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 1984, Vol. 12, No. 4, 999-1040

 SPECIAL INVITED PAPER

 ORIENTED PERCOLATION IN TWO DIMENSIONS1

 By RICHARD DURRETT

 University of California, Los Angeles

 This paper is a self-contained survey of most of the results known about oriented percolation.
 The table of contents below should give an idea of the topics which will be covered. A more detailed
 account can be found in the first section.

 1. A few words of explanation.

 2. Description of the model.

 3. A useful characterization of p,.
 4. A stationary measure for the edge process.

 5. Recurrence properties of fn, lower bounds on P(QV).
 6. Lower bounds on Pc.

 7. Exponential estimates for p < pc.
 8. Time reversal duality, first results for p > pc.
 9. A construction for studying p > Pc (and showing a (pc) = 0).

 10. p(rA<o) 5 Cexp(-y IAl).
 11. Large deviation results for fn.
 12. Bounds onP(ns rA<oo) andP(n ICoI <oo).
 13. Correlation inequalities for (Z limit laws for I to I.
 14. Infinite differentiability of P(Q2) for p > pc.

 1. A few words of explanation. Oriented percolation is one of the sim-
 plest systems which exhibits a "phase transition," so it has been studied by a
 number of people using a variety of methods (rigorous and not). At this point in
 the development of the theory there are a number of results but there are still
 quite a few open problems, so we have written this article with the hope of
 acquainting people with what is known and more important with what is not
 known. With the last purpose in mind, this paper is aimed at two audiences: (1)
 people who are experts on the subject and (2) people who are not but would like
 to learn something about it or the broader topic: interacting particle systems. We
 have separate advice for these two groups on how to read the paper.

 (1). Experts will find the main new results in Sections 4-5, 7, 10, 11, 13 and
 14. As for the rest of the paper, the material in Sections 3, 6, and 8 is classical,
 being from the period surveyed in Griffeath (1981). Most of the results in Sections
 9-13 are from Durrett and Griffeath (1983) but there have been a number of
 improvements. The most notable of these are: (i) In four places ((7.1), (7.6),
 (10.3), and (11.1)) large deviations results replace upper bounds; (ii) We show
 that (12.4) forp >Pc, P(n < I COI <oo) 2 c exp(-rn1/2), in contrast to (7.6) for
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 1000 R. DURRETT

 P < Pc, P(n < I Co I < oo) ' C exp(yn); (iii) We show that the edge speed a is
 continuous for X > k, (see (10.1)); and (iv) We have made some minor progress
 toward a central limit theorem for I nI, see (13.4).

 (2). For the uninitiated, these notes are intended to be an easy to read self-
 contained introduction to oriented percolation. As we explain in Section 2, this
 is a subject which we consider to be the study of one particular discrete time
 interacting particle system, so you can think of this as also an introduction to
 the larger subject as well. In this regard I think oriented percolation is a good
 example for two reasons: (i) it can be constructed by flipping coins instead of
 talking about generators or Poisson processes and (ii) there is a strict upper
 bound of 1 on the propagation speed so arguments for oriented percolation are
 simpler than those for its continuous time analogue-the basic contact process.

 So much for the how and why. In Section 3 we give a characterization of PC
 which is the key to the developments which follow. After you finish Section 3
 the following groups of sections may be read more or less independently: 4-5, 6,
 7, 8-9, 10-14, subject only the restriction that 9 is a prerequisite for the last
 group. I must confess that I have an unnatural fascination with computing lower
 bounds and refining the results in the subcritical case so if the focus gets too
 microscopic you should feel free to skip ahead.

 Finally two words about NOTATION: The important formulas in each section
 are numbered (1), (2), * .. . As above when we are in another section and want
 to refer to (6) of Section 7 we will call it (7.6). There are two important
 announcements about the constants C and 'y in Section 7.

 2. Description of the model. From each z E Z2 there is an oriented arc
 to z + (0, 1) and to z + (1, 0) (see Figure la.) Each arc, also called a bond, is
 independently open with probability p and closed with probability 1 - p. We
 think of open bonds as permitting us to go along the bond in the direction of the
 orientation and with this in mind we make the following definitions:

 x -* y (y can be reached from x) if there is an open path from x to y: that is,
 there is a sequence x0 = x, x1, * i, xm = y of points in Z2 such that for each
 k c m the arc from Xk-1 to Xk is open

 Co(the cluster containing 0 (0, 0)) = {x:0 -* x}

 Co is the set of all points we can reach from 0.

 In percolation the event of interest is

 Q= IICol = m}j

 = {there is an infinite open path starting at 0},

 (here and below I A I is the number of points in A). The reason for our interest
 in QCO is that its probability is 0 if p is small and positive if p is close to 1, i.e., as
 the value of p increases the system undergoes a "phase transition" from having
 only finite clusters to having an infinite connected set.

 When this model was introduced by Broadbent and Hammersley in (1957) it
 was used to explain a phenomenon which is well known and'useful to people who
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 a. aCd.

 FIG. 1.

 drill for oil: A given liquid will penetrate some rocks but not others. In the model
 open bonds correspond to airspaces which permit the passage of fluid, the
 probability p is related to how porous the material is, and the appearance of an
 infinite cluster indicates that the liquid can freely penetrate the solid. In this
 application the orientation given in Figure la is of course ridiculous and an
 unoriented model is usually used. We would like to point out, however, that if we
 rotate the lattice -135? (see Figure lb) or better yet consider the partially
 oriented model given in Figure Id (this is the "stiff" model), we then get a model
 which can incorporate the effect of gravity on the movement of the fluid.

 We can model another type of system if we change the lattice by sending

 (x, y) -* (x, x + y) (see Figure lc) and interpret to = I(x, n) E CO} as the set of
 occupied sites at time n. If we generalize the percolation scheme so that bonds

 up (T) are open with probability p and bonds at 450 (/) are open with probability
 p' then the dynamics of the process to may be described as follows: At each time
 n each particle x E to independently (a) dies with probability 1 - p and, (b) gives
 birth to a new particle at x + 1 with probability p', subject to the restriction (c)
 there is never more than one particle per site.

 If we allow an unlimited number of particles per site we get what is called a
 branching random walk. It is known (see Athreya and Ney, 1972) that in this
 case E l to I = (p + p,)n and if p + p' > 1 then the number of particles at 0 is
 - C(p + p') n/n 1/2. The first result is the familiar Malthusian law of exponential
 population growth, but the second conclusion shows that the density of particles
 becomes so great that the assumption that the particles live and die independently
 is not valid.

 Oriented percolation is a small first step in taking into account that an
 enviroment can support only a limited density of individuals. This model takes
 the very drastic approach of limiting the density to one indivdiual per site but as
 we shall see below this very special case is already very complicated, so we will
 stick to to this model below and leave it to the reader to try to generalize the
 results to more realistic interactions.

 The interpretations mentioned above are just two of many. Oriented percola-
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 1002 R. DURRETT

 tion, by virtue of its simplicity, has appeared as a model of processes that occur
 in chemistry (Schlogl, 1972, Grassberger and de la Torre, 1979), and in connection
 with Reggeon field theory which models the creation, propogation and destruction
 of a cascade of elementary particles (see Moshe, 1978, and Cardy and Sugar,
 1980). The three dimensional model (= 2 space + 1 time) has been used to model
 the evoluation of galaxies with the hope of explaining the appearance of spiral
 arms (see papers of Gerola, Seiden, and Schulman) and to describe "hopping
 conduction in an amorphous semiconductor" (van Lien and Shklovskii, 1981).

 The interpretations listed above are just mentioned to convince you that
 oriented percolation is a widely used model. Apart from potential applications
 there is one final reason for interest in oriented percolation-it is in a different
 "universality class" than regular percolation. What this means is that the nature
 of the infinite cluster and the behavior of the system for p near Pc is different in
 the two models. We will say something about these differences below. The
 similarities are apparent and I think the reader will find it interesting to compare
 the results here with those for ordinary percolation in Kesten's Percolation
 Theory for Mathematicians.

 The key to the theory in Kesten's book is the idea of a sponge crossing, which
 is analogous to the right edge discussed in Section 3 and in each case the
 characterization of Pc in terms of this object. For some purposes, like getting
 bounds on P( I Co I 2 n) below Pc, the work is much easier in the oriented case.
 When we turn to study the model on the square lattice at Pc, however, the
 unoriented case is easier-it has two axes of symmetry, so all the sponge crossing
 probabilities are the same. In the oriented case when p is near PC percolation
 occurs in a narrow cone, so the sponge crossings do not satisfy the hypotheses of
 Kesten's metatheorem, and we cannot use it to conclude P(QO.) = 0 at Pc.

 3. A characterization of p,. In this section we will give a way of charac-
 terizing Pc which is the key to the developments which follow. First we rotate our
 picture 45?. Let Y = {(m, n) E Z2:m + n is even, n 2 0 and draw an oriented
 arc from each (m, n) E Y to (m + 1, n + 1) and to (m - 1, n + 1) (The picture

 is just Figure lb upside down). Let 4O = Ix:(x, n) E Y and 0 -+ (x, n)j. 4O is a
 random subset of I-n, * , nI.

 Let rn = sup 4 . (sup 0 = -o)

 Let /n = inf 40. (inf 0 =+oo)

 rn and 4n stand for the right edge and left edge of 4O.

 Let {n = Ix:(x, n) E Y and there is a y c 0

 such that (y, 0) -* (x, n)}.

 (Note: in the last definition I should say (y, 0) E Y but here and in what follows
 I will omit this and it will be understood that all points referred to are in Y).
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 (. nn) (x,n)

 (y,0) (0,0)

 FIG. 2

 Let T,, = sup An (there are an infinite number of starting points so 4n # 0). It is
 clear that T,, 2 rn. Our interest in F,, comes from the following facts

 (1) 4n = fn n [ns oo)

 (2) on I 4n # 01, rn = rn.

