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Abstract

There is a broad circle of ideas relating to the length Ln of the
longest increasing subsequence of a random n-permutation. After re-
viewing known results and methods, we develop two new themes. The
simplest algorithm for computing the length of the longest increas-
ing subsequence can be viewed as a card gard, patience sorting, and
one theme is to give the first asymptotic probabilistic analysis of this
game. The second theme is that a continuous limit process, which
we call Hammersley’s process, exists as a continuous-space interacting
particle process. This turns out to be analogous to the (discrete-space)
simple asymmetric exclusion process, and also to be an elaboration of
Hammersley’s Poisson process representation. The celebrated result
ELn ∼ 2n1/2 is intimately tied to the hydrodynamical limit theorem
for Hammersley’s process.
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1 Introduction

Section 1 reviews known material, and our new results are outlined in section
1.7.

1.1 Patience Sorting

A concrete and elementary starting point is provided by a solitaire card
game which we call patience sorting. To describe the game, consider a deck
of cards labeled 1, 2, 3, . . . , n. The deck is shuffled, cards are turned up one
at a time and dealt into piles on the table. A low card can be placed on a
higher card (e.g. a 2 may be placed on a 7). When the turned up card is
higher than the cards showing, it is put into a new pile to the right of the
others. The object is to finish with as few piles as possible.

Suppose a shuffled deck of 10 cards is in the order

7 2 8 1 3 4 10 6 9 5

The top card, 7, is dealt face up on the table. The next card, 2, can be put
on top of the 7. But the 8 has to form a new pile, giving

7
2

8

The 1 can be placed on either the 2 or the 8. If it were placed on the 8,
and if any of {3, 4, 5, 6, 7} were to come next, the next card would have to
form a new pile, whereas if the 1 were placed on the 2, the 8 is still open for
these cards. The greedy strategy is to always place a card on the leftmost
possible pile. Adopting the greedy strategy (which we do unless otherwise
stated) leads to
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At each step, the top card in each pile is in boldface. It is easy to see
inductively that, under the greedy strategy, the top cards are increasing
from left to right. It is also easy to check the following compatibility property
of the greedy algorithm. The final allocation of cards labeled 1, . . . , j to piles
is the same as if we deleted the higher-numbered cards from the deck before
starting the game. So in our example, taking j = 6, starting with cards in
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the order
2 1 3 4 6 5

leads to

2
1

3 4 6
5

Motivation for patience sorting is provided by its connection with the
longest increasing subsequence. The permutation we used above

7 2 8 1 3 4 10 6 9 5

has an increasing subsequence

1 3 4 6 9 (1)

of length 5, and that is the longest possible for the permutation. We saw
that patience sorting played with this permutation ended with 5 piles. This
is no coincidence. Define l(π) the be the length of the longest increasing
subsequence of a permutation π.

Lemma 1 With deck π, patience sorting played with the greedy strategy
ends with exactly l(π) piles, and played with any legal strategy ends with at
least l(π) piles.

Proof. If cards a1 < a2 < . . . < al appear in increasing order, then under
any legal strategy each ai must be placed in some pile to the right of the
pile containing ai−1, because the card number on top of that pile can only
decrease. Thus the final number of piles is at least l, and hence at least l(π).
Conversely, using the greedy strategy, when a card c is placed in a pile other
than the first pile, put a pointer from that card to the currently top card
c′ < c in the pile to the left. At the end of the game, let al be the card on
top of the rightmost pile l. The sequence

a1 ← a2 ← . . .← al−1 ← al

obtained by following the pointers is an increasing subsequence whose length
is the number of piles.

In the example, we recover the subsequence (1).
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Note that the top cards are in general not an increasing subsequence: in the
example, 5 came after 9 in the deck.

1.2 Remarks on Lemma 1

These remarks are not used in the sequel.
(a) History. The name patience sorting comes from Mallows [?], who in

[?] credits A.S.C. Ross for its invention with the following motivation. At the
end of the game, card 1 is always on top of the leftmost pile. Removing card
1, card 2 is now at the top of some pile; removing card 2, card 3 is now at the
top of some pile, and so we have a natural algorithm for manually sorting
cards. Mallows’ analysis [?] was done in 1960 but not published until much
later (see section 1.5 for more remarks). Independently, patience sorting was
discovered by computer scientist Bob Floyd in 1964 and developed briefly in
letters between Floyd and Knuth, but their work apparently has never been
published. And Hammersley [?] p. 362 independently recognized its use an
an algorithm for computing l(π).

(b) Algorithms. Implicit in the proof of Lemma 1 is an algorithm for
computing l(π) and exhibiting a maximal-length increasing subsequence.
Fredman [?] has shown this algorithm can be implemented using n log n −
n log logn+O(n) comparisons in the worst case, and that no algorithm has
better worst-case behavior.

One can easily extend to an algorithm for exhibiting every maximal-
length increasing subsequence. When a card c is placed in a pile other than
the first pile, put a pointer from that card to every card c′ < c in the pile
to the left. At the end of the game, let al be any card in the rightmost pile
l. A sequence

a1 ← a2 ← . . .← al−1 ← al

obtained by following the pointers making arbitrary choices is an increasing
subsequence with length l(π), and every such subsequence arises from some
choice of al and pointers. In our example, the only new pointer added is from
3 to 2, and we get only one other maximal-length increasing subsequence
2 3 4 6 9.
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Persi ? I just made up the above. I assume its true and known! Does
the Schensted correspondence give all maximal subsequences?

The Schensted correspondence described in section 1.5 was partly moti-
vated as an algorithm for computing l(π), though patience sorting leads to
a slightly simpler algorithm.

(c) Duality. The piles in patience sorting provide a decomposition of our
permutation into a disjoint union of decreasing subsequences: the record
values in the first pile, the second record values in the second pile, and so
on. In our example we get

(7, 2, 1) (8, 3) (4) (10, 6, 5) (9)

This is closely related to theorems of Dilworth [?]. One such theorem says
that in any partially ordered set, the length of the longest chain equals the
size of the minimal partition into antichains. A permutation π determines
a partial order on {1, . . . , n} by i � j iff i ≤ j and π(i) ≤ π(j). Here
a maximal chain is a longest increasing subsequence and an antichain is a
decreasing subsequence. Lovasz and Plummer [?] Theorem 1.4.12 give Dil-
worth’s result and relate it to a host of classical combinatorial topics (the
matching theorem, max-flow min-cut, theorems of Konig and Frobenius).
Greene [?] has given a far-reaching extension of Dilworth’s result, relating
the largest cardinality of the union of k chains to the minimum decompo-
sition of suitably weighted antichains. When specialized to permutations,
Greene’s result implies that the largest union of k increasing subsequences
in π equals the number of cells in the first k rows of the partition associated
to π in the Schensted correspondence (section 1.5). We have not found a
sharp connection between patience sorting and these results.

(d) Ulam’s metric. For a permutation π, the minimum number of
insertion-deletion steps needed to go from the identity permutation to π
is n− l(π). This connection motivates use of

d(π, σ) ≡ n− l(σπ−1)

as a metric on permutations [?]. Diaconis [?] Chapter 6B and Critchlow [?]
discuss statistical uses of various metrics on permutations.

Persi ? I omitted your “generating function factorization” remark.
Should I put it back?
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1.3 Distributional results for Ln

Playing patience sorting with a randomly-shuffled n-card deck, we finish
with Ln, say, piles. By Lemma 1 Ln is the length of the longest increasing
subsequence of a random permutation πn. With this latter interpretation,
distributional aspects of Ln have been studied from several different view-
points.

(a) Subadditive ergodic theory. There is a representation (reviewed in
section 1.4) of Ln in terms of random points in the plane. With this repre-
sentation, one can apply the subadditive ergodic theorem to prove

n−1/2Ln
p→ c

for some unspecified c.
(b) Young tableaux . The Schensted correspondence , reviewed in section

1.5, relates longest increasing subsequences to Young tableaux . Indepen-
dently, Vershik and Kerov [?] and Logan and Shepp [?] indicated how to use
the Schensted correspondence and analysis of random Young tableaux to
show c = 2. These arguments use classical hard analysis far removed from
probability theory – e.g. Logan and Shepp solve an infinite-dimensional op-
timization problem in a cleverly chosen function space. Part of our purpose
is to give an alternate proof that c = 2, so we shall not appeal to that result.

Persi ? Any work on the distribution of the number of maximal-length
increasing subsequences? Does this follow from our stuff?

Persi ? Average-case number of comparisons for Floyd’s algorithm for
computing Ln?

(c) Concentration inequalities. There has been recent work using martin-
gale concentration inequalities to bound the spread of Ln. The latest result,
due to Talagrand (personal communication) and improving on results of
Frieze [?] and Bollobas xxx, is

Theorem 2 Let mn be the median of Ln. Then for u > 0 and all n ≥ 1,

P (Ln ≥ mn + u) ≤ 2 exp

(
− u2

4(mn + u)

)

P (Ln ≤ mn + u) ≤ 2 exp

(
− u2

4mn

)
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(d) Open Problems. For theoretical reasons we would expect one of the
following alternatives to be true. Either

Ln − ELn√
var Ln

d→ Normal(0, 1) and var Ln = n1/2s(n) (2)

where s(·) is slowly varying; or

Ln − ELn√
var Ln

d→ ξ and var Ln = o(n1/2s(n)) (3)

for all slowly varying s(·), where ξ is not Normal. Simulation evidence is
ambiguous: with n = 1, 000, 000 our simulations give ELn ≈ 1982, var Ln ≈
110 and a good fit to Normal.

As for large deviations, a subadditivity argument can be used to show
the existence of the limit

n−1/2 logP (Ln > c′n1/2)→ α(c′) ∈ (−∞, 0], c′ > c.

Then Theorem 2 implies α(c′) < 0 for c′ > c. We do not know any plausible
conjecture for the actual value of α(c′). It is interesting that the large
deviation behavior has a different order of magnitude in the left tail.

