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ABSTRACT: A cladogram is an unrooted tree with labeled leaves and unlabeled internal
branchpoints of degree 3. Aldous has studied a Markov chain on the set of n-leaf cladograms
in which each transition consists of removing a random leaf and its incident edge from the
tree and then reattaching the leaf to a random edge of the remaining tree. Using coupling
methods, Aldous showed that the relaxation time (i.e., the inverse of the spectral gap) for
this chain is O!n3". Here, we use a method based on distinguished paths to prove an O!n2"
bound for the relaxation time, establishing a conjecture of Aldous. © 2001 John Wiley & Sons,
Inc. Random Struct. Alg., 20, 59–70, 2001

Key Words: mixing times; cladograms; Markov chains; distinguished paths; Poincaré inequalities;
continuum random tree

1. INTRODUCTION

An n-leaf cladogram is an unrooted tree with n leaves and internal branchpoints of
degree 3. The leaves are labeled, usually by the integers 1! " " " !n, but the internal
branchpoints are unlabled. We denote the set of n-leaf cladograms by Tn. Each
n-leaf cladogram contains 2n− 3 edges. The cardinality of Tn, which we denote by

© 2001 John Wiley & Sons, Inc.
DOI 10.1002/rsa.1029

59



60 SCHWEINSBERG

Fig. 1. A 7-leaf cladogram.

cn, is given by

cn = !2n− 5"!2n− 7" · · · !3"!1" = !2n!"
!2n− 1"!2n− 3"2nn!

" (1)

Figure 1 shows an example of a 7-leaf cladogram.
As mentioned in the introduction to [2], n-leaf cladograms are used in biology

to represent the evolutionary relationship among n species. Because Markov chain
Monte Carlo methods have been used to reconstruct cladograms from DNA data, it
is of interest to study Markov chains on Tn. Aldous [2] introduced a simple Markov
chain on cladograms. He proved that the relaxation time (i.e., the inverse of the
spectral gap) is O!n3" and conjectured that it is O!n2". The purpose of this article
is to prove Aldous’s conjecture. Here we recall for reference Aldous’s definitions
and some basic properties of the chain.
We first define the following two operations on cladograms:

(1) To remove a leaf i means to remove the edge from the leaf i to its branchpoint
b, and then remove the branchpoint b to collapse the two edges into one
(see Figure 2).

(2) To add a leaf i to the edge g means to create a new branchpoint b in the
interior of g and then add a new edge connecting b to the leaf i (see Figure 3).

We now define a Markov chain !Xt"∞t=0 with state space Tn. To define this chain, we
construct Xt+1 from Xt by removing a leaf chosen uniformly at random from Xt and
then adding this leaf to an edge chosen uniformly at random from the remaining
tree. For trees x and y in Tn, we write y ∼ x if y &= x and y can be obtained from
x by removing one leaf of x and then adding it to an edge of the remaining tree.
Because there are n leaves that can be removed and 2n− 5 edges to which the leaf
can be reattached, the transition probabilities for this chain are given by

P!Xt+1 = y'Xt = x" =
{

1/n!2n− 5" if y ∼ x,
1/!2n− 5" if y = x. (2)

Fig. 2. Removing the leaf i.
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Fig. 3. Adding the leaf i to the edge g.

It follows that this chain has a symmetric transition matrix and therefore is reversible
with a uniform stationary distribution.
The chain !Xt"∞t=0 is irreducible and aperiodic. Therefore, the distribution of Xt

converges to the uniform stationary distribution as t → ∞. For designing Markov
chain Monte Carlo algorithms, it is useful to know the time it takes for the chain to
converge to the stationary distribution. There are different ways of formalizing this
idea of “mixing time.” See [11] for a detailed comparison of several mixing-time
parameters. In this article, we will consider the relaxation time τn for the Markov
chain on Tn described above. The relaxation time is defined to be the inverse of the
spectral gap. That is, τn = 1/!1− λn! 2", where λn! 2 is the second-largest eigenvalue
of the transition matrix for the chain.
A general discussion of the relaxation time for reversible Markov chains and