 PROOF. The second result is a corollary of the first so we will only prove (1).
 Clearly 40 C n and 40 C [in, oo) so we only have to show 40 D n f [ins o) and to
 do this we can suppose 4n < 0. In this case it is clear from a picture (see Figure
 2) that if there is a path to (x, n) ' 4n from some (y, 0) with y < 0 then there is
 also a path from 0 to (x, n), so x E 40. (Note: Here it is important that d = 2 and
 that when two paths cross they must have at least one vertex in common.)

 REMARK. The reader who does not believe that the argument given above is
 painful enough to be a rigorous proof can verify (as I did in Durrett, 1980) that
 (1) holds at time 0 and every possible transition preserves this equality. In (10)
 below we will state some other coupling results without proof. They can all be
 proved by drawing a picture like (1) or using induction.

 From (2) we see that to study the asymptotic behavior of rn it suffices to
 consider Tn. The latter process has two advantages (a) Tn > -00 for all n and (b)
 it can be embedded in a nice two-parameter process:

 let fm, n = supIx - Fm: (x, n) E Y and there is

 a y < rm so that (y, m) -* (x, n)j.

 Figure 3 should help explain the definition. In the outcome we have drawn the
 lines represent open bonds and all the other bonds are closed.

 From the definition it is clear that

 (3) 1Tm+1,n+1?0 C m < nj =d Ifm,n0 ? m < nj
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 1004 R. DURRETT

 and from the picture it is clear that

 (4) Fm + fm,n 2 fn.

 To prove (4) we observe that Tm + fm,n is the rightmost point on the line y = n
 which can be reached from some (x, m) with x c fm whereas fn is the rightmost
 point on the line y = n which can be reached from some (x, m) which can be
 reached from some (y, 0) with y c 0 and (hence) has x c Fm.

 It is unfortunate that the argument above cannot be extended to conclude that
 if / < m < n

 (4') rTm + fm,n 2 f/n-

 (Figure 4 gives a counterexample) because if (4') held we could use Kingman's
 (1973) ergodic theorem to conclude that as n -* X

 (5) rO,n/n -*a a.s.,

 where a E [-oo, 1] is a constant given by

 (6) a = infn21E(Fn/n).

 All is not lost however. The process -mn is subadditive enough so that we can

 r m,n

 Mr

 0

 FIG. 3.

 -10 - -4 -2 0

 FIG. 4. Pi= 1; f,2 =- -1; rl,3 = 0; P2 = -5; P2,3- -3.
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 ORIENTED PERCOLATION IN D = 2 1005

 imitate the proof of Kingman's theorem. Since the details of this proof have
 already appeared once in this journal (see Durrett, 1980), and soon will appear
 again in a slightly more general form (see Liggett, 1985) we will not go into them
 here.

 As a corollary of (6) and (2) we get

 (7) On U. rn/n -- a a.s. 4/n -- -a a.s.

 Since 4n < rn on QU. it follows that if P(U) > 0 then a 2 -a i.e. a 2 0 or turning
 the last statement around

 (8) If a < 0 then P(Q.) = 0.

 In the other direction it is easy to show

 (9) If a > 0 then P(Q) > 0.

 PROOF. The keys to the proof are (i) the trivial observation that if a > 0
 then fn -> oo a.s. and hence there is an even integer M < oo so that

 P(rfn> -Mfor alln) 2 .51

 and (ii) a generalization of the "coupling result" given in (1). The rest of the

 proof is just introducing notation:

 if A C (-oo, oo) we let

 n= x: there is a y E A with (y, 0) -- (x, n)j

 (recall our convention that all points referred to are in S?)

 rA = Sup 4A; 1A = inf 4A;
 A = inftn: 4A = 0}.

 Repeating the proof of (1) shows that for any every M 2 0

 (10a) ([-MLm = 4n0,AM] n [-MM] oo)

 (lOb) 4[-XM = F-Mioo) n (-oo, r[-M^fl]

 (l0c) ([-MMl = E(n00O00) n VI-MMf r[-M'Mf]

 so on t-MM] 5 0

 (1Od) rn - = V nMM] - 1L-Mat)

 and it follows that

 (10e) I[-MIM] = inftn:rf-M'f < A-MMj = itnf:rn-X'M < zA-M'0)
 From (lOe) we see immediately that

 tTV-MM] = X} 2 {/2-M^o) <0 < C r(-',m for all nj.
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 1006 R. DURRETT

 Since it is obvious that

 P(r(-X', > 0 for all m) = P(r(-X'? > -M for all m) 2 .51

 it follows that P(4[-MM] = 0 for all n) 2 .02. Since P(QM/2 D 27 n [-M, Mi) > o
 it follows that P(Q.) > O.

 REMARK; The argument above is simple but it does not lead to a reasonable
 or even explicit lower bound on P(Q.). In Section 5 we will show that P(Q.) 2
 a (p)2 and hence applying (12), P(Q.) 2 4(p _ Pc) 2.

 Since a(p) is a nondecreasing function of p, we have almost shown

 (11) Pc = inflp:a(p) > O0.

 (8) and (9) imply

 supip:a(p) < Oj ' Pc ' inflp:a(p) > 0}

 so to complete the proof of (11) we have only to rule out the possibility that

 1p:a(p) = 0} is an interval of positive length. This is not as easy as it sounds.
 To prove (11) we will show

 (12) If a(p') > -oo then a(p) - a(p') 2 2(p - p').

 The first step in showing (12) is to show

 (13) If A D B are infinite subsets of 1-2, -4, * * .* then

 E (r Bn - rB) 2 E(rAU101 - rA) > 2.

 PROOF. From the definition of 4S it is immediate that

 4CUD = ~C U ~D in n U n

 hence

 CUD = r' V r D (a V b = maxta, bj)
 and

 rCUD _ rC = 0 V (r D _ rc) (rD rn)

 From the above we see

 rBU1- _ r B = (rat - rB)r > (ril - rA)+ (rA > rn )

 = rAUIOI - A

 To get the last inequality in (13) observe that if A = 1-2, -4, .* then by
 translation invariance I

 E(r 2- -r-2'4 I)=2.
 The argument above is due to Tom Liggett. Now that we have established (13)

 it is fairly routine to finish the proof of (11). The next step is to show

 (14) If P > p' and we let ann(P) = Efn then

 an(p) - an(p') 2 2(1 - (p - p'))fl
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 ORIENTED PERCOLATION IN D = 2 1007

 PROOF. Construct the systems with parameters p and p' on the same space
 in the obvious way: assign an independent random variable Ub to each bond b
 which is uniformly distributed on (0, 1) and call the bond open if Ub < the
 parameter value and closed otherwise. Let fn and f be the location of sup (-'?]
 in the systems with parameters p and p' respectively. Let r = inftn: n > fr and
 construct a third system n" in which 40 = {O, -2, -4, * *, the parameter is p for

 bonds in {(x, y):y < rI andp' for bonds in {(x, y):y > rj. If f ' = sup tn` then

 = r" 2f + 2

 and

 = 7 J 2 U IfT I

 so applying (13) and the strong Markov property gives

 En- Efr 2 Ef - Efr 2 2P('r c n)
 which implies the desired result since

 P(r c n) 2 (1 - (1 - (p - p,))fn).

 (At each stage there is probability p - p' that fn -- fn + 1 while fr - r < rf
 + 1. Since fn can get ahead of f ' in other ways this is only an inequality).

 If we divide both sides of the inequality in (14) by n and let n -+ 00 we do not
 get what we want, so we have to resort to a trick. Let 6 = (p - p')/M where M
 is a large integer

 a (p)a (p) = a + M an(P + (m- 1)6)

 ? Mn . 2(1 - (i - n

 Dividing both sides of the inequality by n and letting n -- oo we see

 a(p) - a(p') 2 2M(1 - e-(P-P')/M)

 (here we use the fact that a (p) 2 a (p') > -oo so there is convergence in L1 in

 (6). Letting M -- oo in the last inequality gives

 a (p) - a(p') 2 2(p -p').

 REMARKS. Asp T 1, 1 - a (p) 2(1 - p) so the result above is sharp. (12)
 and the fact that a (p) is continuous for p > pc (which we will prove in Section
 11) would be immediate if we knew that a (p) was concave for p > Pc.

 It is clear that p -> a(p) is upper semicontinuous (i.e. a decreasing limit of
 continuous functions) and hence that a (p) is continuous from the right. The
 proof of left continuity for p > Pc is more difficult but is an easy consequence of
 the construction in Section 9.

 4. A stationary distribution for the edge process. In this section we
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 1008 R. DURRETT

 will show

 (1) If p 2 PC then there is an initial distribution ,u concentrated on the infinite
 subsets of A... -4, -2, 0 which contain 0, so that r" has stationary increments

 and we will study some of the properties of g. The reason for interest in this
 result will become clear when we apply the result in the next section.

 Idea behind the proof. If we let 4n = in - fn = {X - rn:x E (n, i.e., what we
 see if we stand at the right edge of 4n, then 4n is a Markov chain on the set of
 subsets of is *, -4, -2, 0 which contain 0. The state space is compact so if the
 transition mechanism for this process were Feller, we could quote a well-known
 result to establish the existence of stationary distribution. The transition mech-
 anism is not Feller however (it is not continuous at t0j), so we apply the technique
 of proof (make Cesaro averages and take subsequential limits) rather than the
 result itself. The idea is simple, but as the reader will see below, the details are a
 little tedious. If you get bored or struck, feel free to skip ahead. The proof is not
 important for what follows.

 PROOF OF (1). Modifying the approach of the last section a little we start by
 introducing a family of "reset approximations" (m which start from ton = (-oo, 0]
 and evolve according to the following rules:

 (i) if (m + 1) 0 nZ the transition from (m to 4m+1 is made as before.
 (ii) if (m + 1) E nZ then we let 4X+1 = (-oo, f +n] where fr+1 is the rightmost

 point on level m + 1 which can be reached from {(x, m):x E= (m}.