Proposition 3 n−1/2P (Ln < c′n1/2)→ −∞, c′ < c.

This is proved in section 5 by soft arguments. We do not know what the
correct order of magnitude is.

Persi ? Does the Young tableaux method say anything about large
deviations?

1.4 Hammersley’s representation and subadditivity

The ideas here are due to Hammersley [?], and were one of the motivations
for the development of subadditive ergodic theory. They are now a textbook
application of that theory (see [?] sec 6.7).

Consider n points (xi, yi) in the rectangle [0, z]×[0, t] with all coordinates
distinct. The set of points specifies a permutation π by:

the point with i’th smallest x-coordinate has the π(i)’th smallest
y-coordinate.
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The length l(π) of the longest increasing subsequence is the maximal number
of points on an up-right path from (0, 0) to (z, t), i.e. the maximal length l
of a sequence (ij) such that

xi1 < xi2 < . . . < xil , yi1 < yi2 < . . . < yil .

+

+

+

+

+

+

+

+

+

+

Now take a Poisson process N of
rate 1 in [0,∞)2 and let L↗z,t be the maximal number of points on an up-
right path from (0, 0) to (z, t). The number of points in the rectangle [0, z]×
[0, t], say M(z, t), has Poisson(zt) distribution, and the associated random
permutation of M(z, t) is uniform. Thus

L↗z,t
d
= LM(z,t). (4)

Define
g(t) = EL↗t,t. (5)

By considering paths from (0, 0) to (t + s, t + s) via (t, t) we see that g is
superadditive:

g(t+ s) ≥ g(t) + g(s); s, t ≥ 0. (6)

This implies that, defining c = lim sup g(t)/t, we have

g(z)/z → c (7)

g(z) ≤ cz; z ≥ 0. (8)

Moreover ([?] sec. 6.7) the subadditive ergodic theorem can be applied to

L↗t,t to show

t−1L↗t,t → c a.s. (9)
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and simple estimates show 1.59 < c < 2.49.
Now (4) says that L↗t,t is almost the same as Lt2 , and elementary dePois-

sonization arguments show that (7,9) imply

n−1/2ELn → c, n−1/2Ln
p→ c.

xxx details later
Hammersley [?] discusses three heuristic methods of determining c. Our

work in section 3 is essentially formalizing his “third method”.

1.5 Young tableaux and the Schensted correspondence

For the benefit of any probabilists unfamiliar with the topic, we state some
standard facts taken from the undergraduate textbook Stanton and White
[?], sec. 3.5-3.7. More sophisticated treatments, emphasizing representation
theory for the symmetric group, can be found in Sagan [?], MacDonald [?]
and James and Kerber [?].

A partition λ = (λ1, . . . , λj) of an integer n ≥ 1 is a sequence with
λ1 ≥ λ2 ≥ . . . ≥ 1 and

∑
i λi = n. We may identify a partition λ with its

associated Ferrers diagram of n cells with λi cells in row i, drawn as shown
below. The hook length hc of a cell c in a Ferrers diagram is the number of
cells in the set consisting of the cells to the right of c in its row, the cells
below c in its column, and cell c itself.

λ = (5, 4, 3, 3, 1)

hc = 4

c

A (standard) Young tableau of shape λ is a Ferrers diagram with the cells
occupied by the numbers 1, 2, . . . , n in such a way that the numbers increase
along each row and down each column. Examples are in the picture below.
The number of Young tableaux of a given shape λ is denoted by dλ and is
given by

Lemma 4 (The hook formula)

dλ =
n!∏
c hc

.
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The Schensted (or Robinson-Schensted-Knuth) correspondence is a bijec-
tion between permutations of n cards and ordered pairs of Young tableaux of
size n with the same (unspecified) shape λ. The existence of such a bijection
implies the formula

n! =
∑
λ`n

d2
λ

where λ ` n is an abbreviation for “λ is a partition of n”.
The two tableaux are called the P -tableau and the Q-tableau. As with

patience sorting, the correspondence can be constructed inductively by spec-
ifying where to place the next card.

Place the next card in the top row of the P -tableau, in the posi-
tion of the smallest higher-numbered card if any exists (thereby
“bumping” that card), or append to the right end of the top row
if no such higher-numbered card exists. If a card is bumped, con-
sider the P -tableau with top row deleted, and recursively use the
same rule to insert the bumped card into the remaining tableau.
This eventually yields a new P -tableau whose shape is the pre-
vious tableau with one extra cell. Make the new Q-tableau be
the previous Q-tableau with this extra cell and with the number
m in that cell, where the added card is the m’th card dealt.

The figure illustrates the construction on our example

7 2 8 1 3 4 10 6 9 5

2
7

1
2

2 8
7

1 3
2

1 8
2
7

1 3
2
4

1 3
2 8
7

1 3
2 5
4

1 3 4
2 8
7

1 3 6
2 5
4

1 3 4 10
2 8
7

1 3 6 7
2 5
4

1 3 4 6
2 8 10
7

1 3 6 7
2 5 8
4

1 3 4 6 9
2 8 10
7

1 3 6 7 9
2 5 8
4

1 3 4 5 9
2 6 10
7 8

1 3 6 7 9
2 5 8
410

P

Q

The top row in the P -tableau is the same as the top cards in patience
sorting. So the length of the top row in the Young tableaux associated with
a permutation π is the length l(π) of the longest increasing subsequence of
π. So we can write

P (Ln = l) =
1

n!

∑
λ`n
λ1=l

d2
λ. (10)
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The essence of the proofs [?, ?] that c = 2 is to let Λ(n) = (Λ
(n)
i ; i ≥ 1)

be a random partition of n with distribution

p(λ) ≡ d2
λ/n!

rescale to define
Zn(t) = n−1/2Λ

(n)

bn1/2tc; t ≥ 0

and then to show that Zn converges to a certain deterministic function z(t)
with z(0) = 2.

Returning to patience sorting, Mallows [?] records how he discovered that
the number of piles relates to Young tableaux . D.E. Barton [?] pointed out
the connection with the Schensted correspondence . Using these, Mallows
proved that the chance that patience sorting yields l piles and also yields
r piles when played with the deck in reversed order equals the sum (10)
further restricted to tableaux λ with r rows.

1.6 Nonasymptotic upper bound for longest increasing sub-
sequence

The known proofs that c ≥ 2 all use some notion of “continuous limit ob-
ject”, and there is no known explicit function f(n) such that

ELn ≥ f(n) and f(n) ∼ 2n1/2.

It seems to have been folklore for some time that one could use the Schensted
correspondence to give purely discrete proofs that c ≤ 2; one such proof has
been given by Pilpel [?]. By the elementary Lemma 7 below, c ≤ 2 implies
ELn ≤ 2n1/2 +O(1). But in fact one can use the Schensted correspondence
to get the natural nonasymptotic bound ELn ≤ 2n1/2. The simple proof we
give is due to Kerov and Vershik – we learned it from unpublished work of
Curtis Green and from lectures by Larry Shepp – but apparently has not
been published.

Theorem 5 ELn ≤ 2n1/2 for all n ≥ 1.

The precise asymptotic behavior of ELn is unclear, but as a corollary of our
continuous-world results we shall see in section 3.7 that 2n1/2 −ELn →∞.

xxx conjecture the difference grows as order logn.
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Proof. The proof uses only the Q-tableau of the Schensted correspon-
dence . Writing Qn for the Q-tableau derived from a uniform random per-
mutation πn, the correspondence implies

P (Qn = q) =
dΛ(q)

n!
(11)

where Λ(q) denotes the shape of q. First note that deleting n from a tableau q
on n cells gives a legal tableau rn−1(q), say. And this is the tableau obtained
when the bottom card is deleted from the deck. (So we are using the natural
process of uniform random permutations associated with card-dealing – see
section 6.1.) Thus we have the natural consistency condition

P (rn−1(Qn) = q0) = P (Qn−1 = q0). (12)

Let An denote the event that n is in the top row (and hence at the right
end of the top row) of Qn. For a tableau q0 of size n− 1 let q+

0 denote the
tableau of size n obtained by adding n to the right end of the top row. Since
q+

0 is the unique q with rn−1(q) = q0 and with n in the top row,

P (An|rn−1(Qn) = q0) = P (Qn = q+
0 |rn−1(Qn) = q0)

=
P (Qn = q+

0 )

P (rn−1(Qn) = q0)

=
P (Qn = q+

0 )

P (Qn−1 = q0)
by (12)

=
1

n

dΛ(q+0 )

dΛ(q0)
by (11)

Note the right side depends only on the shape of q0. Writing Λn−1(Qn) for
the shape of rn−1(Qn), and λ+ for the shape obtained from λ by adding an
extra cell at the right end of the top row,

P (An) =
∑

λ`n−1

P (An|Λn−1(Qn) = λ)P (Λn−1(Qn) = λ)

=
∑

λ`n−1

1

n

dλ+

dλ
P (Λn−1(Qn) = λ)

≤

 ∑
λ`n−1

1

n2

(
dλ+

dλ

)2

P (Λn−1(Qn) = λ)

1/2

(13)
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But the Schensted correspondence says

P (Λ(Qn) = λ) = d2
λ/n!, λ ` n (14)

and, appealing also to (12),

P (Λn−1(Qn) = λ) =
d2
λ

(n− 1)!
, λ ` n− 1 (15)

Substituting (15) into (13) gives the first inequality below.

P (An) ≤ n−1/2
∑

λ`n−1

d2
λ+

n!

≤ n−1/2
∑
λ`n

d2
λ

n!

= n−1/2 using (14)

Interpreting Ln as the length of the top row of Qn, the consistency
condition (12) implies

P (An) = ELn − ELn−1

and so

ELn ≤
n∑

m=1

m−1/2 ≤ 2n1/2.