methods for bounding it is given in chapter 4 of [4]. In [2], Aldous used a coupling
argument to show that for the Markov chain on n-leaf cladograms defined above,
we have τn = O!n3". In lectures given in a graduate course at U.C. Berkeley in
the fall of 1999, Aldous outlined an alternative approach to bounding τn using a
“distinguished paths” method. This approach did not yield a bound of O!n2", but
we show in this article that a variation of the distinguished paths method does give
an O!n2" bound for τn. We state this result below.

Theorem 1. Let τn be the relaxation time of the Markov chain !Xt"∞t=0 on n-leaf
cladograms defined above. Then τn = O!n2".

Theorem 1.1 of [2] shows that τn = %!n2", so it follows from Theorem 1 that
τn = &!n2".
In Section 2, we introduce the modification of the “distinguished paths” method

that we will use to prove Theorem 1. We prove Theorem 1 in Section 3 and give
some brief concluding remarks in Section 4.

2. A MODIFIED DISTINGUISHED PATHS METHOD

Let !Zt"∞t=0 be an irreducible, aperiodic, reversible Markov chian with finite state
space V and stationary distribution π. Define the transition probabilities by pxy =
P!Zt+1 = y'Zt = x". Let G be a graph with vertex set V and edge set E such that
G has a directed edge from x to y if and only if pxy > 0. Let Q!x! y" = πxpxy , and
if e is an edge from x to y, let Q!e" = Q!x! y". Let τ denote the relaxation time of
the chain !Zt"∞t=0.
A well known method for upper-bounding τ is the method of distinguished paths.

The idea is to choose paths connecting each pair of vertices in the graph G. If it
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is possible to avoid bottlenecks, in which many paths go through the same edges
of the graph, then one can obtain a good bound on the relaxation time. Jerrum
and Sinclair [9] used distinguished paths to prove rapid mixing for a Markov chain
that can be used to approximate the permanent of a matrix. Diaconis and Stroock
[5] used distinguished paths to prove “Poincaré inequalities” and showed how to
use these inequalities to get bounds on the relaxation time in various examples.
Sinclair [15] and Kahale [10] obtained related inequalities. Fulman and Wilmer [8]
compared the bounds from Poincaré inequalities to bounds derived from Cheeger’s
inequality.
In this section, we present a modification of the Poincaré inequalities which is

useful for studying the Markov chain described in the introduction. We first recall
the following theorem, which is proved in chapter 4 of [4] and can be viewed as a
probabilistic version of inequalities in [5] and [15].

Theorem 2. Suppose, for all x and y in V , that γxy is a path in G, possibly random,
from x to y such that no edge is traversed more than once. Then,

τ ≤ max
e∈E

1
Q!e"

∑

x∈V

∑

y∈V
πxπyE+'γxy '1,e∈γxy-.!

where 'γxy ' is the number of edges in the path γxy .

To analyze the Markov chain defined in the introduction, we will need the fol-
lowing corollary of Theorem 2, which can be useful if one can only easily define a
short path γxy when y is in some subset B of V .

Corollary 3. Let B be a subset of V . Suppose, for all x ∈ V and y ∈ B, that γxy is a
path in G, possibly random, from x to y which has at most L edges. Then,

τ ≤ 4L
π!B"

max
e∈E

1
Q!e"

∑

x∈V

∑

y∈B
πxπyP!e ∈ γxy"" (3)

Proof. For all x and z in V , we define a random path γ̃xz from x to z as follows.
First, we choose a random vertex Y in B such that P!Y = y" = πy/π!B". Next, we
concatenate the paths γxY and γr

zY , where γr
zY is the path from z to Y traversed in

the opposite direction. Finally, we erase all loops, so that no edge of γ̃xz is traversed
more than once. Note that the length of γ̃xz is at most 2L. By Theorem 2,

τ ≤ max
e∈E

1
Q!e"

∑

x∈V

∑

z∈V
πxπzE+'γ̃xz'1,e∈γ̃xz-.