 To construct ,u we will take a limit of the reset processes. The increments

 k= k -k- of these processes are not stationary but they are periodic so if
 we introduce an independent r.v. Un with P(Un = k) = 1/n for 0 c k < n then
 the shifted increments Yn = Xk+un are a stationary sequence with

 EYn = n E 1i EX = n 1E fn > a.

 Since Xn < 1 we have E(Yn)+ c 1. Combining with the fact that 0 c a -
 E(yn)+ - E(Yn)- gives E(Yn)- c 1 - a c 1 and we have E l Ynl c 2. From
 the last inequality it follows that if we consider the sequence of processes

 I m m 11 as a sequence of random elements of R X R X ... then the sequence
 is tight (see Billingsley, 1968, page 19) so we can find a sequence nj -3 oo so that
 {y(J) , m 2 1} converges weakly (in R x R x ...) to a limit tYm, m 2 1} with

 El Yml 2.
 For the purposes of Durrett (1980) the limit Yk, k 2 1, was good enough. To

 constructs we have to take another subsequence

 let (m = n- ij, where fn? = sup (u

 and we have used the obvious notation for translating a set S by a constant c, S
 - c x= - c:x E S.

 Let = Isup and YI= InM-1.

 It follows from the definition of the (m that tYn , m 2 1} =d IYnZ m 2 1}.
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 ORIENTED PERCOLATION IN D = 2 1009

 Thanks to the translation by FU?, t is a subset of (-oo, 0] and 0 E tn. On
 JUn = k) the Markov property and the translation invariance of the mech-
 anism implies (m evolves like oriented percolation for 0 c m < n - k. For fixed
 K P(Un > n - K) -- 0 so as n -- 0o the finite dimensional distributions of the
 In become indistinguishable from those of 4ym where n is the distribution of 4~.

 The An are probability measures on the compact space t0, l} -4,-2,0O so
 the sequence ,An(j) has a further subsequence ,An(w) which converges to a limit
 ,g. It is easy to see that An(j) *A implies that for each M the distribution of
 n(j) 0 c m c M} converges weakly to 1t4m 0 c m c M}. Combining this
 observation with results above shows that if we let rm and XA = rA - rA -1 m >

 1 then tXym, m 2 1 =d I'm, m 2 1} so the increments of rn are a stationary
 sequence and we have constructed A.

 To complete the proof of (1) we have to show that ,u concentrates on configu-
 rations with infinitely many ones. This is easy. The argument above shows

 E(rT)- c 1 so if -Vn gives the location of the nth point in 48 to the left of 0 (we
 set Vo = 0) then

 P(r < -M- 1l Vn = M) 2 (1 _ p)2n

 so

 M + 1 2 P(r) < -M- 1, Vn = M) 2 (1-p)2nP(Vn = M).

 The first thing we need to prove that r" is that it has the mean we expect. To
 do this we observe -yln > -1 so it follows from Fatou's lemma that

 E(-Y1) c lim infn gooE(-yn)

 i.e.

 E(Y1) 2 lim SUpn XE( yn) ? a.

 On the other hand rn < fn so dividing by n and letting n - 0o gives

 lim sup (1/n)r" < a a.s.

 and the ergodic theorem implies that as n -- 0o

 v ~~~(1/n)ryn -- E (rT |a E (Y1

 where 3' is the shift invariant a-field (see Theorem 6.21 in Breiman, 1968) so
 EY1 = EE(Y1 I 3') < a and it follows that EY1 = a and E(Y1 1 ) = a a.s.

 An important property of ,u is that it is a stationary distribution for the process
 "viewed from the rightedge" i.e. if we let rm = sup 41m and A = - rm then 4y
 is a stationary sequence (To prove this we observe that by definition (n has this

 property and as j -- o n(') converges weakly to 4ym).
 For studying the behavior of On it would be nice to know if the stationary

 distribution ,u for the edge process is unique or better yet if An - fn converges to
 At as n -- oo. (The first result would be useful because it would imply (by a
 standard argument) that the Cesaro averages ((l/n) n=,) of the distributions
 of (m - Fm would converge.). The difficulty in proving results about (m - fm seems
 to be the fact that the process seen from the right edge is not a monotone
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 1010 R. DURRETT

 function of the initial configuration so we cannot use the monotonicity arguments
 of Section 8 to conclude the existence of limits.

 REMARK. From one point of view all we have done in proving (1) is to

 decompose the subadditive process fm,n into an additive process

 Am,n = 2mc<ksn Yk

 and a nonnegative subadditive process Zm,n = fm,n - Am,n with

 (1/n)EZOsn ?-

 This is just the decomposition Kingman (1973) uses to prove his subadditive
 ergodic theorem. It would be interesting to know if the decomposition was unique
 in this case, but this is a harder question than determining whether or not ,u is
 the only stationary measure for the process viewed from the edge.

 PROBLEM. (related to the idea behind the proof). Is there a stationary
 distribution for (n for p < Pc? Note that there is one for p = Pc!

 5. Recurrence properties of in, lower bounds on P(Q(?). In this section
 we will discuss the two subjects indicated in the title. The first result we will
 prove is a version of the Kesten, Spitzer, Whitman theorem which is valid for
 random walks with stationary increments, i.e. it is possible to remove the original
 hypothesis that the increments are independent.

 (1) Let X1, X2 ... be a stationary sequence of r.v.'s with values in Rd and define

 a random walk by Sn = X1 + * * * + Xn. Let Rn = I IS1, ... , Sn II i.e. the number
 of sites visited in the first n steps and let A = tS1 # 0, S2 ? 0 . **. Then as
 n - 0oo

 Rn/n -- E(1A I ) a.s.,

 where Y% is the a-field of shift invariant events.

 PROOF. The proof follows the one given in Breiman (1968) page 121-122
 with some minor modifications to make up for the lack of independence and
 some simplifications which come from taking a more general viewpoint. There
 are two parts to the proof

 I. lim infn g..Rn/n 2 E(1A I J)

 II. 1iM supn gooRn/n < E(1A I -)

 I. Suppose X1, X2 ... are constructed on the canonical space Rd X Rd X..
 with Xn(w) = Wn, and the shift operator defined as (OW)n = Wn+l, and Y -
 B: 1B 0 0 = 1B a.s.} (see Chapter 6 of Breiman, 1968). Clearly

 R En-1 1(O Rn 2 mi lA (Om.)

 (the right-hand side only counts points in IS1, ... SnJ which are not in tSn+1,
 Sn+2 ... *), so it follows from the ergodic theorem (Theorem 6.21 in Breiman,
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 1968) that

 lim infn gooRn/n 2 E(1A I

 II. Let AN = tW:W1 O. W1 + W2 W 0O. ** + **N j 0. Clearly

 Rn ' m=o 1AN(O W) + N.

 Letting n -- oo and using the ergodic theorem again gives

 lim sup, gRn/n C E(14I -p).

 As N -- oo, AN 4 A so it follows from the dominated convergence theorem for

 conditional expectations that as N -- oo

 E(1AN I-) 4 E(1W I Y)

 (1) has a number of interesting corollaries. The most famous is

 (2) If X1 is integer valued and E(X1 = 0 then P(A) = 0.

 PROOF. If E(X1 = 0 then the ergodic theorem implies that Sn/n 0 0
 a.s. and it follows easily that

 (SuPmsnSm)/n, (infmsnSm)/n -- 0 a.s.

 Since the Xk are integer valued we see that

 Rn C 1 + (supm5nSm - infmsnSm)

 so Rn/n -> 0 a.s., and it follows that E(1A/%) 0 and P(A) = 0.

 REMARK. (2) is a little known well-known result. It was first proved by
 Atkinson (1976), and later reproved by Derrienic (1980) and Dekking (1982). I
 learned about the proof above (due to P. van der Vecht) from H. Berbee.

 As a consequence of (1) and (2) we get some useful results about oriented
 percolation.

 (3) If p > pc then P(r" > O for all n 2 1) = a (p).

 PROOF. By monotonicity that it suffices to prove the result when a(p) > 0.
 If we let Xm = r" - r" -1 for m > 1 then Sn = rn and Sn/n -- a (p) > 0 a.s. so we
 have

 (infmsnSm)/n -- 0, (supm5nSm)/n -- a(p).

 It follows from the fact that Sn does not increase by more than 1 at any time
 that

 [1, SupmsnSm] C Rn C [infm~nSm, SUPmsnSm]

 and A = tr" > 0 for all n 2 1}, (here we use the fact r" -- oo a.s.) so (1) implies

 Rn/n -* a(p) = E(1A I i) a.s.,

 and it follows that P(A) = EE(1A I -%) = a(p).
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 From (3) it follows immediately that we have

 (4) P(n > 0 for all n 2 1) 2 a(p),

 and by symmetry if /n = inf 4 o,) then

 (5) P Qn < 0 forall n 1) 2 a(p).

 When both of the events in (4) and (5) happen it follows from the basic coupling
 result that to ? 0 for all n. To combine these estimates to get a lower bound on
 P(Q.) we use an inequality of Harris (1960).

 (6) Let f and g be increasing functions on 0, }l n(i.e. if xi ' Py for i = 1, ...
 n then f(x) c f(y)). If X = (X1, ** * Xj) is a vector of independent 10, 1} valued
 random varibles then

 Ef(X)g(X) 2 Ef(X)Eg(X).

 PROOF. If n = 1 and x, y E -0, 1l then

 (f(x) - f(y))(g(x) - g(y)) 2 0

 (there are two cases to consider: x = 1, y = 0 and x = 0, y = 1), so if X and Y are

 independent and have values in 10, 1}

 0 c E[(f(X) - f(Y))(g(X) - g(Y))]

 = Ef(X)g(X) - Ef(Y)Eg(X) - Ef(X)Eg(Y) + Ef(Y)g(Y).