1.7 What’s new in this paper?

We have two main goals. The first is to say what we can about patience
sorting in the random setting. This occupies section 2.

xxx state results; lean on Schensted correspondence and on continuous
world

Our second goal is more diffuse. There is a well-established topic in theo-
retical probability called “interacting particle systems” [?] which studies var-
ious different models of continuous-time evolution of discrete-space configu-
rations of particles. In section 3 we introduce and study a continuous-space
interacting particle process (“Hammersley’s process”) which is analogous to
a certain well-studied discrete-space process, the simple asymmetric exclu-
sion process. This is interesting in its own right, because it seems widely
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believed (by default, at least) that the familiar interacting particle processes
do not have natural continuous-space analogs. Hammersley’s process is most
naturally motivated in terms of a limit of patience sorting, but in retrospect
it can also be regarded as an elaboration of Hammersley’s representation.
The main result, Theorem 30, is the hydrodynamical limit for Hammersley’s
process on R+. Theorem 30 implies, and we regard as “the correct explana-
tion of”, the fact c = 2. We would like to have a self-contained probabilistic
proof of Theorem 30 (and hence of c = 2), but have not yet found such a
proof.

xxx but do have proof of c ≥ 2.
xxx say Hammersley understood this outline
xxx other stuff

1.8 Elementary facts about ELn

For comparison with later results and for technical use, we record some
simple extensions of the subadditive result g(t)/t → c at (7). Clearly ELn
is increasing: the following simple estimate shows it cannot increase locally
too fast.

Lemma 6 For m < n,

ELm ≥
m

n
ELn.

Proof. Given a random permutation πn of n cards, construct a random
permutation πm of m cards by deleting n−m cards chosen at random. Let
Ln and Lm be the longest increasing subsequences. It is enough to show

E(Lm|Ln = l) ≥ m

n
l.

But this is clear because, given an increasing subsequence of l cards in πn,
the mean number of these cards which remain after the random deletions
equals m

n l.
Note this argument uses a random permutation process which is different

from the usual one – see section 6.1.
Write Mt for a Poisson(t) r.v., independent of random permutations.

Lemma 7 |ELMn − ELn| is bounded as n→∞. So in particular, ELn ∼
cn1/2 and ELn ≤ cn1/2 +O(1).

14



Proof.

|ELMn − ELn| ≤
∑
j

|ELj − ELn|P (Mn = j)

≤
∑
j≥n

j − n
j

ELjP (Mn = j) +
∑
j<n

n− j
n

ELnP (Mn = j) by Lemma 6

≤
∑
j

|j − n|
n

ELnP (Mn = j) by Lemma 6 again

= n−1ELnE|Mn − n|
≤ n−1/2ELn because varMn = n.

By (7) ELMn ≤ cn1/2 and so

ELn ≤ (1− n−1/2)−1cn1/2 = cn1/2 +O(1)

and the Lemma follows.
Remark. Consider the chance pn that the card in position n goes into

a new pile in patience sorting (equivalently, goes into the first row in the
Schensted correspondence ). Clearly pn = ELn − ELn−1.

Conjecture 8 pn = ELn − ELn−1 is decreasing.

This seems intuitively obvious. We will occasionally point out consequences
of Conjecture 8, for instance

pn ∼
1

2
cn−1/2 (16)

ELMn − ELn → 0 (17)

Persi ? can you prove any of this?
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2 Pile sizes in patience sorting

2.1 The first pile

The cards which enter the first pile are exactly the record cards, i.e. those
whose number is smaller than any previous card. Thus in our example

7 2 8 1 3 4 10 6 9 5

the records are 7, 2, 1. Records form a classical topic in probability theory.
Writing Ai for the event “the i’th card is a record”, it is elementary that
P (Ai) = 1/i and that the events (A1, . . . , An) are independent. Thus Sn(1),
the total number of records in a random permutation of n cards (and the
number of cards in pile 1 in patience sorting) satisfies

ESn(1) =
n∑
i=1

1

i
∼ log n (18)

var Sn(1) =
n∑
i=1

1

i

(
1− 1

i

)
∼ log n

And a textbook application (e.g. [?] p. 102) of the central limit theorem for
independent non-identically-distributed random variables shows

Sn(1)− log n√
log n

d→ Normal(0, 1). (19)

Persi ? I took out your elementary discussion about records. Do you want
it put back?

We shall study the analogous questions for Sn(i), the number of cards
in pile i. In a certain sense the cards in pile i are “i’th records”, but the
sense is different from that used in the well-known and remarkable Ignatov’s
theorem [?].

Proposition 9

ESn(i) =
n∑
k=1

P (Lk−1 = i− 1)
n∑
j=k

1

j
.

Interpreting L0 as 0, we recover formula (18) for ESn(1).
Proof. The key fact is that

P (card labeled j in j-card deck put in pile i)
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=
j∑

k=1

1

j
P (Lk−1 = i− 1). (20)

Because for each 1 ≤ k ≤ j the card has chance 1/j to be in position k.
Given it is in position k, it is put into pile i iff the k − 1 previous cards
formed exactly i − 1 piles, which has chance P (Lk−1 = i − 1) because the
k − 1 previous cards are in uniform random order.

Now the compatibility property of section 1.1 shows that (20) remains
true for the card labeled j in a n-card deck, for any n ≥ j. Summing over j
gives the result.

2.2 Asymptotics for the leftmost piles

Corollary 10 For fixed i ≥ 1,

ESn(i) = c(i) log n +O(1) as n→∞ (21)

where

c(i) ≡
∞∑
k=i

P (Lk−1 = i− 1) <∞.

And c(1) = 1, c(2) = e− 1,

c(3) =
∞∑
k=2

1

k!

((
2k
k

)
1

k + 1
− 1

)
≈ 2.3724

c(4) =
∞∑
k=3

1

k!

2
k∑
l=0

(
2l
l

)(
k
l

)2
3l2 + 2l + 1− k − 2kl

(l + 1)2(l + 2)(k − l + 1)
−
(

2k
k

)
1

k + 1

 ≈ xxx.
Persi ? Numerical value for c(3) used Mathematica and is different from
yours. I copied your formula for c(4) – please check it’s right, then I’ll do
numerical computation. Also, where does formula for c(4) come from?

Proof. Writing
∑n
j=k

1
j = log n − log(k − 1) + O(1) in the formula of

Proposition 9, the only issue in deriving (21) is to prove∑
k

P (Lk = i− 1) log k <∞. (22)

For an elementary proof, considering whether disjoint packets of i cards are
in increasing order gives the bound

P (Lk = i− 1) ≤
(

1− 1

i!

)bk/ic
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which is enough to establish (22). One could also appeal to the sharp asymp-
totics, stated as (23) below.

Clearly P (Ln = 1) = 1/n!, giving

c(2) =
∞∑
k=2

1

(k − 1)!
= e− 1.

And the expression for c(3) follows from the formula

k!P (Lk = 2) =

(
2k
k

)
1

k + 1
− 1

which goes back to MacMahon [?] p. 130-131.
Persi ? story for c(4)?
Remarks. In fact sharp asymptotics are known:

P (Lk = i) ∼ b(i)i2k

ki(i+1)/4k!
as k →∞ (23)

b(i) =
21/2

4π

ii/2(i− 1)

i1/2
2i

2/2

i!

i∑
j=1

j!.

See Cohen and Negev [?, ?] for the simplest proof. Goulden [?] gives formulas
for P (Ln = i) for large i.

Persi ? I omitted some refs, but could be put back.
Persi ? Your comment on “effective computability” doesn’t seem quite

right: you need an explicit bound in place of the asymptotics (23).
The expression for c(i) in Corollary 10 has the following interpretation.

Play patience sorting with an infinite number of cards (c.f. section 3.3), and
at each step note the number of piles. Then c(i) is the mean number of
steps after which there are exactly i−1 piles. So trivially c(i) ≥ 1. The fact
c = 2 easily implies that

∑m
i=1 c(i) ∼ m2/4. Thus if we could prove

c(i) is increasing in i (24)

then it would immediately follow that

c(i) ∼ i/2 as i→∞.

Persi ? Can you prove (24) ?
In section 4 we will see a different expression (44) for c(i) and will use

some “continuous” machinery to prove a central limit theorem.

18



Theorem 11 For fixed i ≥ 1, there exists 0 < σ(i) <∞ such that varSn(i) ∼
σ2(i) log n and

Sn(i)− c(i) log n√
log n

d→ Normal(0, σ2(i))

We already know (19) this holds for i = 1 with σ(1) = 1. Below we
give a “discrete” computation for the number σ(2) such that var Sn(2) ∼
σ2(2) log n,

xxx we check this with a “continuous” computation in section 4.2.
But we do not have computable expressions for σ2(i) for i ≥ 3.

Theorem 12 var Sn(2) = σ2(2) + O(1) where σ2(2) = (3 − e)(2e − 1) ≈
1.24986.

This will be proved via a sequence of lemmas. To set up notation, write
Sn(2) =

∑n
i=2 Yi where Yi is the indicator of the event “cards labelled i ends

up in pile 2 in patience sorting”. We know from (20)
xxx explain better?

µi ≡ EYi =
1

i

i−1∑
k=1

1/k!

Writing

µij ≡ EYiYj = P (cards labeled i and j end in pile 2)

the general formula for variance of a counting r.v. is

var Sn(2) =
n∑
i=2

µi(1− µi) + 2
∑

2≤i<j≤n
(µij − µiµj). (25)

Lemma 13

µij =
1

j(j − 1)

∑
2≤a<b≤n

∑
d≥1

(
i− 1
d

)(
j − 2− (i− 1)
b− d− 2

)
(
j − 2
b− 2

)
(b− 2)!