≤ 2Lmax
e∈E

1
Q!e"

∑

x∈V

∑

z∈V
πxπzP!e ∈ γ̃xz"" (4)
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Denote by er the directed edge connecting the same two vertices as e but in the
reverse direction. Then, we have

τ ≤ 2Lmax
e∈E

1
Q!e"

∑

x∈V

∑

z∈V
πxπz!P!e ∈ γxY "+ P!er ∈ γzY ""

= 2Lmax
e∈E

1
Q!e"

{

∑

x∈V
πxP!e ∈ γxY "

(

∑

z∈V
πz

)

+
∑

z∈V
πzP!er ∈ γzY "

(

∑

x∈V
πx

)}

≤ 2Lmax
e∈E

1
Q!e"

∑

x∈V
πxP!e ∈ γxY "+ 2Lmax

e∈E

1
Q!e"

∑

z∈V
πzP!er ∈ γzY ""

For all e ∈ E, we have Q!e" = Q!er" because the chain is reversible. Therefore,

τ ≤ 4Lmax
e∈E

1
Q!e"

∑

x∈V
πxP!e ∈ γxY "

= 4Lmax
e∈E

1
Q!e"

∑

x∈V
πx

(

∑

y∈B

πy

π!B"
P!e ∈ γxy"

= 4L
π!B"

max
e∈E

1
Q!e"

∑

x∈V

∑

y∈B
πxπy!P!e ∈ γxy"

)

!

as claimed.

3. PROOF OF THE O(n2) BOUND

In this section, we use Corollary 3 to prove Theorem 1. Our strategy is as follows.
We will construct a path between each pair of cladograms. To get a path from x to
y, we will remove and reattach the leaves one at a time in such a way that at each
stage, all the leaves that have already been moved are in the same relative position
as they are in the tree y. We will show that the diameter (i.e., maximum distance
between two leaves) of most cladograms is O!n1/2", and we will define the set B to
consist of all cladograms whose diameter is at most A1n

1/2, where A1 is a constant.
We will then show that the right-hand side of (3) is O!n2", using the fact that the
paths end at a tree whose diameter is not too large to show that no “edge” between
two cladograms appears in too many paths.
Given a subset U of ,1! " " " !n- and a cladogram x ∈ Tn, define the U-tree derived

from x to be the tree obtained by removing from x all leaves whose labels are not
in U . Note that we obtain the same tree regardless of the order in which the leaves
are removed.

Lemma 4. If U is a k-element subset of ,1! " " " !n- and x is a uniform random n-leaf
cladogram, then the U-tree derived from x is a uniform random k-leaf cladogram.

Proof. The natural inductive proof of formula (1) for the cardinality of Tn estab-
lishes that a uniform random cladogram can be built by inductively adding leaves to
uniform random edges. In fact, as can be easily checked, this construction works for
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any ordering of the leaves. More precisely, suppose σ is a permutation of ,1! " " " !n-.
Let x3 be the unique 3-leaf cladogram with leaves labeled σ!1"! σ!2", and σ!3". For
j = 4! " " " !n, define xj by adding a leaf labeled σ!j" to an edge chosen uniformly
at random from from the edges of xj−1. Then each xj is a uniform j-leaf cladogram
with leaves labeled σ!1"! " " " ! σ!j".
Now, choose σ such that U = ,σ!1"! " " " ! σ!k"-. Then xk is the U-tree derived

from xn. Because xk is a uniform random k-leaf cladogram and xn is a uniform
random n-leaf cladogram, we see that the U-tree derived from a uniform random
n-leaf cladogram is a uniform random k-leaf cladogram, as claimed.