 If X and Y have the same distribution it follows that

 0 < 2Ef(X)g(X) - 2Ef(X)Eg(X)

 proving the result when n = 1.
 To prove the result in general we will take conditional expectation and use

 induction. The key to the proof is that

 E(f(X) IX1 = y) =Ef(y, X2 *... Xn)

 is an increasing function of y and f (y,q , ... , ) is a function of n - 1 variables
 so we have

 E(f(X)g(X)) = EE(f(X)g(X) I X1)

 2 EtE(f(X) I X)E(g(X)I Xi)

 2 EtE(f(X) I Xj)jEE(g(X) I Xi))

 = Ef(X) * Eg(X).

 REMARK. This should be called Harris' FKG inequality to distinguish it from
 Harris' (1977) positive correlations inequality. To see why we call it Harris' FKG
 inequality look at Fortuin, Kastelyn, and Ginibre (1971) or at Batty and Bollman
 (1980) for more recent results and references.
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 From (4), (5), and (6) it follows immediately that we have

 (7) P(Q.) 2 (p) 2 4(ppC)2

 the second inequality coming from (3.12). We think that

 (8) P(Q.) 2 C(p-PC)

 but we have not been able to prove this.
 In deriving the lower bounds for P(U.) we used the fact that (3) implies

 P(fn > 0 for all n 2 1) 2 a(p).

 We can get another interesting result by observing that it also implies

 (9) P(ro > 0 for all n 2 1) < a(p)

 (10) P(40 < 0 for all n 2 1) c a(p).

 In Section 9 we will show that a (pc) = 0 so if P(U.) > 0 then on U. ro and 4n
 each will return to 0 infinitely often but ro - 4n - oo. This is absurd and one
 can almost prove it is a contradiction. Let 1A* be distribution of -4g. rn and /fn*
 are random walks with stationary increments which have E(rn/i) = 0 and

 E(11n*1>) = 0 so we have E(rn - /1f*/I) = 0. Unfortunately r" - /1n* does not
 have stationary increments so we cannot apply (2) to conclude that ro - <
 r - /n = 0 infinitely often.

 With a little more work one can show that if P(U.) > 0 then on U., r 0 ?? in
 probability (this result is due to D. Griffeath). If we could improve this result to
 ro- a.s. we would contradict the fact that ro returns to O infinitely often and
 prove P(U.) = 0. However we do not know how to do this and a simple example
 (see Brieman, 1968, page 58) shows that a random walk with independent
 increments may have Sn - 0 infinitely often and Sn -- oo in probability so we will
 not prove Griffeath's result here.

 The last two paragraphs give the reasons that I believe P(U.) = 0 at pC. To be
 fair to people with the opposite viewpoint (if there are any) I should note that

 the stationary measure 1A constructed in (4.1) exists for p = Pc and, by computa-
 tions from the last section, has E(rT)- c 1 so near the right edge r" the density
 of particles does not go to 0. The last phenomenon might suggest P(U.) > 0 at
 Pc. Further explanation of this point will have to wait until Section 8 when we
 indicate the connection between P(QO # 0) and P(O E 4').

 6. Lower bounds on Pc. In this section we will use a branching process
 approximation and the characterization of PC given in Section 3 to compute
 sequences of lower bounds for Pc. The first sequence of bounds increases very
 slowly to Pc but they are good, I think, for getting a feeling for why branching
 process methods do not work for oriented percolation and furthermore, we will
 see in the next section this sequence of bounds converges to PC and allows us to
 reduce problems about percolation when p < PC to corresponding problems for
 subcritical branching processes.

This content downloaded from 128.32.135.128 on Tue, 20 Mar 2018 19:30:15 UTC
All use subject to http://about.jstor.org/terms



 1014 R. DURRETT

 The second set of bounds, based on (3.6) and (3.11) is less glamorous. They
 work better (the first is .5858, the ninth, according to Mauldon, 1960, is .6198)
 but they are not the last word. Using ideas of Gray, Smythe, and Wierman (1981)
 which have been developed further by Dhar (1982), one can conclude easily that

 PC 2 .618 and with some work that PC 2 .6298 (see their papers for details) so if
 you are only interested in the last word you can ignore the second part of this
 section.

 The last lower bound compares favorably with numerical results:

 .632 Kertesz and Vicsek (1980)

 .644 Kinzel and Yeomans (1981)

 .6445 Dhar and Barma (1981)

 .6446 Blease (1977)

 but unfortunately the best known upper bound Pc ' 0.84 (given in Section 10) is
 much bigger than the lower bound so we do not rigorously know even the first
 digit in the decimal expansion of p. It is an important open problem to find a
 sequence of rigorous upper bounds which decrease to Pc.

 Historically the first lower bounds on PC were found by running the percolation
 process up to level k and using the distribution of the number of wet sites as the
 offspring distribution for the branching process. When the branching process
 dies out then the percolation process does. When k = 1 this gives PC 2 1/2. When
 k = 2 the occupation probabilities for the three sites on level 2 are p2, 2p2 - p4
 and p2 respectively (see Figure 5) so the mean 4p2 - p4 is < 1 if

 p2 < (4 - V/2)/2

 and it follows that

 Pc 2 .5176.

 When k = 3 the details are more complicated. The probability of reaching
 (-3, 3) is still p3 but there are 3 ways of reaching (-1, 3) so if we let Ai be the
 probability the ith path is open and use the inclusion exclusion formula

 P(A1 U A2 U A3) = i P(Ai) - Elijj P(Ai n Ai) + P(A1 n A2 n A3)

 we see the probability of reaching (-1, 3) is 3p3 - 2p5 _ p6 + p8 so the mean

 (G ,4)

 FIG. 5.
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 number of particles on level 3 is 8p3 - 4p5 - 2p6 + 2p8. When p = .531 this is
 < 1 (and when Pc = .532 this is > 1) and we have

 PC 2 .531.

 The computations for the k > 4 bounds are terrible and pointless. We might
 get Pc _ .545 but the computations required are enormous. There are 6 paths
 from 0 to (0, 4), so there are 26 _ 1 combinations to consider and since the union
 of these 6 paths has 12 bonds the result will be a polynomial of degree 12.

 A somewhat better sequence of bounds can be obtained by using the charac-

 terization of PC given in Section 3. In that section we showed (see (3.6) and (3.11))

 Pc = supip:a(p) < Oj where a(p) = infnEFn/n.

 From this it follows that if

 7n = supjp:Efn < O1
 then

 sUpn-Nlrn T Pc as N -- oo.

 REMARK. It is easy to see from the subadditivity and the trivial upper bound

 ?, c 1 that

 lim infm, i-rxn 2 supn-N-xn for all N

 50 7rn --> Pc as n -- oo. This is not important for applications because SUPn-N~rn
 converges to the desired limit and does so more rapidly.

 It is easy to compute EF1. Just draw a picture (look at Figure 6) clearly

 P(?, = 1) = p. If the bond from (0, 0) -- (1, 1) is closed then ?1 = 1 - 2N where
 N is smallest integer n 2 1 so that (2n, 0) -- (-2n + 1, 1) or (-2n + 2, 0) --
 (-2n + 1, 1) is open. N is geometric with success probability (2p - p2) so EN =
 1/(2p -p2) and

 EF1 =p* 1 + (1 -p)E(1 - 2N)

 2 _-2 +4p-_p2
 =1 -(1 + P) 2z= 2+4

 2p P 2 2p-p2

 I 6.

 FIG. 6.
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 TABLE 1.

 r. p. = r. cos(v/4)

 1 .8284 .5858
 2 .8442 .5970
 3 .8538
 4 .8604
 5 .8652
 6 .8690
 7 .8720
 8 .8745
 9 .8767 .6198
 00 .8905 .6297

 Solving we see ET1 < 0 if p > 2 - X = .5858 so we have

 Pc > .5858.

 With a little more work you can compute ET2. The picture is more complicated
 (see Figure 6 again) but still breaks up into independent blocks. This time when
 we locate the first box which has an open path we have to compute the conditional
 probability of having an open path ending in the right upper arm of the X. We
 will not get involved in the details. Mauldon (1961) did computations which
 are equivalent to these and found the lower bounds for k = 1, 2 ... 9 shown in
 Table 1.

 HISTORICAL REMARK. Mauldon (1961) introduced a reset process in which
 "every rth diagonal (and these alone) have the property that all the atoms on
 the diagonal between any two wet atoms are themselves wet." (Section 3, page
 338). To compute the critical value of these processes he uses a result he proved
 earlier (see Mauldon, 1957) to conclude that if the right boundary has negative
 drift then the process dies out. In a remark in Section 10 of his paper he claims
 to prove that his sequence of bounds converges to the right limit. As we mentioned
 above, this result is correct. His proof, however, is not. All he shows is that if we
 let Un = {the nth approximation wets infinitely many sites} then p(Qfn) _- p(Q)
 as n -> oo. If rn = sup Ip:P(Qn) = 0j then this certainly implies

 lim supnoo7rn < Pc

 but just knowing P(An) -* P(QO) or even P(An) J P(Q.), it is not possible
 to conclude that supip:P(An) = O -* Pc for if we let An = 1Sn # 0j then
 supip:P(An) = 0 = 0 for all n but PC> 1/2.

 7. Exponential estimates for p < Pc. In this section we will prove some
 results which show that in the subcritical case S? dies out exponentially fast
 and that ?n -* -0o exponentially fast. The estimates (1), (2), (4), (5), and
 (7) below are due to Griffeath (1981). Only (3), (6) and the existence of
 lim(1/n) log P(Q # 0) are new.
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 Here and in Sections 10-13 we will be dealing with exponential estimates so
 to simplify computations we make the following.

 ANNOUNCEMENT. The C and y below are numbers in (0, oo) whose values
 may change from line to line.

 I hope the reader will agree that this notational convention allows us to
 dispense with such tedious tasks as explicitly summing geometric series or
 estimating the maximum of a bounded function. In any case we will indulge in
 this luxury below.

 (1) If p < pc then there is a constant y > 0 (which depends on p) so that

 P(Q # 0) < e-en

 and(1/n) logP(Q0 O-0)-my as n -oo.

 PROOF. When t0 # 0, I I | 1 SO it is clear that

 P(Q%+ # 0) < P(Q% # 0)P(Qn # 0).