∑
l≥0

(
b− d− 2
a− l − 1

)(
b− d− 2
a− l − 1

)
(b+ l − (a+ d)− 1)!
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Persi ? I’ve copied your stuff verbatim – you need to proofread!
Proof. In carrying out this computation cards with labels bigger than

j do not enter so it may be assumed we are working with a j-card deck.
Condition on cards j and i being in positions a < b (which occurs with
probability 1

j(j−1) .

j i
−−− − −−−− − −−

a b

The conditional probability these two cards end in pile 2 is computed in
two stages. First, only the top b cards matter and two of these are fixed.

The remaining b−2 can be chosen in

(
j − 2
b− 2

)
ways. Of these, there must

be at least d “low cards” with labels from {1, 2, . . . , i−1} and b−2−d high
cards, chance (

i− 1
d

)(
j − 2− (i− 1)
b− d− 2

)
(
j − 2
b− 2

) .

Condition on such a set being chosen for the first b − 2 open places. The
second stage is to compute the number of ways of arranging such a set.
Obviously they must fall as

↘ j ↘ i
−−− − −−−− − −−

a b

Thus, the a − 1 cards to the left of position a must be decreasing. The
d low cards to the left of position d must be decreasing. The arrangements
are grouped by l, the number of low cards to the left of position a. The
chance of a successful arrangement is

1

(b− 2)!

∑
l≥0

(
b− 2− d
a− 1− l

)(
b− a− 1
d− l

)
(b+ l − (a+ d)− 1)!

The first binomial coefficient counts choices of high card values to the left
of position a. The second coefficient counts places for low card values to
the right of position a (all low cards to the left are forced to lie in order in
the l places immediately to the left of position a). The final factorial counts
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arrangements of the high card values in the remaining positions to the right
of position a. These choices specify the arrangement.

Remark. The formula of the Lemma has been checked in various ways.
For example, with a 4-card deck the chance that the cards labelled (2, 3) or
(2, 4) or (3, 4) end up in pile 2 is 1/6 by direct enumeration and this checks
with the Lemma. As a further check it is straightforward to show directly

µ2j =
1

j(j − 1)(j − 2)

j−1∑
a=2

 j − a
(a− 2)!

+

(
j − a

2

)
(a− 1)!


µj−1,j =

1

j(j − 1)

j−3∑
b=0

1

b!
.

This also follows from the Lemma. Note that for j large

µ2j =
1

2j
+O(1/j2), µj−1,j =

e

j2
+O(1/j3).

Thus, asymptotically low and high cards are independent (with respect to
falling into pile 2) but high cards are dependent. This is made rigorous in
the next Lemma.
Lemma 14

µij − µiµj =
d(i)

j2
+O

(
1

ij2

)
as j →∞

where d(i)→ e− (e− 1)2 as i→∞.

Proof. Consider the formula for µij given in Lemma 13. With i fixed, the
inner sum in l goes between 0 ≤ l < d ≤ i − 1. The lead term comes from
l = 0. Using just this, as j →∞

µij ∼
1

j2

∑
2≤a<b≤j

(
i− 1
d

)(
j − i− 1

d

)
(
j − 2
b− 2

)
(b− 2)!

(
b− d− 2
a− 1

)(
b− a− 1

d

)
(b−(a+d)−1)!

Expanding the ratio of the binomial coefficients containing j,

µij ∼
1

ji+1

∑
2≤a<b≤j

(
i− 1
d

)
(j − b)!

(j − b− (i− 1− d))!

(
b− a− 1

d

)
(a− 1)!
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Now any sum involving a fixed power of a is of lower order summed over (a−

1)!. Thus replace

(
b− a− 1

d

)
by bd/d!. Similarly replace (j−b)!

(j−b−(i−1−d))!

by (j − b)i−1−d. This gives

µij ∼
∑

2≤a<b≤j

i−1∑
d=1

(
i− 1
d

)
(j − b)i−1−dbd

(a− 1)!d!

Consider the sum in b (bringing the sum in d outside). With c = i− 1− d,
this is

j∑
b=1

(j−b)cbd = jc+d+1 1

j

j∑
b=1

(
1− b

j

)c ( b
j

)d
∼ jc+d+1

∫ 1

0
(1−x)cxd =

jc+d+1c!d!

(c+ d+ 1)!
.

Making this substitution

µij ∼
1

j

∑
2≤a≤j

1

(a− 1)!

i−1∑
d=1

(
i− 1
d

)
d!(i− 1− d)!

i!d!
=

1

ij

 j∑
a=2

1

(a− 1)!

 j∑
d=1

1

d!
∼ (e− 1)2

ij

This shows that µij ∼ µiµj as j → ∞ for fixed i. A more careful analysis
shows µij − µiµj = ci

j2
+ O(1/(ij2)) for a certain bounded sequence ci. To

study ci for large i, reconsider the formula for µij . An argument simpler
than the preceding argument shows

µj−i,j ∼
e

j2
as j →∞ for fixed i

and therefore

µj−i,j − µj−iµj ∼
e− (e− 1)2

j2

Proof of Theorem. Since µi = e−1
i = O(1/i!), the first term of (25) is∑

2≤i≤n
µi(1− µi) ∼ (e− 1) log n+O(1).

Using Lemma 13, the second term is

2
∑

2≤i<j≤n
(µij − µiµj) = 2

∑
2≤i<j≤n

(
ci
j2

+O

(
1

ij2

))

= 2
∑

2≤i≤n

(
ci
i

+O

(
1

i2

))
= 2(e− (e− 1)2) log n+O(1).
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2.3 Asymptotics for the central piles

The pile sizes have a deterministic shape in the limit. In section xxx we will
prove the “integrated” version of this fact.

Theorem 15 For fixed 0 < α < 2,

n−1
∑

i≤bαn1/2c

Sn(i)
p→

α2(1− 2 log 2
α)

4
.

What is undoubtedly true is the corresponding local version.

Conjecture 16 As n→∞ and i ∼ θn1/2 for 0 < θ < 2,

n−1/2Sn(i)→L1 θ log
2

θ
.

2.4 Asymptotics for the rightmost piles

Write S̄n(1) for the number of cards in the rightmost pile, i.e. pile Ln.

Theorem 17 Assuming S̄n(1)
d→ S̄(1) for some limit distribution, the

limit can be described as follows.

S̄(1) = R(1 + P(ξ1ξ2))

where ξ1 and ξ2 are independent with exponential(1) distribution, P(λ) de-
notes a Poisson r.v., and R(m) = Sm(1) is the number of records in a
random permutation of m cards.

In fact we show in section xxx that the Poissonized version converges. Our
probabilistic description of S̄(1) does not translate to a simple explicit for-
mula, but numerical calculation gives

xxx do numerical calculation
xxx In fact there is a limit process (S̄(i); i ≥ 1) describing the numbers

of cards in the i’th-from-rightmost piles, for arbitrary fixed i.
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3 Hammersley’s process

A major purpose of this paper is to set out the connection between the
longest increasing subsequence and certain continuous-space continuous-
time interacting particle processes, which we’ll call Hammersley’s processes.
We start in section 3.1 by defining two versions of Hammersley’s process and
stating our results, comparing them with the definitions and known results
for the well-studied exclusion process. Our analysis of Hammersley’s process
implies (Theorem 20) c ≥ 2 (without appealing to prior results about c).
Then appealing to the fact c ≤ 2 we can prove further results about both
Hammersley’s process and Ln.

xxx say what we prove
xxx Hammersley [?] sec. 12 understood that a proof of Theorem 30

would imply c = 2.

3.1 The exclusion process and Hammersley’s process

The exclusion process is discussed in detail in Chapter 8 of Liggett [?], which
we will reference often. We use the phrase “exclusion process” to mean the
simple completely asymmetric exclusion process on Z1, i.e. p(x, x+ 1) ≡ 1
in the notation of [?]. For readers unfamiliar with this topic, we now give
an informal discussion.

Regard each (positive and negative) integer as a “site”, which is ei-
ther occupied by a single “particle” or unoccupied. Thus at any time t
we see a random “configuration” of occupied and unoccupied sites. The
time-dynamics follow the simple rule:

For each pair (x, x+ 1) of neighboring sites, if x is occupied and
x + 1 is unoccupied at time t, then with chance dt the particle
at x jumps to x+ 1 by time t+ dt.

We will see below a simple explicit construction using Poisson processes of
points. Write µ and ν for distributions on configurations. Call µ (time)-
invariant if, for the exclusion process with initial distribution µ, the distri-
bution at each time t > 0 remains µ. Call ν translation-invariant if it is
invariant under the shift map on the integers. Write να for the distribution
where each site is occupied independently with probability α. It is easy to
show

Lemma 18 A distribution is invariant and translation-invariant for the ex-
clusion process iff it is a mixture of the (να).
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This is a special case of results in Liggett [?]. Briefly, given a translation-
invariant ν which is spatially ergodic with occupancy probability α, there
is a natural coupling between the processes with initial distributions ν and
να, and the chance that the coupled processes agree at a fixed site tends to
1 as t → ∞, so that if ν is time-invariant then ν = να. The general case
follows by conditioning on the (spatial) invariant σ-field.

We now define Hammersley’s process on R. A configuration is a set of
particles at distinct positions on the (space) line (−∞,∞), more precisely
a set such that each finite interval has only finitely many particles. The
time-dynamics follow the rule:

For each interval [x, x+ dx] at time t, with probability dx dt the
nearest particle to the right of x is moved to x by time t+ dt.

There is of course an issue in proving rigorously that such a process exists,
but (for suitable initial configurations) we can give a constructive proof
(Lemma 25). Our first observation is that the analog of Lemma 18 holds,
with the same proof. Write νλ for the Poisson point process of rate λ on R.

Lemma 19 A distribution is invariant and translation-invariant for Ham-
mersley’s process on R iff it is a mixture of the (νλ).

Our main interest is in Hammersley’s process on R+, where particles are
on the half-line [0,∞), so that in the time-dynamics rule above we consider
only x > 0. Write L̂(x, t) for the number of particles at time t in the interval
[0, x]. Because particles move only leftwards, for fixed x the number L̂(x, t)
increases with t. As we shall explain in section 3.3, it makes sense to consider
this process being started at time 0 with zero particles. Our main result is

Theorem 20 (a) For Hammersley’s process on R+ started with zero parti-
cles,

L̂(x, t)√
tx

p→ c as tx→∞.

