = 6

(n+2
2

)
–

4-tuples (J1, . . . , J4) arising from more than two equitable 4-tuples give an
overcount here.

Comments. Claim 2 isn’t sharp: the right answer must be about 2(n+
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1)2, with the worst case being (L,L,L∗, L∗). It might be possible to reduce
this to about n2, under some suitable additional assumption.
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