 If we let an = log P(Q # 0) then the last inequality implies

 am+n > am + an

 i.e. am is a superadditive sequence. It is easy to see that the last inequality implies

 lim infnxan/n > am/m

 for all m so we have

 limnxan/n = supm:jam/m
 and it follows that

 an/n ' supm:jam/m--,y

 so we have proved everything except that y > 0. To do this we will, of course,
 have to use the fact that p < Pc. Up to this point everything holds for any p c 1.

 If p < Pc, then by results in Section 2 there is an N so that EfN < 0 and from
 subadditivity it follows that

 rO,mN C fO,N + rN,2N + *. + r(m-l)NmN

 The right hand side (which we call Sm) is a random walk with ES1 < 0 and S1 <
 N so ?'(O) = E exp(O S1) < oo for all 0 : 0. If we pick M large and let iP(0) =
 E exp(O(S1 V -M)) then

 (P (O) -1 _ __
 lim sups0 .0 climbo ( ) = E(S1 V -M).

 Letting M -- X0 it follows that

 lim sups0 ( -1 s ES1 < 0
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 so we can pick G0 > 0 with 'P(00) < 1. But then

 P(Sm : 0) c E exp(OoSm) = (@o)m

 SO P(fmN - 0) -- 0 exponentially fast. To conclude that the same thing is true

 for P(Q, # 0) observe that

 P(S~n = 0) :: PMr < 0 < An)
 so

 P(~n 0 0 < P(fn : 0) + P(n < 0) = 2P(fn > 0)

 and the proof of (1) is complete.

 REMARK. From the proof above it follows that

 (2) if b > a then there are constants C, y so that

 P(fn > bn) c Ce--tn.

 We will consider the more delicate problem of studying the deviations

 PM < an) for a < a in Section 11.
 From (1) it follows immediately that if p < Pc then n -- -oo exponentially

 fast. We will prove this in a minute and identify the rate. To state this result we
 have to make:

 ANNOUNCEMENT 2. The Iy's are numbered by the formula in which they are
 defined. For example, the y in (1) above will be called y1 in this section and in
 other sections we will refer to it as 77.1. When, as in (2) above, y is not given
 explicitly we define it to be the sup of all the numbers y for which there is a C
 which makes the inequality valid. (In general the inequality will not hold for this
 value but this convention is convenient for Section 14.)

 Using the convention described in the first half of the announcement we can
 state our result for f.

 (3) if p < pc then

 (1/n)log(-fn) -- 'y a.s.

 REMARK. This trivially implies a (p) = -0o for p <Pc. The conclusion given
 here is a small improvement of the original result of Griffeath (1981).

 lim infnx,(l/n)log(-fn) :: en

 The author would like to thank J. Neveu who suggested that the sharper result
 should be true.

 PROOF. Let cn = 1/P(Qjn #0) and let Un = supix _ 0:ex # 0J.

 1(Un > 2 ) - Cn2 P( ) 21
 n2 2 n2 n ~2n2
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 so the Borel Cantelli lemma implies

 P(Un > -cn/n2 i.o.) = 0.

 Let Vn = supnx ' ? 2nx # 0j. The events n # 0j are independent so

 P(Vn < -2) = 1- -)
 Now as n - > oo (1- Cn)cn/2 -e-l/2- so if n is large

 P V < - nCn c e -n/4

 Since Un 2 2nVn it follows from the Borel Cantelli lemma that

 P(Un < n 2n i.o.) = 0.

 Combining this with the other result about Un we see that with probability 1

 | log(-Un) - log cn I 2 log n

 for all n sufficiently large. Since Un - n s C s Un + n and (1/n) log cn -- +'y, it
 follows that (1/n) log(-?n) -+ T1.

 Another Corollary of (1) is

 (4) if p <Pc then E I CoI < oo.

 PROOF. If ,n = 0 I Col c 1 + 2 + ... + (n -1) = n(n + 1)/2 c n 2(if n 1)
 so

 P(I Co| > n2) ' P(n # 0) c e -ln
 and it follows that

 E I CoI = XM=i P( CoI 2 m) < 00.

 The argument above leads to the bound

 (5) P(It CO I 2m) c exp(--ylml/2)

 By working harder it is possible to improve the result to

 (6) if p < Pc there is a constant y > 0 so that

 P(I CoI :- m) c e-s m

 and (l/m) log P (I CO I :: m) -- -,y as m -- oo.

 REMARK. There are two reasons we are interested in this result:

 (i) if a > y1/'y6

 P(I coI > an I On 0 0) < P(Co >an) < exp(-"y6an + 'yin)

 which converges to 0 exponentially fast so when to # 0 the cluster is long but
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 narrow-with high probability it's average width is no more than '1/'Y6

 (ii) if we consider the supercritical analogue of (1) and (6) then we have

 P(n < rO <-: ??) C Ce--en

 but

 ce-rn/2 <_ P(n < I Co I < oo) < Ces-,n'2

 See Section 12.

 PROOF OF (6). As the reader can probably guess from the statement, subad-
 ditivity is at work. If T is the first time T=o I t m then we must have I I?
 > 1. It follows from the Markov property that

 P(ICol : m + n) : P(ICol : m)P(CICol : n)

 which as in (1) implies everything but the positivity of the constant (which never
 comes for "free" since the first part of the argument does not depend on the size
 of p.)

 To prove that the constant is positive we observe

 (7) If p < pc then as n oo

 E(I t01) <(n + )e -,in _*0.

 (7) implies that if we pick N large enough then E I (NI < 1. If we remember the
 branching process approximation of the last section, we see that to prove (6), it
 suffices to prove that the conclusion is valid for a branching process in which
 the mean of the offspring distribution < 1 and the total number of offspring is
 < N + 1. This will give us a bound on m=O I mI and a trivial comparison
 shows

 WXo I I1 C N2 EX=o NI.

 To prove the result for the branching process, we use a formula for the total
 progeny which we learned from P. Jagers and 0. Nerman. The observation is
 due to Papangelou but the trivial proof below is due to L. Bondeson. Let X1, X2
 * be independent random variables with P(Xm = j) = P( I (NI = j) and define
 a random walk Sn by So = 1 and for n 2 1, Sn = Sn-1 + (Xn - 1). If we modify
 the dynamics of the Galton-Watson process so that each time one (and only one)
 of the individuals alive is chosen to die and at death gives birth to j individuals
 with probability P(Xm = j), then Sn is the number of individuals alive at time n
 in the modified process.

 Since the individuals in a branching process reproduce independently, the
 total progeny of the branching process has the same distribution as the total
 progeny of the modified process. Only 1 person dies at each instant in the
 modified process. If we let r = inf n:Sn = Oj then the total number of individuals
 who have ever lived (including the individual who started the process) is r. Since
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 Sn is a random walk with Sn - Sn,- c M, it follows from the second part of the
 proof of (1) that if ES1 < 0 then there are constants C, y so that

 P(Tr :: n) c P(Sn > 0) c Ce -,y

 and the proof of (6) is complete.

 REMARK. The proof of (6) shows us that "anything that is true for a
 subcritical branching process is true for subcritical oriented percolation". In
 Section 9 we give the supercritical analogue: "anything that is true for p suffi-
 ciently close to 1 is true for all p > Pc".

 8. Time reversal duality, first results for p > Pc. If p > pc then the
 results of Section 3 imply that on R., 4/n -- -a and rn/n -x a. In this section
 we will investigate what happens between 4 and rn. The first step is to observe
 that (3.10c) implies

 (1) = n [/ns rn.

 TECHNICAL NOTE. Here we use (; as a replacement for the cumbersome
 (n-Xx of Section 3. Actually z = J (recall the definition of (A in Section 3)

 but the two is a nuisance.

 (1) tells us that in the interval [4n, rn] Jon looks like Jz. The key to studying
 nz is the following duality equation:

 (2) If n is an even integer

 P(nnB # 0) =P(nA # 0).

 PROOF. { lA nB # 0j = {there are x E A and y E B so that (x, 0) -(y, n)j.
 If we map Y into itself by sending (Z1, Z2) -- (z1, n - Z2) and reverse the
 orientation of the bonds, the distribution of the process is unchanged but the

 event under consideration becomes (there are y E B and x E A so that (y, 0)
 (x,n)j =JLB n A # 0j.

 REMARK. There is obviously a duality equation for odd integers n but it is
 awkward to state since we have the even integers at one end and the odd at the
 other. To simplify things then we will avoid this formula and consider only what
 happens to Jz as n -- oo.

 If we let A = Z in (2) we get

 (3) P(4z n BO# 0) = q P(2 0)-

 Letting n -- oo in (3) we see that

 (4) P( l n B# 0) |P(T B= ).
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 Introducing coordinate notation

 ~(x)= ~n~xjI J if x Ei z ew e- n I 0 otherwise.
 It follows that for all k and x1*, Xkj C 22 the finite dimensional distributions
 P~z (xi) i= y, i = 1, *. k) converge to those of a limit which we denote by
 ( (x), x EE 22.

 If we consider (z(x), x E 2Z, as a process indexed by x E 22 then it is a
 stationary sequence. In fact

 (5) {!(x) is ergodic.

 PROOF. Let tqn = Jx:there is a y so that (y, -n) -- (x, 0)j and let q. =
 nfl1 An. If we let N (x) = I n n {x I I for 1 c n c o0 then we have ni (x) 2 t2 (x) 2
 ... and fln(X) n v(x) as n T oo. For even n fln(x) has the same finite dimensional
 distributions as (z(x) so this is true also for n = oo. Let f be a function on {O, 1 k
 which is increasing in the partial ordering on this space i.e. if vi ' q , i = 1, * ,
 k then f(rq) c f(r). For such an f

 (6) f(rnn(2x + 2), *.., nn(2x + 2k)) 2 f(tq.(2x + 2), *.., 1 .(2x + 2k))

 for all n, x E Z. Now the random variables NW(x) x E 2Z have the property that
 if I x - y I 2 2n fn(X) is independent of vN (Y) so it follows from the strong law of
 large numbers that

 1 N
 2N + 1 ZX=-N f(qn (2x + 2), * ..., n(2x + 2k)) -- Ef(Xn(2), *... l mn(2k))

 (break the sum into n + k pieces each of which is a sum of independent random
 variables). Combining the last result with (6) and letting n -- o0 gives

 lim supNpe (1/(2N + 1)) sx=-N f (n(2x + 2), ** , /0(2x + 2k))

 < Ef (t (2), * *.., r o(2k))

 and applying the ergodic theorem it follows that if we let Y' denote the a-field
 of shift invariant events

 Eff (rn(2) ...* X, n.(2k)) I 9r) s E(f(n. (2), * ... i, r(2k))).