(b) c ≥ 2.

Here c is the constant defined by subadditivity in section 1.4, and we don’t
assume any prior knowledge about c except that c < ∞. Theorem 20 is
analogous to a known result about the exclusion process. Consider starting
the exclusion process with sites x ≤ 0 occupied and sites x ≥ 1 unoccupied.
Call this the nonequilibrium exclusion process. Let U(x, t) be the number
of unoccupied sites amongst (−∞, x] at time t.
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Theorem 21 For the nonequilibrium exclusion process, for fixed β

t−1U(bβtc, t) p→ r(β)

where r(β) = 0, β < −1; r(β) = β, β > 1,

r(β) =
1

4
(1 + β)2, −1 ≤ β ≤ 1.

Theorem 21 is due to Rost [?], with a slightly modified proof given in [?] sec.
8.5. (Their results are stated in terms of occupied sites to the right of x, so
we have made a trivial reformulation). The proof of Theorem 21 starts by
using the subadditive ergodic theorem to show that some limit r(β) exists,
then uses separate arguments to upper and lower bound r(β). Our proof of
Theorem 20 uses the same strategy, except that we have not succeeded in
giving a self-contained proof that c ≤ 2, though this is of course true. There
is a “local” version of Theorem 21, asserting that the spatial configuration
near site bβtc at time t converges to the Bernouilli(1−r(β)) process ([?] Thm
8.5.12). The analogous local version of Theorem 20 is Corollary 31, which
asserts that the spatial process around position x at time t approximates
the Poisson process of rate λ(x, t) =

√
t/x.

3.2 Further remarks on the analogy

(a) Hydrodynamical limits. Results like Theorems 21 and 20 are often called
hydrodynamic limits, and often have simple heuristic explanations by writing
down and solving partial differential equations. Here’s the heuristic expla-
nation for Theorem 20. Suppose the spatial process around position x at
time t approximates a Poisson process of some rate λ(x, t). Clearly

d

dt
EL̂(x, t) = EDx,t

where Dx,t is the distance from x to the nearest particle to the left of x. For
a Poisson process EDx,t would be 1/ (rate), so

EDx,t ≈
1

λ(x, t)
≈ 1

d
dxEL̂(x, t)

.

In other words, w(x, t) = EL̂(x, t) satisfies approximately the PDE

dw

dt
=

1
dw
dx

; w(0, x) = w(t, 0) = 0 (26)
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whose solution is w(x, t) = 2
√
tx. Note that “2” is not an arbitrary constant:

no other constant will serve. See De Masi et al [?], Papanicolaou [?] or De
Masi [?] for surveys of hydrodynamic limit theory. It is often technically
difficult to make such arguments rigorous, and this is an active research
field.

(b) Large deviation bounds. The large deviation behavior of Ln (men-
tioned as an open problem in section 1.3) is presumably analogous to the
large deviation behavior of the asymmetric exclusion process in the context
of Theorem 21. But the latter is also an open problem, according to Kipnis
et al [?] who study this question for symmetric exclusion processes.

(c) Maximal interpretation of Theorem 21. Rost [?] p. 43 and Liggett
[?] p. 412 have noted a reformulation of the asymmetric exclusion process
as a certain geometric growth process. Gandolfi (xxx ref) pointed out a
further reformulation, (27) below. Let (ξij ; 1 ≤ i, j < ∞) be an array of
independent exponential(1) r.v.’s. Let Γn be the set of paths γ = {(1, 1) =
z1, z2, . . . , z2n−1 = (n, n)} which are “up-right”, i.e. such that each zi+1 −
zi = (0, 1) or (1, 0). Write Sγ =

∑
z∈γ ξz. Then Theorem 21 implies

n−1 sup
γ∈Γn

Sγ
p→ 4. (27)

Underlying our work is the analogous connection between Hammersley’s
process and the length of the longest increasing subsequence of a random
permutation.

xxx pictures of the 2 non-eq processes

+

+

+

+

+

+

+

+

+

+
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3.3 Basic properties of Hammersley’s process

Recall the definition in section 1.4 of L↗(x, t) as the maximal number of
points of a Poisson process N on an up-right path from (0, 0) to (x, t). For
fixed t the map x→ L↗(x, t) is the counting process associated with a point
process on R+, so we can regard L↗ as a spatial point process evolving with
time.

Lemma 22 L↗ is a version of Hammersley’s process on R+ started with
zero particles.

xxx proof
xxx intuitive derivation from patience sorting dumped into section 7 –

put condensed version here?
Let us record two lemmas which are immediate from the “up-right path”

definition of L↗, but not obvious from the process definition (and which
have no obvious analog for the exclusion process). Fix 0 < κ < ∞. The
space-time Poisson process N is invariant under compressing time by κ and
dilating space by κ, and it follows that L↗ has the corresponding scaling
property.

Lemma 23 (L↗(x, t);x, t ≥ 0)
d
= (L↗(κx, t/κ);x, t ≥ 0).

In particular, the distribution of L↗(x, t) depends only on the product tx.
The space-time Poisson process N is also invariant under interchanging

space and time, so L↗ inherits that property too.

Lemma 24 Write L̂(x, t) = L↗(t, x). Then

(L̂(x, t);x, t ≥ 0)
d
= (L↗(x, t);x, t ≥ 0).

Recall (5) the definition g(t) = EL↗t,t. Using the scaling property (Lemma
23)

EL↗(x, t) = g(
√
tx) (28)

So Theorem 20 (a) is an immediate consequence of the subadditive ergodic
result (9) and the scaling property.

We now turn to Hammersley’s process on R.

Lemma 25 Hammersley’s process on R exists, for any initial configuration
satisfying

z−1/2(number of points in [−z, 0])→∞ as z →∞.
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xxx proof
The next lemma gives a space-time interchange property for Hammers-

ley’s process on R (c.f. Lemma 24).

Lemma 26 Consider Hammersley’s process on R, with the invariant dis-
tribution µλ, run for time −∞ < t < ∞. Then interchanging space and
time gives Hammersley’s process with the invariant distribution µ1/λ.

xxx give proof.

3.4 A coupling construction

Consider two point process on R+, such that the set of points in the first
process is a subset of the set of points in the second. Define L̂1(x, t) and
L̂2(x, t) to be Hammersley’s process on R+, started at time 0 with the given
point processes as initial distributions, and run using the same space-time
Poisson process N . It is easy to see

(a) At each time t > 0, the set of particles of L̂1 is a subset of the set of
particles of L̂2.

(b) The unmatched particles of L̂2 (i.e. those which do not coincide with
a particle of L̂1) can move only to the right.

xxx draw picture
So (a) implies

L̂1(x, t)− L̂1(v, t) ≤ L̂2(x, t)− L̂2(v, t); t ≥ 0; 0 ≤ v ≤ x. (29)

and (b) implies

L̂2(x, t)− L̂1(x, t) ≤ L̂2(x, s)− L̂2(x, s); x ≥ 0; 0 ≤ s ≤ t. (30)

xxx probably don’t need (30) ?
Now fix t0 > 0, and apply the construction above where L̂1 is our usual

version L̂ of Hammersley’s process on R+ started with no particles, and L̂2

starts with the distribution of L̂ at time t0. So L̂2(x, t)
d
= L̂(x, t0 + t).

Taking expectations in (29),

EL̂(x, t)−EL̂(v, t) ≤ EL̂(x, t0 + t)−EL̂(v, t0 + t); t ≥ 0; 0 ≤ v ≤ x. (31)

We shall use this coupling in two different ways. First we will strengthen
the convergence in (7) to give a more “local” result, which doesn’t depend
on knowing c = 2. (This is somewhat analogous to the coupling proof of the
renewal theorem). In the next section we use it to give a probabilistic proof
that c ≥ 2.
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Proposition 27 (a) g′(z)→ c as z →∞.
(b) There exists a constant B <∞ such that, for any ξ > 0, as m,n→∞

with m1/2 − n1/2 → ξ,

lim sup |ELm − ELn − cξ| ≤ B.

Proof. Granted (a), part (b) follows by dePoissonization (Lemma 7),
because ELMm − ELMn → cξ.

xxx If we have o(1) in that Lemma then we can take B = 0 in (b) here.
Inequality (31) implies

g(
√

(x+ x0)t)−g(
√
xt) ≤ g(

√
(x+ x0)(t+ t0))−g(

√
x(t+ t0)); x, x0, t, t0 > 0.

Differentiating, we see
d

dx

d

dt
g(
√
xt) ≥ 0

which, after a brief calculation, implies

g′(z) + zg′′(z) ≥ 0; z > 0 (32)

Since the solution of f(z) + zf ′(z) = 0 is f(z) = A/z, it follows that, for
any fixed z0,

g′(z) ≥ g′(z0)z0

z
; z > z0. (33)

We can now combine this with the superadditivity property to prove (a).
First consider an interval [z1, z1 + z2]. By (6) g(z1 + z2)− g(z1) ≥ g(z2), so
there exists z0 ∈ [z1, z1 + z2] such that g′(z0) ≥ g(z2)/z2. Then by (33),

g′(z1 + z2) ≥ g(z2)z1

z2(z1 + z2)
.

Putting z2 =
√
z, z1 = z − z2, gives the lower bound lim infz g

′(z) ≥ c. For
the opposite bound, integrate (33) to get

g(z)− g(z0) ≥ z0g
′(z0) log(z/z0); z > z0.