If x ∈ Tn, then any two leaves in x are connected by a unique path that does not
intersect itself. Let d!x" denote the diameter of x, which is the maximum number of
edges in the path between two leaves of x. Lemma 5 below states that the diameter
of a typical n-leaf cladogram is O!n1/2".

Lemma 5. There exists a constant A1 < ∞, not depending on n, such that if π
denotes the uniform distribution on Tn and B = ,x ∈ Tn: d!x" ≤ A1n

1/2-, then
π!B" ≥ 1/2.

Proof. Let xn be a uniform random n-leaf cladogram. Following [2], we define a
tree yn by assigning random lengths to the 2n − 3 edges of xn such that the joint
density of the edge lenghts is given by

g!l1! " " " ! l2n−3" = se−s2/2! where s =
2n−3
∑

i=1
li"

Note that the edge lengths are exchangeable and are independent of the shape of
the tree. In the proof of Lemma 21 of [1], Aldous constructs a tree whose shape
and edge lengths have the same distribution as yn from the times C1 < C2 < · · · of a
nonhomogeneous Poisson process on !0!∞" with rate r!t" = t. It follows from this
construction that the sum of the lengths of the edges of yn has the same distribution
as Cn−1. This fact and the exchangeability of the edge lengths imply that there exists
A2 > 0 such that the expected length of any edge of yn is at least A2n

−1/2 for all n.
Let v and w be leaves of xn such that the number of edges on the path from v

to w equals the diameter d!xn". Then the expected lengths, conditional on xn, of
the path in yn from v to w is at least A2n

−1/2d!xn". Therefore, the expected length
of the longest path between two leaves of yn is at least A2n

−1/2E+d!xn"..
Next, let !!∞!µ" be the Brownian continuum random tree, as defined in

Section 4.3 of [1]. We may assume that !∞ is constructed from the continu-
ous function f !t" = 2Bt as described in Theorem 13 of [1], where !Bt"0≤t≤1 is
a normalized Brownian excursion. Let !n be the reduced subtree of !∞ having
n − 1 leaves, which are chosen at random from !∞ according to the probabil-
ity measure µ. Regard the root of !n as a leaf, so !n becomes an unrooted
n-leaf tree. By Theorem 3 and Corollary 22 of [1], !n has the same distribu-
tion as yn. By Theorem 13 of [1], the length of any path between two vertices
of !n is at most 2maxt∈+0! 1. f !t" = 4M1, where M1 = maxt∈+0! 1. Bt . Therefore,
E+d!xn". ≤ 4A−1

2 E+M1.n1/2. Because E+M1. < ∞, as shown, for example, in [13],
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Fig. 4. An example of x, x2, S2, and S′
2.

Markov’s inequality implies that the condition of Lemma 5 holds with A1 =
8A−1

2 E+M1."

We now work towards constructing our distinguished paths. We use the notation
from Section 2, so V = Tn and G is the graph with vertex set V such that there
is an edge in G from x to y if and only if y ∼ x. The stationary distribution π is
uniform on Tn.
For all x! y ∈ V , we will construct a random path γxy from x to y. First, let

σ be a uniform random permutation of ,1! " " " !n-. Let x1 = x. Define x2 to be
the cladogram that we obtain by removing the leaf labeled σ!2" from x1 and then
adding it to the edge incident to σ!1". Let S2 denote the rooted subtree of x2 whose
root is a branchpoint of x2 and whose only leaves are σ!1" and σ!2". Let S′

2 be the
unrooted tree obtained by regarding the root of S2 as a leaf and labeling it σ!n".
Note that S′