 Now the number on the right is the mean of the random variable on the left so

 there cannot be strict inequality on a set of positive measure, i.e.

 (7) E(f (n. (2), ..., r .(2k)) I 9r) = E(f (n. (2), * * *, r X(2k))).

 At this point we have shown that (7) holds for increasing functions. Since

 every function on {O, 11k is a difference of two increasing functions, it follows
 that (7) holds for any function of finitely many sites. Taking limits and using
 the inequality E I E(fI Y) - E(gI Yr) I c EE( I f-g I I Y) = E I f-g I it
 follows that (7) holds for any bounded f. This implies 9' is trivial and completes
 the proof.
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 From (4) and (5) it follows immediately that we have

 (8) 2N + 1 X=-N 0(X) 0 P(O E ) = )

 and consequently that if P(R.) > 0 we have

 (9) PQZ00W -) = 0

 (10) P(z0 n [-N, N] = 0) 4.0 as NT oo

 and hence that

 (11) P(tJPN, # 0 for all n) T 1 as N T oo

 a result which is obvious but seems difficult to prove directly.
 The last result is an ingredient for the construction to be described in the next

 section. Another fact that will be useful there and at several other points below
 is

 (12) WZ(x), x E 2Z, has positive correlations in the sense of (5.6): If f and g are
 nonnegative increasing functions

 Ef ( ,zn )g (Jzn ) :: Ef ( ,zn )Eg ( Jzn

 PROOF. If f and g depend upon finitely many coordinates then f (z ) is and
 g(z ) are increasing functions of a finite number of independent 0, 1 valued
 random variables, so the result is a consequence of (5.6). The general result
 follows by taking limits to conclude first that the result is true for bounded
 measurable f, g and then using the monotone convergence theorem.

 9. A construction for studying p > Pc (and showing a(px) = 0). In this
 section we will introduce a construction which will allow us to reduce questions
 about oriented percolation with p > PC to corresponding questions about a
 1-dependent site percolation process with p arbitrarily close to 1, a situation in
 which it is easy to prove the desired results.

 The first thing to do is to define the site percolation process and describe its
 relationship to the original process. Let & = {(m, n):m + n is even, n : 0.
 With each z E & there is associated a random variable v (z) such that v (z) = 1
 (i.e. z is open) with probability ir and v(z) = 0 with probability 1 - 7r. To define
 the v(z) we will pick a small, L large, and define for each (m, n) E &

 Cm'n = ((1 - 5)aLm, Ln)

 Rm,n = Cm,n + [(-1 - 5aL, (1 + 6)aL] x [0, (1 + 6)L]

 where a is the constant defined in Section 3. We will set X (m, n) = 1 if a certain
 good event Gm,n occurs in Rm,n-

 Before going into the details of what the good event is, I will first give its three
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 crucial properties:

 (i) if a c .1 the random variables v(z) will bej1-dependent, that is, if we let
 11 (m, n) 11 = (I m I + I n 1)/2 and if zi, z * * zm are points with 11 zi- zie >
 1 for i #1 then q (z1), ... , t(zm) are independent.

 (ii) if percolation occurs in the v-system then there is an infinite path in the
 original system which starts in [-1.5baL, 1.5baL].

 (iii) if 6, e > 0 and p > Pc then we can pick L large enough so that

 P(q(z) = 1) >1 - C.

 Having announced our aims, the next step is to define the good event and

 show it has the desired properties. Let Aoo be the parallelogram with vertices

 uo = (-1.56aL, 0) vo = (-.55aL, 0)

 Ui = UO + (1 + 6) (aL, L) Vl = Vo + (1 + 5)(aL, L)

 and let Boo = -Aoo. We say that Goo occurs if:
 (i) there is a path from [uo, vo] to [u1, v1] which stays in Aoo and (ii) there is a

 path from [-vo, -uo] to [-v1, -u1] which stays in Boo. See Figure 7 for a picture.
 The events Gmn are defined by translating the last definition by Cmn. (Note:

 For this to work exactly we need (1 - )aL and L to be even integers. Since the
 construction in our proof is already complicated enough, we will ignore annoying
 little details like this).

 \0l'1~~~~~~~~~~~~~~~~~ (1(I6)L

 0 .58 1.58 1-8 1 L+8

 FIG. 7. The numbers on the bottom scale are multiples of aL.
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 NOTE. To prepare for the proof of a (pc) = 0 the reader should check as he
 goes along that the proof given below only uses the fact that a(p) > 0.

 Property (i) is obvious. To see this one observes that Go,o just depends on the
 bonds in Ro,o and one checks that Ro,o intersects R2,0 and R1,1 but not R4,0, R3,1 or
 any Rm,2.

 Property (ii) is also easy to check. To see this consult Figure 7 and follow the

 arrows to see that on Go,0 n Gij there is a path from [-1.5baL, 1.5baL] X 101
 through C1,1 + ((-.56aL, .5baL) X 101) and on up to CO,2 + ((-.56aL, .5baL) X
 {0}) and to C2,2 + ((-.55aL, .5baL) x 101). From this observation and induction
 it follows easily that if there is an infinite path in the 7-system then there is a
 corresponding infinite path in the original system (but not conversely).

 Last but not least we have to check (iii). Let 8 = sup - oL1 and let n=
 sup (n + .85aL, n 2 Oj =d fn:n2 Oj and as n -A 00, rn/n -c a a.s. so it
 follows that if we pick L large enough then with probability 2 1 - e/4 we have

 r(1+6)L >-.85aL + (1 + .96)aL

 and for n s (1 + 5)L

 A ~~~~1+ii\
 rn s -.75aL + n( 1+5 ) a.

 The last two events guarantee that there is a path from (-oo, -.8baL] X 101 up
 to [(1 + .16) aL, (1 + .46) aL] x {(1 + 5)LI which does not cross the line [vo, v1].

 To prove that this path does not fall too far to the left we observe that to

 travel from the line [uo, ul] to [aL, oo) X {(1 + 5)LI a path must have an average
 slope of at least b = a (1 + 1.55)/(1 + 5) > a and it follows from (7.2) that

 P(fn> bn) sCe-n

 so picking M large enough so that

 n=M Ce-, , e/8

 and then considering separately the points on [uo, ul] with y s (1 + 5)L - M
 andy > (1 + 5)L - M we see that if L is large the probability that there is a path
 connecting [uo, ul] and [aL, oo) is s e/4.

 Combining the results of the last two paragraphs we see that if L is sufficiently
 large then with probability 2 1 - e/2 the first half of the good event occurs. Since
 the second half of the good event has the same probability as the first it follows
 that with probability 2 1 - e the good event occurs and we have shown (iii).

 Having struggled to complete the construction we can now reap the benefits.
 The easiest (and historically the first) consequence is

 (1) Ya(pC) = 0.

 PROOF. To prove this result we need to use one simple fact which we will

 prove in the next section: if P(q (z) = 1) > 1 - 3-36 then there is positive
 probability of percolation in the 7-system. Taking this fact for granted, the rest
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 is easy. If a (pc) > 0 let 6 = .1 and pick L so large that P(X7(z) = 1) > 1 - 337.
 There are only a finite number of bonds in Ro0o so we can pick p < pc so that
 P(f(z) = 1) > 1 - 3-36 but this implies that there is positive probability of
 percolation when the parameter value is p, a contradiction.

 REMARK. The construction in this section was inspired by an argument of
 Russo (1981). The version given above is, thanks to Larry Gray, considerably
 simpler than the proof given in Durrett and Griffeath (1983).

 10. p(rA < oc) < C exp(-y I A 1). In this section we will prove the expo-
 nential estimate given in the title (rA = infin: (A = 0}). We will prove the result
 first for intervals and then use a comparison to prove the result holds in general.
 To prove the result for intervals we will follow the plan alluded to in Section 9:
 we will prove the result first for 1 dependent site percolation with p close to 1
 and then use the construction to conclude that the result holds for all p > pc.
 The same argument allows one to conclude that Pc < 8.

 Consider site percolation on - = {(m, n):m + n is even and n 2 Qj. Let A -
 -2N * ... Oj. Let C = Iz: there is a y E A with (y, 0) -a zj. Let

 D = {(a, b) E R2: l al + I b I s 1}

 and let

 W= Uz2c(z + D).

 If I C I < 0 let r be the boundary of the unbounded component of (R X (-1, 00))
 - W and orient the boundary in such a way that the segment from (0, -1) to
 (1, 0) (which is always present) is oriented in the direction indicated. r is the
 contour associated with the cluster _r (see Figure 8 for a picture). The idea of
 the contour method is to estimate

 P( I C I < oo) = P(r exists) s E(no. of contours).

 Although the details are tedious to write down, the "contour argument" is very
 simple. Since the contour never passes through an arc twice, there are at most
 3m-1 contours of length m. (The first segment is always (0, -1) -. (1, 0) and after
 that there are at most three choices at each stage.) On the other hand for a
 contour of length m to exist there must be at least m/4 sites which are closed
 (we will show this below). Taking into account that the shortest possible contour
 has length 2N + 4, it follows that if the sites are independent

 (1) p(er[2No0 < 00) < X=2N+4 3 _(1 - p)m/4 = C(3(1 _ p) /4)2N

 if 1 - p < 3-4 So Pc < 80/81 for (independent) site percolation. This is not a very
 good bound but at least it shows pc < 1. To handle the 1-dependent case we
 observe that there are 9 sites in -' with 11 (m, n) 11 = (I m I + I n 1)/2 < 1 so for
 each r of length m there is a set of m/36 sites which are separated by more than
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 4~~~~~~~~~~~~~~~~~

 FIG. 8.