Use the fact (8) g(z) ≤ cz, set z = (1 + δ)z0 and rearrange to get

g′(z0) ≤
c(1 + δ)− g(z0)

z0

log(1 + δ)

So

lim sup
z

g′(z) ≤ cδ

log(1 + δ)

and letting δ ↓ 0 establishes (a).
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3.5 Proof of c ≥ 2

For each t > 0, consider Hammersley’s process on R+ at time t, and shift
all the particles left by distance t. That is, consider the process

L(x, t) = L̂(t+ x, t)

as a point process on R (for fixed t), and write µt for its distribution.
xxx talk about topology.
Tightness of (µt) as t→∞ follows from

Corollary 28 For fixed −∞ < u <∞,

EL(u, t)− EL(0, t)→ 1

2
cu as t→∞.

Proof.

EL(u, t)− EL(0, t) = EL↗(t+ u, t)− EL↗(t, t)

= g(
√
t(t+ u))− g(t)

and the result follows from Proposition 27 (a), since
√
t(t+ u)− t→ 1

2u.

Lemma 29 If tj →∞ and µtj → µ for some limit µ, then µ is translation-
invariant and is an invariant distribution for Hammersley’s process on R.

Let’s show how this implies c ≥ 2. By Lemma 19, a limit µ must be a mixed
Poisson process, i.e. a Poisson process of some random rate Λ. Next, the
space-time interchange property (Lemma 24) for Hammersley’s process on
R+, and the fact that L is defined relative to the diagonal {(t, t) : t ≥ 0}
in space-time, implies that when we run Hammersley’s process on R with
distribution µ we get a process which is invariant under interchanging space

and time. But by Lemma 26 this implies Λ
d
= Λ−1. Since Λ and Λ−1 are

negatively correlated,

1 = EΛΛ−1 ≤ (EΛ)(EΛ−1) = (EΛ)2

and so EΛ ≥ 1. By Fatou’s Lemma, for (tj) as in Lemma 29 and for any
u > 0,

2uEΛ ≤ lim inf
j

E(L(2u, tj)− L(0, tj))

= cu by Corollary 28.
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So
c ≥ 2EΛ (34)

and since EΛ ≥ 1 we have shown c ≥ 2.
Proof of Lemma 29. Fix t0 and consider the coupling L̂1, L̂2 specified

above (31). Fix B. Let U be the random set of (x, t) such that the particle
processes L̂1(·, t) and L̂2(·, t) are not identical on [x − B, x + B] . And for
δ > 0 let D = D(t0, B, δ) be the deterministic set of (x, t) such that

P ( L̂1(·, t) and L̂2(·, t) are not identical on [x−B, x+B] ) > δ.

Consider the curve

Cκ = {(x, t) : xt = κ2, κ/2 ≤ x ≤ 2κ}.

Let Lebκ be the measure on Cκ induced from Lebesgue measure on x. Then

Lebκ(U) ≤ 2B L̂2(2κ+B, 0)

because an unmatched particle in the coupling whose trajectory crosses Cκ
at (x′, t′) can only contribute to U for values x ∈ (x′ −B, x′ +B), and only
unmatched particles starting in [0, 2κ+B] can contribute. Next,

ELebκ(U) ≤ 2BEL̂2(2κ+B, 0) = 2BEL̂(2κ+B, t0) ≤ 2Bc̄
√
t0(2κ+B).

And
Lebκ(D) ≤ δ−1ELebκ(U).

As κ→∞ the right side is O(κ1/2) whereas Lebκ(Cκ) = 2.5κ, and so Cκ \D
is non-empty for all large κ. The diagonal principle now establishes the
following. There exists a trajectory {(xκ, tκ) : 0 < κ < ∞} with (xκ, tκ) ∈
Cκ such that, for all rational (t0, B, δ),

(xκ, tκ) ∈ D(t0, B, δ) for all κ > κ0(t0, B, δ) (35)

where κ0(t0, B, δ) < ∞. Write νx,t for the distribution of the point process
(L̂(x+u, t);−∞ < u <∞) and write d for a metrization of weak convergence
of point processes. For fixed t0, the fact that (35) holds for all rational (B, δ)
implies

d(νxκ,tκ , νxκ,tκ+t0)→ 0.

This extends from rational t0 to real t0, and then we can use the scaling
property (Lemma 23) to show

d(νκ,κ, νκ,κ+t0)→ 0.
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Since µt = νt,t, we have established the “invariant for Hammersley’s pro-
cess” property, and the translation-invariance follows after another use of
the scaling property.

xxx above proof slides over some details?
xxx I should think carefully about whether the arguments for the exclu-

sion process can be used to show c ≤ 2.

3.6 The hydrodynamical limit

We would like to be able to give a self-contained proof of Theorem 30 below.
But there are two difficulties. First, we do not know how to prove the
technical fact that for fixed u, (L(u, t) − L(0, t)) is uniformly integrable as
t → ∞. Second, we do not know how to show that a subsequential weak
limit µ in Lemma 29 must be a pure Poisson process rather than a mixture
of Poisson processes. If we could prove these assertions probabilistically,
then Theorem 30 below and the fact c = 2 would easily follow. In fact we
shall argue the other way round, and invoke the fact c ≤ 2 to prove the
Theorem.

Theorem 30 µt → ν1 as t→∞.

Proof. Granted c ≤ 2, inequality (34) implies EΛ ≤ 1, in the notation of the

previous section. But Λ
d
= Λ−1, so P (Λ = 1) = 1. That is, a subsequential

weak limit µ in Lemma 29 must be ν1, so the Theorem follows by tightness.
Scaling gives the natural hydrodynamic limit.

Corollary 31 Let µx,t be the distribution of the point process
(L(x+ λx,tu, t);−∞ < u <∞) where λx,t =

√
t/x. Then

µx,t → ν1 as tx→∞.

xxx remaining parts of section 3 depend on knowing c = 2.

3.7 More about ELn

Theorem 32 2n1/2 − ELn →∞.

By Lemma 7 it suffices to prove

2t− EL̂(t, t)→∞. (36)
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Fix B <∞. Interpreting L↗(x, t) in terms of the space-time Poisson process
N as the maximal number of points on an up-right path from (0, 0) to (x, t),
we have

L↗(2t, 2t) = sup
−t<s<t

(L↗(t, t+ s) + L∗(t, t− s)) (37)

where L∗(t, x) is the maximal number of points on an up-right path from
(t, 2t−x) to (2t, 2t). By symmetry and independence of the Poisson process,

(L∗(t, u); 0 ≤ u ≤ 2t)
d
= (L↗(t, u); 0 ≤ u ≤ 2t)

and the two processes are independent. By Theorem 30

(L↗(t, t+ s)− L↗(t, t);−B ≤ s ≤ B)
d→ (N(s);−B ≤ s ≤ B)

where the limit is the Poisson(1) counting process. Thus

lim inf
t

E sup
−B≤s≤B

(L↗(t, t+ s)− L↗(t, t)) + (L∗(t, t− s)− L∗(t, t)) ≥ r(B)

where
r(B) ≡ E sup

−B≤s≤B
(N(s) +N∗(−s))

where N∗ is an independent Poisson(1) counting process. Appealing to (37),

lim inf
t

(EL↗(2t, 2t)− 2EL↗(t, t)) ≥ r(B).

But r(B) → ∞ as B → ∞ and so EL↗(2t, 2t) − 2EL↗(t, t) → ∞, which
easily implies (36).

3.8 xxx

xxx prove Theorem 15
xxx the conjecture reduces to a tagged-particle result
xxx anomalous size of difference between adjacent piles?
xxx old heuristics for conjecture follow.
In terms of the Poisson process approximation to L̂(x, t), the rate of

growth of a pile with top card x is

1

EDx,t
≈ 1

d
dxEL̂(x, t)

≈
√
x/t. (38)
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Now consider pile a. This is first created at time t0 such that

a ≈ 2
√
t0. (39)

And the top card of pile a at time t has label x such that a ≈ 2
√
tx and so

x ≈ a2

4t
≈ t0

t
.

So by (38), the rate of growth of pile a at time t > t0 is approximately
t
1/2
0
t ,

and so the size of pile a at time n is approximately

S(a, n) ≈
∫ n

t0

t
1/2
0

t
dt = t

1/2
0 log(n/t0)

≈ a

2
log

(
n

(a/2)2

)
by (39)

= a log

(
2
√
n

a

)
as stated in the conjecture.

xxx prove Theorem 17
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4 Continuous Limits and the Leftmost Piles

xxx section 4 essentially unchanged from old notes.

4.1 Another particle process

To give results on the number of cards in a fixed pile we need a different, but
related, particle process. There are a fixed number k particles, at positions
0 < X1(t) < X2(t) < . . . < Xk(t) < ∞ at time t. The process evolves
according to the rules

Growth rule. Each particle moves deterministically to the right at
exponentially increasing rate, i.e. according to dx(t)/dt = x(t).

Fallback rule. There is a space-time Poisson(1) process of events.
When an event happens at (x0, t0) with Xi−1(t0) < x0 < Xi(t0), particle i
is moved from Xi(t0) to x0.

xxx picture
It is easy to check this process can be obtained from the previous particle
process by a deterministic transformation of time and space, as follows. Let

L∗(x, t) = #{i : Xi(t) ≤ x}

be the number of particles of this new process in [0, x] at time t. Then

L∗(x, t) = L̂(xet, et)

With this construction the initial condition is Xi(0) = ∞, but it is easy to
see that Xi(t) <∞ for t > 0.

In terms of patience sorting with n cards labeled 1, . . . , n, let B(n, i) be
the label on the card on top of pile i at the end of the game, with B(n, i) =∞
if there is no such pile. Arguing as above (63) we see that for fixed t

(Xi(t); i = 1, . . . , k)
d
= (Γ(B(Met , i)); i = 1, . . . , k) (40)

where (Mt) is Poisson(1) process of “times”, and where (Γ(1),Γ(2), . . .) are
the points of an independent Poisson(1) process on the “space” interval
[0,∞), with Γ(∞) =∞. Conceptually, the purpose of the time-change is to
obtain a process whose evolution rule is stationary in time: in patience sort-
ing the growth rate of pile 1 after n cards is order 1/n, and our exponential
time-change makes this order 1.