2 is the ,σ!1"! σ!2"! σ!n"--tree derived from y because there is only
one 3-leaf cladogram. See Figure 4 for an example.
Next, suppose for some k ∈ ,2! 3! " " " !n − 2-, we have defined cladograms

x2! " " " !xk, and xk has a rooted subtree Sk with leaves σ!1"! " " " ! σ!k" such that
if we define S′

k by regarding the root of Sk as a leaf and labeling it σ!n", then S′
k

is the ,σ!1"! " " " ! σ!k"! σ!n"--tree derived from y. Then, we can define xk+1 by
removing the leaf σ!k + 1" from xk and adding it to the unique edge of Sk such
that, after the leaf is added, the new subtree Sk+1 has the property that when the
root is labeled σ!n" and regarded as a leaf, the new unrooted tree S′

k+1 is the
,σ!1"! " " " ! σ!k+ 1"! σ!n"--tree defined from y. See Figure 5, which shows the trees
x3 and x4 defined when constructing the path from x to y, where x is the same tree
as in Figure 4. Note that in going from x3 to x4, the leaf σ!4" is removed and then
added to the edge incident to σ!2". Also, note that the ,σ!1"! σ!2"! σ!3"! σ!8"--
tree derived from x3 is the same as the ,σ!1"! σ!2"! σ!3"! σ!8"--tree derived
from y, and the ,σ!1"! σ!2"! σ!3"! σ!4"! σ!8"--tree derived from x4 is the same
as the ,σ!1"! σ!2"! σ!3"! σ!4"! σ!8"--tree derived from y. When x1! " " " !xn−1
are defined by this process, the tree Sn−1 is just xn−1 with σ!n" regarded as the
root, so xn−1 = S′

n−1 = y. Thus, we have inductively defined random cladograms
x1! " " " !xn−1 such that x1 = x!xn−1 = y, and, for 1 ≤ k ≤ n − 2, either xk = xk+1
or xk+1 ∼ xk. We now define γxy to be the path consisting of all edges e that con-
nect xk to xk+1 for some k. If e is the edge from xk to xk+1, then we say e ∈ γxy

at step k.
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Fig. 5. The trees x3 and x4.

Note that 'γxy ' ≤ n− 2 for all x! y ∈ V . Therefore, Corollary 3 implies that

τn ≤ 4!n− 2"
π!B"

max
e∈E

1
Q!e"

∑

x∈V

∑

y∈B
πxπyP!e ∈ γxy"!

where B = ,x ∈ Tn 1 d!x" ≤ A1n
1/2- as defined in Lemma 5. By Lemma 5, π!B" ≥

1/2. Because π is uniform on V , we have πx = c−1
n for all x ∈ V . By (2), we

have pxy = 1/n!2n − 5" whenever y ∼ x. Thus, for all edges e of G, we have
Q!e" = πxpxy = 1/cnn!2n− 5". It follows that

τn ≤ 8!n− 2"max
e∈E

cnn!2n− 5"
∑

x∈V

∑

y∈B
πxπyP!e ∈ γxy"

≤ 16n3cn max
e∈E

∑

x∈V

∑

y∈B
πxπyP!e ∈ γxy""

For all e ∈ E, define K!e" = ,k: P!e ∈ γxy at step k" > 0 for some x ∈ V! y ∈ B-.
Now, fix an edge e. Let v and w be the cladograms such that e is the edge from v
to w, and let i and g be the leaf and edge respectively in v such that w is obtained
from v by removing the leaf i and then adding it to the edge g. Let p be the unique

Fig. 6. Arrows mark the path p; the subtree Sk is circled.
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path in v that begins by traversing the edge incident to i, ends by traversing the
edge g, and does not intersect itself. Suppose e ∈ γxy at step k. Then v = xk and
w = xk+1. Also, v has a rooted subtree Sk, as defined above in the description of
the construction of γxy , which contains k leaves and the edge g. Note that the root
r of Sk must be one of the branchpoints on the path p (see Fig. 6).
If y ∈ B, then y has diameter at most A1n

1/2. Because S′
k is the ,σ!1"! " " " !