 1 and which must be closed for the contour to exist. Therefore if 1 - p < 336,

 (2) p(r[-2NOj <c o) s C(3(1 - p)1/36)2N.
 To complete the proofs of (1) and (2) we need to show that outside any contour

 of length m there are m/4 sites which must be closed for the contour to exist. To
 do this requires a series of definitions and observations:

 (a) A segment is a line segment of the form x + F where x E C and F is one
 of the sides of D. If we stand at the midpoint of one of the segments which makes
 up r and face. in the direction of the orientation then our left hand is in W and
 our right hand is in WC. The site closest to our right hand is called the site
 associated with the segment.

 (b) We call segments of r which look like ' / X and / segments of types
 1, 2, 3, and 4 (respectively). A look at the sites labeled 1, 2, 3, and 4 in Figure 8
 will convince you that a site associated with a segment of type 1 or 2 must be
 closed but a site associated with a segment of type 3 or 4 may be open or closed.

 (c) At this point it should be clear that the l's and 2's are our friends and the
 3's and 4's are our enemies. Fortunately the former are more numerous. l's and
 2's decrease our x coordinate by 1, and 3's and 4's increase it by 1. If we let mi be
 the number of segments of type i, then since the contour starts at (0, -1) and
 ends at (-2N, -1), m1 + m2 = m3 + m4 + 2N. Hence if the contour has length
 m, m1 + m2 2 m/2.

 (d) Unfortunately a site in W" can be associated with two boundary segments
 (look at 5 in Figure 9). Since each site is associated with at most one segment of
 each type, the number of sites associated with segments of types 1 and 2 is
 > (M1 + m2)/2 2 m/4, and we have proved the desired results.

 REMARK. If we are dealing with bond percolation then each segment in r of
 type 1 and 2 is associated with 1 closed bond (the one which crosses it), so we
 get p 8 %. This estimate can be improved by a more careful counting of contours.
 If we observe that it is impossible for a 3 to be followed by a 4 or for a 4 to be

This content downloaded from 128.32.135.128 on Tue, 20 Mar 2018 19:30:15 UTC
All use subject to http://about.jstor.org/terms



 1028 R. DURRETT

 Sn

 * , p

 n.

 .~~~~~FG 9..

 followed by a 3 we see the numbers of contours of length n < (An )43 where

 1 1 0 1

 1 1 1 0 A O0 1 1 01:
 01 0 0 1 .

 The largest eigenvalue of this matrix is (3 + vg)/2 = 2.62 so PC s 1 - (2.62)-2
 .84. By working harder it is possible to get slightly better estimates, but the
 details become very complicated and the effort is pointless since it is not known
 how to find upper bounds which decrease to Pc.

 Having proved (2) it is a simple matter to prove the corresponding result for
 oriented percolation.

 (3) If p > Pc there is a constant y so that p(r(-2n,-2J < oo) < e-yn and

 lim,. 1/n log p(T (-2n,-21 < oo) =- -y.

 PROOF. Since DAUB = 0 if and only if (A = 0 and (B = 0 we have

 p( DAU = 0) = p( (A = 0, (nB = 0) 2 p( On = 0)p(B =n 0)

 by Harris' inequality (5.6). Letting n -X oo gives

 p(.TAUB < (is) 2 p(TA < O)) p (SB < 00).

 If we let an = log P(T(-2n,-2J < mo) then am+n 2 am + an, and repeating the proof
 of (7.1) proves everything but the positivity of the constant. To do this we
 use the construction in Section 9. Let a = .1 and pick L large enough so that
 P(i7(z) = 1) > 1 - 336. Starting with [-1.1aL - 1.8aLN, .lcaL] in the original
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 process corresponds to starting with [-2N, O] in the 7-process. (To make the
 analogy exact, place the first interval at a height L above the y-axis.) It follows
 from (2) that if p > Pc there are constants c, y so that

 p(ar[-2M.oJ < o) < CeyM.

 At this point we have proved the inequality for intervals. To extend the result
 to arbitrary sets A we will prove a comparison result. We say that A is more
 spread out than B (and write A > B) if there is an increasing function Y from B

 into A so that for all x, y E B I V (x) - Y(y) I I I x - y I. (Note that this implies
 V is 1- 1so I AI 2 gBl

 (4) If A >- B then

 p (,A < m0) C p (rB < m0)

 Since any set is more spread out than an interval with the same number of
 points, (4) shows that

 (5) p(rA < o) < exp(-Y31 A I).

 PROOF OF (4). We will construct the two systems n and n on the same
 probability space in such a way that nA >_ B for all n. To do this we start with
 two copies of ' (2j and ?z ) and a collection of i.i.d. random variables which
 determine whether the bonds in the first lattice are open. We define the system

 n in the usual way on ?4. We will build up n on 2 row by row. Assume that
 n n (this holds when n = 0) and let in be a map from n into ( which has
 n Yn(x) - 2( xI -y x, y E n. Let the bonds (Pn(x), n) -. (Pn(X) ? 1,
 n + 1) in 2 have the same state (i.e. open or closed) as the corresponding bonds

 (x, n) -. (x ? 1, n + 1) in YN and use independent random variables to determine
 the state of the rest of the bonds in 2 which lie in R x (n, n + 1).

 I claim that (A 1 > (B . To prove this let y E (B 1, let

 A(y) = infix: x E (B and (x, n) -(y, n + (+(y) = y - 1 or y + 1),
 and let

 'Pn+l(Y) = 'Pn(O(Y)) + (Y -(Y))*
 (+(y), n) -. (y, n + 1) is open so it follows from the coupling that (Pn (V(y)), n)
 -- (VPn+1(y), n + 1) is also. Hence Vn+1(Y) E n+. On the other hand if y < z are
 in (B 1 then V/ (y) c A(z) so W QnP(z)) - Pn (I(y)) 2 iA(z) -V (y). We then have

 (Pn+ 1 - (Pn+i(Y) = Pn (VI(z)) - Vn (1 (y)) + (Z - I/()- (y - 1'(y)) 2 z -Y

 which completes the proof.

 REMARK. The reader should note that (4) gives another sense in which ( is
 a monotone function of A. Since this notion is invariant under translation,
 On - fn (see Section 4 for the notation) is a decreasing sequence with respect to
 <. Unfortunately this does not imply that the sequence converges.
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 11. Large deviations results for r,. In this section we will prove

 (1) If p >Pc and a < a (p) there is a constant y(a) such that

 PM s an) < eYT(,)n and limn -(l/n)log P(?n s an) = -y(a).

 PROOF. After (7.1), (7.6), and (10.3) you should be able to guess how the first
 part of the argument goes. One observes that

 P(?m+n s a(m + n)) 2 P(?m S am, ?m+n - ?m < an)

 2 P(?m s am)P(?n s an)

 so an = log P(fm S an) is superadditive. Repeating the first part of the proof of
 (7.1) shows everything except the fact that y > 0.

 To prove that y > 0 we first prove the result for 1-dependent site percolation
 on Y Let C = Iy:for some m s 0 (m, 0) -. yI and let Sn = supIm:(m, n) E C}.
 The first step is to prove

 (2) If q < 1 and (1 - p) <336 A 3-36/(1-q) then

 P (Sn s nq ) s Ce

 The proof of (2) involves another contour argument. We use the terminology
 and notation of Section 10. Let D = {(a, b) E R2:I aI + I bi s 1 , let W =
 Uzec(z + D) and let r be the boundary of the unbounded component of
 (R x (-1, n)) - W oriented in such a way that the segment from (0, -1) to
 (1, 0) is oriented in the direction indicated (see Figure 9).

 Let mi1, M2, M3, M4 be the number of segments in r of types 1, 2, 3, and 4
 (N / x A). Since r starts as (0, -1) and ends at (Sn + 1, n), M3 + M4 - Ml -
 M2 = Sn + 1. The shortest possible contour has length n + 1. If r has length n +
 1 + k and Sn < qn we have

 2(ml + M2) = Ml + M2 + M3 + M4 - Sn - 1 > (1 - q)n + k.

 As in Section 10 we can conclude that there are at least (m1 + M2)/2 points
 associated with segments of r which must be closed and there is a subset of these
 sites of size (m1 + M2)/18 which are independent. Since there are at most 3n+k
 contours with n + k + 1 segments we arrive at the estimate.

 P(sn c qn) < Zk=o 3n+k(l _ p)((l-q)n+k)/36

 = 3 (1 _ p)(1q)n/36 . (1 - 3(1 _ p)-/36)-1

 since (1 - p) < 3-36. The other restriction on p implies

 3(1 - p)(l-q)/36 < 1

 and the proof of (2) is complete.
 To deduce (1) from (2) we use the percolation construction from Section 5. It

 is at this point that we first need the ability to pick . close to 0.
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 PROOF OF (1). If a < a we can pick 6 < (a -a) and q < 1 so that q(a-6) >

 a and then pick L so large that P(n(z) = 1) > 1 - 3-36/(1-q+)* If r, = sup (n~-
 then for all n E [mL, (m + 1)L)

 fn 2 sm(a - )L-(1 + 6)aL.

 It follows that for all m sufficiently large and all n E [mL, (m + 1)L)

 P( n c an) C P(sm C qm) < Ce-m.

 From the proof above it follows easily that

 (3) a is continuous for p > Pc.

 PROOF OF (3). In Section 3 we showed lim sup.pp~a(p) c a (po) so to prove
 (3) it suffices to show that if a < a (po) there is an e > 0 so that if p >po - a,
 a(p) > a. Pick 6, q, and L as in the proof of (2). Since the number of bonds in

 Ro,ois finite it follows that we can pick e > 0. If p E (po - a, po) then P(q(z) = 1)
 > 1 - 3-36/(1-q+), and it follows from the computations above that a(p) > a.