Returning to patience sorting, recall that the position of cards 1 through
bk in the piles depends only on their initial relative order in the deck, so for
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1 = b1 < b2 < . . . < bk the probability P (B(n, 1) = b1, . . . , B(n, k) = bk) is
the same for all n ≥ bk. So

(B(n, i); i = 1, . . . , k)
d→ (B(i); i = 1, . . . , k) , say. (41)

Then by (40) there is a limiting distribution for the particle process

(X1(∞), . . . , Xk(∞))
d
= (Γ(B(1)), . . . ,Γ(B(k))) (42)

which has some density pk(x1, . . . , xk) say. From the evolution rules for
the particle process we can write down the balance equation for pk (i.e.
the continuous analog of the balance equation π(j) =

∑
i π(i)P (i, j) for the

stationary distribution π of a discrete-time and -space chain)

xkpk = −pk −
k∑
i=1

xi
∂pk
∂xi

+
k∑
i=1

∫ xi+1

xi

p(x1, . . . , x
′
i, . . . , xk)dx

′
i (43)

where xk+1 =∞.
Note the elegant interplay here of combinatorial and process ideas. From

the description of the particle process it is not quite obvious that a limit dis-
tribution exists, but the existence of the limit distribution (B(1), . . . , B(k))
in (41) is obvious. Conversely, we cannot automatically write down a char-
acterization of the latter distribution, whereas (43) is an automatic charac-
terization of the former limit. Unfortunately it seems impossible to extract
useful information from (43).

There is a natural coupling of two versions of the particle processes
started at (x1, . . . , xk) and (x′1, . . . , x

′
k). The coupling simply uses the same

space-time process of events to determine the jumps of each version. We
make several uses of this coupling. Suppose first that x′i = xi for i =
1, . . . , k − 1 and xk < x′k. Then the processes will couple at the first jump
of Xk(t), and this has mean time bounded by 1/(x′k − xk), so in particular
is a.s. finite. An easy inductive argument shows

Lemma 33 Two versions of the particle process with arbitrary initial con-
figurations will couple in a.s. finite time.

Lemma 33 and the existence of a stationary distribution imply the particle
process is a Harris-recurrent Markov process

xxx refs
We want to use this machinery to study the number Sn(i) of cards in pile

i when patience sorting is played with n cards. As in section 3.3, we may
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use the “unending” variation of patience sorting, with the cards labelled by
random real numbers. In terms of the particle process, we study

Ji(t) = number of jumps of Xi(·) before time t .

For the stationary particle process we have

EJi(t) = c(i)t

where
c(i) = E(Xi(∞)−Xi−1(∞)) = E(B(i)−B(i− 1)). (44)

Persi ? can you see sharply why this c(i) is the same as in Corollary
10?

xxx can we prove c(i) increasing?
As a consequence of the general CLT for Harris-recurrent chains
xxx ref new Tweedie book?
we have

Proposition 34 For the stationary particle process,

t−1/2(Ji(t)− c(i)t)
d→ Normal(0, σ2(i))

where

σ2(i) = c(i)

(
1 + 2 lim

t→∞
(EJ∗i (t)− c(i)t)

)
where (J∗i (t)) is the process (Ji(t)) conditioned on Xi(·) having a jump at
time 0 (this jump is not counted in J∗i (t)).

xxx argue σ2(i) not 0 or ∞.
We shall use this to prove Theorem 11,

Sn(i)− c(i) log n√
log n

d→ Normal(0, σ2(i)) as n→∞.

First, we can take “time 1” to be the time n when the first card is put
into pile i. Then, by Lemma 35 below, we can switch to continuous time.
But then, using the deterministic exponential time-change, the assertion of
Theorem 11 is just the assertion of Theorem 34, applied to the particle
process with a certain random initial configuration: but by Lemma 33 the
initial configuration is immaterial.

xxx say above better.
We used the following elementary dePoissonization lemma.
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Lemma 35 Let (V (n);n = 1, 2, . . .) be a nondecreasing sequence of r.v.’s.
Let (Mt) be a Poisson(1) counting process independent of (V (n)). If

(V (Mt)− a(t))/b(t)
d→ Z

where a(t) ↑ ∞, b(t) ↑ ∞, t1/2a′(t)/b(t) ↓ 0 then

(V (n)− a(n))/b(n)
d→ Z.

4.2 Calculations for k = 2

xxx result inconsistent – I’ll try to work backwards from the analysis in
Theorem 12.

Our first goal is to use (42) to obtain a formula for the stationary density
p2(x1, x2). Trivially B(n, 1) = 1, so X1(∞) has exponential(1) distribution.
Next,

P (B(n, 2) = b) =
1

b(b− 2)!
, b = 2, 3, . . . , n (45)

(with the remaining probability 1/n! there is only one pile). To argue (45),
the compatability property (section 1.1) implies that the cards with labels
larger than b play no role, so we may suppose n = b. Then B(n, 2) = b if
and only if cards 1 through b− 1 occur in exactly reverse order, and card b
is not the first card. And this has chance 1

(b−1)! ×
(b−1)
b .

From (45) we can obtain an expression for p2. Given B(n, 2) = b, and
given the Poisson process Sm has points at x1 and x2 > x1, the chance that
X1(∞) = x1 and X2(∞) = x2 is the chance that there are no points of the
Poisson process in [0, x1) and there are exactly (b− 2) points in (x1, x2). So

p2(x1, x2) = e−x1
∞∑
b=2

q(x2 − x1, b− 2)
1

b(b− 2)!
(46)

where q(λ, ·) is the Poisson(λ) probability function. We can rewrite this as

p2(x1, x2) = e−x1a(x2 − x1) (47)

where

a(λ) =
∞∑
i=0

q(λ, i)(
1

(i+ 1)!
− 1

(i+ 2)!
). (48)

Remark. It would be nice if the limit (Xi(∞); i = 1, . . . , k) were Markov
in i, but this appears to be false.
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Consider the intensity π(x, y, z), 0 < x < y < z specified by

π(x, y, z)dxdydzdt

= P (X1(0) ∈ [x, x+ dx], X2(0) ∈ [y, y + dy], X2(−dt) ∈ [z, z + dz]).

Clearly
π(x, y, z) = p2(x, z).

Now fix (x, y, z) and consider the natural coupling between the process
(X1(t), X2(t)) with (X1(0) = x,X2(0) = z) and the process (X∗1 (t), X∗2 (t))
with (X∗1 (0) = x,X∗2 (0) = y). These processes couple at the first time that
X∗2 (·) jumps. So there is an intensity gx,y,z(t) specified by

gx,y,z(t)dt = chance X2(·) jumps during [t, t+ dt] but X∗2 (·) doesn’t. (49)

Now the expression for σ2(2) in Proposition 34 can be rewritten as

σ2(2) = (e− 1)− 2

∫ ∫ ∫ (∫ ∞
0

gx,y,z(t)dt

)
π(x, y, z)dxdydz. (50)

where
∫ ∫ ∫

is the triple integral over {0 < x < y < z <∞}.
Since the event counted in (49) can occur only if X∗2 (·) has not jumped

before t, it can only occur when X∗2 (t) = yet, and a jump of X2(t) to w can
only be counted if yet < w and w < X2(t). Also, the largest that X2(t) can
be is zet. So

gx,y,z(t) =

∫ zet

yet
P (X∗2 (t) = yet, X2(t) > w) dw. (51)

Conditional on {X∗2 (t) = yet}, we have X2(t) > w iff no events of the space-
time Poisson process occurred in the region {(s, v) : 0 < s < t, yes < v <
wes−t}. This has conditional probability

exp(−
∫ t

0
(we−t − y)es ds)

= exp(−(we−t − y)(et − 1)) = exp(−(1− e−t)w) exp(y(et − 1)).

So the integrand in (51) is

exp(−(1− e−t)w) exp(y(et − 1)) Px,y(X
∗
2 (t) = yet)
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where Px,y emphasizes that X∗ starts with X∗1 (0) = x,X∗2 (0) = y. Integrat-
ing over w in (51),

gx,y,z(t) =

exp(−(et − 1)y)− exp(−(et − 1)z)

1− e−t
exp(y(et−1)) Px,y(X

∗
2 (t) = yet). (52)

Now define

h(x, t) = Ex exp

(∫ t

0
X1(s)ds

)
. (53)

Conditional on (X1(s) : 0 ≤ s ≤ t), we have X∗2 (t) = yet if and only if no
events of the space-time Poisson process occur in the region {(s, v) : 0 < s <
t,X1(s) < v < yes}, and this has conditional probability

exp(−
∫ t

0
(yes −X1(s)) ds) = exp(−y(et − 1)) exp(

∫ t

0
X1(s) ds).

Taking expectations,

gx,y,z(t) =
exp(−(et − 1)y)− exp(−(et − 1)z)

1− e−t
h(x, t). (54)

Now substitute into (50) and integrate dy over x < y < z.

σ2(2) = (e− 1)− 2

∫ ∞
0

dt

1− e−t
∫ ∞

0
dx h(x, t)

∫ ∞
x

dz p2(x, z)

(
exp(−(et − 1)x)− exp(−(et − 1)z)

et − 1
− (z − x) exp(−(et − 1)z)

)
. (55)

Recall (47) that p2(x, z) = e−xa(z−x), for a(·) defined at (48). We calculate∫ ∞
0

a(λ) dλ = 1

∫ ∞
0

a(λ)e−θλ dλ = 1 + θ − θ exp

(
1

θ + 1

)
∫ ∞

0
λa(λ)e−θλ dλ = −1 +

(
1− θ

(θ + 1)2

)
exp

(
1

θ + 1

)
.