σ!k"! σ!n"--tree derived from y and S′
k contains g, the portion of the path p that

starts at r and ends after traversing g has length at most A1n
1/2. Therefore, there

are at most A1n
1/2 branchpoints on p that could be the root r of Sk. There are three

subtrees of v rooted at each branchpoint, but only one of them contains the edge g.
Therefore, there are at most A1n

1/2 subtrees of v which could be the subtree Sk.
Because Sk has k leaves, it follows that there are at most A1n

1/2 possible values for
k, so K!e" contains at most A1n

1/2 integers. Thus,

τn ≤ 16n3cn max
e∈E

∑

x∈V

∑

y∈B
πxπy

(

∑

k∈K!e"
P!e ∈ γxy at step k"

)

≤ 16A1n
7/2cn max

e∈E
max
k∈K!e"

∑

x∈V

∑

y∈V
πxπyP!e ∈ γxy at step k"" (5)

Note that
∑

x∈V

∑

y∈V
πxπyP!e ∈ γxy at step k" (6)

is the probability that e ∈ γxy at step k when x and y are chosen uniformly at
random from Tn. We now assume x and y are independent uniform random n-leaf
cladograms and bound the expression in (6) for fixed e ∈ E and k ∈ K!e". Define v,
w, i, p, and g as in the previous paragraph. We have seen that, because k ∈ K!e",
the tree v must have a rooted subtree Sk with k leaves which contains the edge g
and has its root on the path p. Also, for any fixed k, v has only one such subtree.
Now let σ be a uniform random permutation of ,1! " " " !n-, and construct a random
path γxy from x, y, and σ as described earlier. We have e ∈ γxy at step k if and only
if xk = v and xk+1 = w, where xk and xk+1 are as defined in the construction of γxy .
We claim that if xk = v and xk+1 = w, then the following three events must occur:

(a) The leaves of Sk are σ!1"! " " " ! σ!k", and σ!k+ 1" = i.
(b) The ,σ!1"! σ!k + 1"! " " " ! σ!n"--tree derived from x is the same as the

,σ!1"! σ!k+ 1"! " " " ! σ!n"--tree derived from v.
(c) The ,σ!1"! " " " ! σ!k + 1"! σ!n"--tree derived from y is the same as the

,σ!1"! " " " ! σ!k+ 1"! σ!n"--tree derived from w.

Event (a) must occur because, to obtain xk+1 from xk, the leaf σ!k+ 1" is removed
and then added to an edge in a subtree of xk whose k leaves are σ!1"! " " " ! σ!k".
Event (b) must occur because none of the leaves σ!1"! σ!k+ 1"! " " " ! σ!n" is moved
in the first k− 1 steps in the construction of γxy , so the ,σ!1"! σ!k+ 1"! " " " ! σ!n"--
tree derived from x is the ,σ!1"! σ!k+ 1"! " " " ! σ!n"--tree derived from xk. Also,
event (c) must occur because the leaves σ!1"! " " " ! σ!k + 1"! σ!n" are not moved
again after the kth step in the construction, so the ,σ!1"! " " " ! σ!k+ 1"! σ!n"--tree
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derived from y is the same as the ,σ!1"! " " " ! σ!k + 1"! σ!n"--tree derived from
xk+1.
Because σ is a uniform random permutation of ,1! " " " !n-, we have that

σ!1"! " " " ! σ!k" are the leaves of Sk with probability 1/
(n
k

)

, and conditional on the
event that σ!1"! " " " ! σ!k" are the leaves of Sk, we have σ!k + 1" = i with proba-
bility 1/!n − k". By Lemma 4, the ,σ!1"! σ!k + 1"! " " " ! σ!n"--tree derived from
x is a uniform random element of Tn−k+1. Therefore, the probability of event (b)
is 1/cn−k+1. Likewise, the ,σ!1"! " " " ! σ!k+ 1"! σ!n"--tree derived from y is a uni-
form random element of Tk+2, so the probability of event (c) is 1/ck+2. Because
σ!x, and y are independent, so are the events (a), (b), and (c). Therefore, if
k ∈ K!e", then

∑

x∈V

∑

y∈V
πxπyP!e ∈ γxy at step k"