These enable us to integrate over z in (55) to get

σ2(2) = (e− 1)− 2

∫ ∞
0

dt e−t exp(e−t)

∫ ∞
0

exp(−etx)h(x, t)dx. (56)
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Turning to the function h(x, t), it is routine to derive the equation

∂h

∂t
= x

∂h

∂x
+

∫ x

0
h(x′, t)dx′ (57)

with h(x, 0) = 1. Since we need a transform in (56) anyway, we can consider

w(θ, t) =

∫ ∞
0

h(x, t)θe−θx dx.

Then (57) transforms to
∂w

∂t
= θ

∂h

∂θ
+
w

θ
(58)

with w(θ, 0) = 1. I don’t know a closed-form solution of (58), but we can
write down the series expansion

w(θ, t) =
∞∑
i=0

wi(1/θ)t
i

where w0 ≡ 1 and wi(y) is the degree i polynomial defined recursively by

(i+ 1)wi+1(y) = y(wi(y) + w′i(y)).

In terms of these wi, (56) becomes

σ2(2) = (e− 1)− 2

∫ ∞
0

dt e−2t exp(e−t)
∞∑
i=0

wi(e
−t) ti. (59)

Numerically this works out as about 1.44.

4.3 Hammersley’s process on the circle

xxx talk about Leticia’s work

4.4 Other particle processes

The particle process of section xxx, restricted to the space interval [0, 1], has
the “birth rule”

Particles are born at time of a Poisson(1) process, at uniform
random positions
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and a certain “death rule”. Altering the death rule would typically lead to
completely different behavior. Let us mention two alternative rules which
have been discussed in the literature (with motivations quite different from
ours).

Alternate Rule 1 [?]. After each birth, with probability 1− p there is no
death, and with probability p both the newly-born particle and the nearest
particle to its right (if any) are killed.

For p < 1/2 there is a stationary distribution. For p ≥ 1/2 the number
of particle tends to infinity, and the normalized empirical distribution of
particles tends to the uniform distribution.

Alternate Rule 2 ([?], section 2). There is an independent Poisson(1)
process of death times, at which times the leftmost particle (if any) present
is killed.

This is a critical M/M/1 queue with pre-emptive priorities, and there is
a stationary distribution with finitely many particles in [0, 1 − ε) for each
ε > 0.
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5 A large deviation argument

Our aim is to prove Proposition 3. It is enough to prove

t−1 logP (L↗t,t < c′t)→ −∞ as t→∞; c′ < c (60)

because for N(n) with Poisson(n) distribution,

P (L↗t,t < c′t) ≥ P (N(n) ≤ n)P (Ln < c′n)

and P (N(n) ≤ n)→ 1/2.

Given K define D(K) = {(x1, x2) : |x1 − x2| ≤ K}. Define L
/K/
t,t to be

the maximum number of points of the point process N on an up-right path
from (0, 0) to (t, t), restricted to paths lying in D(K).

Lemma 36 Given ε > 0 there exists K such that

lim sup
t

t−1 logP (L
/K/
t,t < (c− ε)t) < 0.

Granted this lemma, fix j ≥ 1. Then

L↗t,t ≥ max
1≤i≤j

M
(i)
t

where M
(i)
t

d
= L

/K/
t−2iK,t−2iK is the maximum number of points of the point

process N on an up-right path from (0, 2iK) to (t − 2iK, t), restricted to
the region {(x1, x2) : (2i− 1)K ≤ x2 − x1 ≤ (2i+ 1)K}.

xxx picture

These regions are disjoint as i varies, so the M
(i)
t are independent, so

logP (L↗t,t < (c− ε)t) ≤ j logP (L
/K/
t−2jK,t−2jK < (c− ε)t).

It follows that

lim sup
t

t−1 logP (L↗t,t < (c− ε)t) ≤ j lim sup
t

t−1 logP (L
/K/
t,t < (c− ε/2)t).

Since j is arbitrary, Lemma 36 implies (60).
To work toward the proof of Lemma 36, we first state a standard large

deviation result.

Lemma 37 Let (ηi; i ≥ 1) be i.i.d. non-negative r.v.’s. Then

lim sup
n

n−1 logP (
n∑
i=1

ηi < bn) < 0, b < Eη1.
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Next, note that subadditivity implies

t−1EL
/K/
t,t → cK ≤ c as t→∞

for some cK . Also, by subadditivity

EL↗K,K = EL
/K/
K,K ≤ KcK

and so
cK → c as K →∞. (61)

Now regard the point process N as being defined on all R2. Define L
/K/
a,b to

be the maximum number of points of the point process N on an up-right
path from a to b, restricted to paths lying in D(K). Fix K and Q. For each
i ≥ 1 define

ηK,Q,i = inf{L/K/a,b : a,b ∈ D(K), a1 + a2 = (i− 1)Q, b1 + b2 = iQ}.

These r.v.’s are independent as i varies, and

n∑
i=1

ηK,Q,i ≤ L/K/(−K/2,−K/2),(nQ+K/2,nQ+K/2)
d
= L

/K/
nQ+K,nQ+K .

So Lemma 37 implies

lim sup
n

n−1 logP (L
/K/
nQ+K,nQ+K < bn) < 0, b < EηK,Q,1.

This in turn implies

lim sup
t

t−1 logP (L
/K/
t,t < bt) < 0, b <

EηK,Q,1
Q

. (62)

But
ηK,Q,1 ≥ L/K/(K/2,K/2),(Q−K/2,Q−K/2)

d
= L

/K/
Q−K,Q−K

and so

lim
Q→∞

EηK,Q,1
Q

= cK .

So Lemma 36 follows from (62) and (61).
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6 Miscellaneous

6.1 Processes of uniform random permutations

There are many different constructions of uniform random permutation
processes, i.e. many different possible joint distributions of (Πn;n ≥ 1)
where each Πn is uniform of the set Σn of permutations of {1, 2, . . . , n}.
These are often useful in probabilistic analyses of quantities Qn associated
with Πn, and in particular it is often helpful to choose a process for which
Qn is increasing (for each sample path).

If for each n we have a n−−1 map Σn → Σn−1 then the exists a process
with Πn−1 = fn(Πn), and this process can be specified “forwards” by

given Πn−1 = π, take Πn uniform on {π∗ : fn(π∗) = π}.

We illustrate three processes of this type by a verbal description of the
particular “forwards rule” and an illustration with our example

7 2 8 1 3 4 10 6 9 5

(a) Insert card n at a random position in the deck.

7 2 8 11 1 3 4 10 6 9 5

(b) Add a new card at the end of the deck, give it a random label j, and
increase by 1 the label on cards previously labeled j through n− 1.

8 2 9 1 3 4 11 7 10 5 6

(c) Put card n at the end of the deck, then interchange it with a randomly-
chosen card.

7 2 8 1 11 4 10 6 9 5 3

There are other processes of this simple type, for instance the “Chinese
restaurant process” (e.g. [?]) based on the cycle representation.

The longest increasing subsequence l(Πn) is increasing for processes (a)
and (b), but not for (c). Of course process (b) is the natural “card-dealing”
process implicit in our description of patience sorting and the Schensted
correspondence . In terms of Hammersley’s process L↗, the embedded jump
process of L↗1,t is (l(Πn)) for process (b), while the embedded jump process

of L↗x,1 is (l(Πn)) for process (a), But the embedded jump process of L↗t,t
(to which the subadditive ergodic theorem applies), is the (l(Πn)) process
for a certain random permutation process (Πn) which does not have such a
simple explicit description. Finally, note that in Lemma 6 it was easier to
use process (a).
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7 dump

To play patience sorting with n cards in the way described earlier, one must
specify n in advance, in order to label the cards 1 through n. But for
mathematical analysis, suppose instead that we have an infinite supply of
cards and label each with a random real number, chosen uniformly from
[0, 1]. Then we can imagine continuing the game forever. For each n, the
order of the labels of the first n cards is a uniform random permutation, and
so the pattern of piles we see after n cards are dealt is probabilistically the
same as if we had specified n in advance.

A second alteration is more technical. Stochastic processes are often eas-
ier to study in continuous time rather than discrete time. Thus we imagine
cards being dealt at random real times, the times of a Poisson(1) process.
That is, in each time interval [t, t + dt] there is chance dt that a card is
dealt, independent of past events. Thus the number of cards dealt during
time [0, t] is a r.v. Mt, say, with Poisson(t) distribution, so in particular Mt

has expectation t and s.d. t1/2.
So at time t we will see the labels on the the top card on each pile,

say 0.137, 0.355, 0.602, 0.884. We now switch terminology and talk about
particles and positions. That is, at time t we have 4 particles at positions
0.137, 0.355, 0.602, 0.884 on the interval [0, 1]. A moment’s thought shows
this particle process evolves according to the following two rules.

Birth rule. New particles are born at times of a Poisson(1) process,
and at uniform random positions on [0, 1].

Death rule. When a particle is born, the nearest particle to its right
(if any) is immediately killed.

Initially, there are 0 particles.

Let L̂(1, t) be the number of particles present at time t. Then

L̂(1, t) = LMt (63)

where (Ln;n = 1, 2, 3, . . .) is the number of piles after n cards when patience
sorting is played forever, as described above.

We can extend the particle process to a process of particles on the semi-
infinite line [0,∞). The birth process is now a space-time Poisson(1) process,
N say. That is, in each time interval [t, t+dt] and each space interval [x, x+
dx] there is chance dt dx for a particle to be born. The death process remains
the same. And (contrary to intuition, but appealing to the Kolmogorov
extension theorem) it still makes sense to start at time 0 with 0 particles.
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For this extended process, write L̂(x, t) for the number of particles at
time t in the interval [0, x]. It is clear than the behavior of the process on a
spatial interval [a, b] is affected by the behavior on [0, a] but is not affected by
the behavior on [b,∞). It follows that the behavior of the extended process
on the spatial interval [0, 1] is exactly the same as the process previously
defined on [0, 1], so we don’t lose anything by studying the extended process.
But note that the extended process has no natural interpretation in terms
of patience sorting, so we really have gotten some new structure.
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