≤ 1
(n
k

)

!n− k"ck+2cn−k+1

= 1
(n
k

)

!n− k"!2k− 1"!2k− 3"!2!n− k" − 3"ckcn−k

(7)

because ck+2 = !2k − 1"!2k − 3"ck and cn−k+1 = !2!n − k" − 3"cn−k by (1). Com-
bining (5) and (7), we get

τn ≤ 16A1n
7/2 max

e∈E
max
k∈K!e"

cn
(n
k

)

!n− k"!2k− 1"!2k− 3"!2!n− k" − 3"ckcn−k

" (8)

By Stirling’s formula, we have

!2n"!
n!

≈ !2n"2n+1/2e−2n

nn+1/2e−n
≈ 22nnne−n!

where ≈ means that the ratio of two sides is bounded away from zero and infinity
as n varies. Therefore, using (1), we have

cn = !2n"!
!2n− 1"!2n− 3"2nn!

≈ 22nnne−n

!2n− 1"!2n− 3"2n
≈ 2nnn−2e−n"

Also, we have

(

n

k

)

= n!
k!!n− k"!

≈ nn+1/2e−n

!kk+1/2e−k"!!n− k"n−k+1/2e−!n−k""

= nn+1/2

kk+1/2!n− k"n−k+1/2 !

where here ≈ means that the ratio of the two sides is bounded away from zero and
infinity as n and k vary. Thus, there exists a constant A3 > 0 such that for all n ∈ "
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and k ∈ ,1! " " " !n− 1-, we have

cn
(n
k

)

!n− k"!2k− 1"!2k− 3"!2!n− k" − 3"ckcn−k

≤ A3

k2!n− k"2
kk+1/2!n− k"n−k+1/2

nn+1/2

2nnn−2e−n

!2kkk−2e−k"!2n−k!n− k"n−k−2e−!n−k""

= A3

k2!n− k"2

(

k!n− k"
n

)5/2

= A3n
−5/2!k!n− k""1/2 ≤ A3n

−3/2 (9)

for all e and all k ∈ K!e". Thus, from (8) and (9), we have τn ≤ 16A1A3n
2. Hence,

τn = O!n2", as claimed.

4. CONCLUDING REMARKS

Although it would be easy to sample directly from the set of n-leaf cladograms (see
the proof of Lemma 4), Markov chains on other combinatorial sets have been stud-
ied for the purpose of obtaining fast algorithms for generating approximately uni-
form samples from these sets. For example, Randall and Tetali [14] studied Markov
chains on lozenge tilings, domino tilings, triangulations of convex polygons, and
binary trees. A chain on m × n contingency tables was studied in [7], and chains
on independent sets of a graph were studied in [6, 12]. However, the upper bounds
obtained for the mixing times of these chains are not known to be sharp. The chain
in this article provides an example of a chain on a combinatorial set for which the
relaxation time is known up to a constant factor.
Regarding the techniques used in this article, the advantage that we get from

using Corollary 3, rather than one of the standard Poincaré inequalities, is that we
only need to bound the bottlenecking for the paths that end in the set B. Conse-
quently, we do not need to consider the paths ending in trees which are unusually
long and thin. Although the author is not currently aware of other useful applica-
tions of Corollary 3, it seems likely that there would be other Markov chains for
which one could obtain a better bound by avoiding having to consider paths which
end in a “bad” part of the state space.
The Markov chain in this article appears to be the easiest Markov chain on

cladograms to analyze. A natural next step might be to consider other chains on n-
leaf cladograms. For example, Aldous [3] describes a chain in which each transition
consists of picking a random edge (not necessarily adjacent to a leaf), removing the
entire branch of the chain below that edge, and then reattaching the branch to one
of the edges adjacent to where it was before. Aldous poses the problem of proving
that this chain has a relaxation time of O!n3/2". He also mentions that this chain is
believed to be related to a chain on triangulations of the regular n-gon.
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