 12. Bounds on P(n C Tr < oo) and P(n c I Cl < oo). The first result we
 will prove in this section is

 (1) If p > pc then there are constants C, y so that

 P(n < r0 < oo) Ce-n

 PROOF. Applying (11.1) with a = 0 and summing from n to X0 gives

 P(fm c 0 for some m 2 n) c C exp(-'y11.1(0)n)

 so

 P(m < 0 < fm for all m 2 n) 2 1 - 2C exp(-y11.1(0)n).

 Now by (3.10d) we have ro = inf m 2 n: Em > Im I on I in 0 } so we have proven
 the desired inequality with y = yy1.1 (0).

 With (1) established it is easy to improve the result to

 (2) If p > Pc then there are constants C, y (which are independent of A) so that

 P(n < rA < oo) C C exp(-'yn).

 The proof is a "restart" argument. These arguments are based on two simple
 ideas.

 (i) If you have a sequence of independent events with probability p then K,
 the number of failures before the first success, has a geometric distribution
 P(K = n) = p(l - p)n, n > 0, and

 (ii) If Xi is a sequence of independent random variables with P(Xi 2 m) <
 C exp(-'ym) and K is a random variable with a geometric distribution which has
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 {K= kI independent of (X1, * *, Xk) then

 P(X1 + ***+ XK2 m) c C' exp(-ym).

 We will prove (ii) below.
 To carry out the idea: Suppose A is finite (if A is infinite P(rA < 00) - 0).

 Let xo = sup A and let N1 = infln: (x0 = 0j. If N1 < Xo and ( = 0
 let xi = 0. If A # 0 let xi = sup tA. Let n'= I y: (xi, N1) -- (y, n)I and let
 N2 = infin > N1: nl = 0}. By repeating the procedure above we can define Xk,
 Xk, and Nk+j if k < K = supik: Nk< ooC . On ,rA < 00, NK 2 A so in c 1A < X}o
 C INK 2 n}. To estimate PINK> nj we observe (a) P(K 2 k + 1 I K 2 k) =
 1-psoP(K 2k) = (1 _ p)k, and (b) conditioned on K > k, Xi = Ni-Ni-1,
 i = 1, 2, * , k are independent with

 P(Xi2 n) = P(n c r01ro < oo) c C exp(-,yn).

 It is for this reason that we must ignore the death of .A* From (b) it follows that
 we can pick 0 > 0 so that (P(0) = E exp(0Xi) < 0 and then e > 0 so that e -V(0)c
 < 1 to arrive at the estimate

 P(X1 + * + Xjcnj 2 n) c eCFO(0)en.
 Combining this with the estimate from (a) gives

 P(NK 2 n) c P(I en) + P(Xi + * * * + Xen 2 n) c C exp(-'yn).

 Since I Co 1 > n2 implies that r0> n it follows immediately from (1) that

 (3) P(n < I CoI < oo) _ C exp(-yn1/2).

 We proved a similar bound for p < Pc in Section 7. This time the n1/2 in the
 exponent is the right order of magnitude.

 (4) If p < 1 there are constants c, r E (0, 00) so that

 P(n _ I CoI < 0) 2 c exp(-rnl/2).

 PROOF. To prove this we need a result which we will prove in the next
 section

 (1/n2) En =1 (fzl n [m, fin]) -- ap/2 a.s.

 (The proof of this result uses (1) above but not (4) so there is no circularity in

 the argument.) Let e < p/2 and pick N large so that with probability > 1 - e

 z%=1 (zf n [m frm]) > (ap/3)n2 for all n 2 N.

 On (n # 0 we have

 nm=i (m n Vm, Fm]) = I I I
 so

 P(E =1 I | %I > apn /3, (n # 0) 2 p/2.

 (4) follows immediately since with probability = (1 - p)2n+2, all the bonds up
 from the points {(x, n) E Y: -n _ x _ n} are closed.
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 REMARK. The simple argument given above is due to Aizenmann, Delyon,
 and Soulliard (1981) who proved a related inequality in the more difficult
 unoriented situation.

 13. Correlation inequalities for (Z limit laws for | n I Let

 Pn = P('n # 0) and qn(x) = (Z(x) - Pn.
 In this section we will show

 (1) If p < pand I x1-x I 2 2m for i = 2, ,k then

 I E H I- nn(Xi) I C 2P(m c ro < o).

 This bound on the correlations will allow us to conclude that

 (2) (1/n) I I ---) ap la. a.s.

 and make some progress toward a central limit theorem for I n.

 PROOF OF (1). The random variables (z (x) have the same joint distributions

 as 1(en0) so it suffices to prove the bound for D(x) = 1(400) - Pn. If n c m then
 ?(xi) is independent of (r(X2), ***, ?(x)) so

 E HII i1 (xi) = E(x1)E | i2 M(xd) = 0.

 If m < n let

 = 1(m # 0) - Pn

 r = 1(t # 0) - Pm.

 The random variables D" and (r(x2), ... *(Xk)) are independent so

 E(r" Hl=2 M(xM)) = 0.

 To prove the result all we have to do is estimate

 | E H=, r(xi) - ErD ll=2 t(x2 ) I

 To do this we proceed in two steps. First we observe

 I fl z=l r(Xi) - r' 1=2 r(Xi) I < I MOi - |' I I 1 2 r(Xi) I

 <lI(xl)- 'l=0 or 1
 and

 P( (Xi) # r') - I Pm -n I I
 Therefore

 | E HJti- r(xi) -Er' Hi-2 r(Xi) I| C|Pm Pn1

 To estimate the other difference we observe

 I r' HI=2 r(Xi) - rl H12 r(Xi) I C I - - = 1 Pm - Pn|.
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 1034 R. DURRETT

 Combining the two inequalities above proves the desired since in the case m < n

 1Pm - Pnl = P(m ' r0 < n).

 PROOF OF (2). The first step is to observe that on Q.~n = (z n [4b rn],
 -4/n - -a, and rn/n -- a so it is enough to show that

 (l/n) I (z n [-an, an] I -- ap as n - oo.

 With a uniform bound on the correlations in (z this is easy to do. We let Sn=
 M=-an n (x), (fm(X) -= z(x) - Pm) show that ESn < Cn2, and the conclusion
 follows from Chebyshev's inequality

 (ne)4P(I Sn I > ne) c Cn2

 and the Borel Cantelli lemma.
 To bound ES4 we observe

 ES4n = Ewsxysz En (W)nn(x )nn( Yhn(Z )

 < 24 Zwcxcyc5 I Eln(Whn(X)n(Y)nn W I

 where the sum in both cases is over all possible points in [-an, an]. Now the

 number of terms in the sum with max I I w - x I, I y - z I I = 2m is c 2(m + 1)n2.
 (The number of ways we can pick w, z is < n2 since a c 1 and only every other
 point is possible. Given the choice of w and z there are at most 2(m + 1) ways
 of picking x and y.) Combining the last observation with (1) and the bound
 P(m c ro < oo) c C exp(-'ym) proved in the last section shows

 ES~n < 96 (E-=o (m + 1)C exp(-'ym))n2 = Cn2

 and completes the proof of (2).

 By using (2) we can prove the result we used in the last section

 (3) (1/n2) n=, (Qz n [Vmn, fm]) -- ap/2 a.s.

 PROOF. As above it suffices to show

 (1/n2) n=, (zl n [-am, am]) -- ap/2 a.s.
 To do this let Xm = (1/m) I (z n [-am, am] I and observe that Xm - ap a.s. and

 1 1 m F'd
 n2 Em (n n f[-am, am]) = -n Em= Xm n x dx 2
 With the strong law for t0 established, it is natural to think about central

 limit theorems, especially since the random variables have positive correlations
 in the sense of (5.6). We can apply results of Newman (1980) and Newman and
 Wright (1981) to conclude

 (4) (1/VI)( I (z n [-an, an] I -apn) * N(O, u2)
 where

 2 = Ex COV( 2 (0), (Z (X)) < 00.
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 PROOF. This is almost a consequence of Theorem 3 of Newman and Wright
 (1981). Their result concerns a single sequence of random variables while (4)
 requires a result for triangular arrays. The reader can see from the fact that the
 bound in Theorem 1 is stated in terms of covariances that the details of their
 proof generalize to triangular array setting so we will not repeat the details here.

 In the proof of (2) a strong law for nf n [-an, an] was good enough to get a
 strong law for t0. Unfortunately here a central limit theorem for the first quantity
 is not good enough to get one for the second because

 (5) z n [7n n] I-Iz n [-an, can] -p an- -4 + p -rn an (5 ~ ln n]I laf~flI2 2

 so if, as we suspect,

 fn- an
 (6) N(O, r2)

 the differences in (5) will contribute to the limit.

 14. Infinite differentiability of P(Q11) for p > Pc. In this section we will
 show that the probability of percolation is infinitely differentiable for p > PC.
 The first step in doing this is to write a series for the probability of no percolation

 (1) P((coo) = Enm an,mPn(l - p)tm

 where antm is the number of clusters with n open bonds and a boundary which
 consists of m closed bonds. The meaning of boundary should be clear from (1),
 but if you want a precise definition, a bond x -* y is in the boundary if it is closed
 and x can be reached from 0. To illustrate the definition of boundary we have
 drawn some of the small clusters in Figure 10. The solid lines are the open bonds
 which make up the cluster, and the dotted lines are the closed bonds which make
 up the boundary.

 Given the expression in (1) our strategy for proving P(go.) is differentiable is
 clear. We need to show the derivative of the sum is the sum of the derivatives.
 The first step is to differentiate the individual terms

 P fn(li-p)m = npn"(1 -p)m - mpn(1 p)m- pn(l - p)tm

 and then to check that the expression for the derivative converges absolutely

 In _M m n(l - p)m <5 E I COI + | I ; CO I < x) < X0

 and uniformly in compact subsets of (Pc, 1) since

 P(o> ICoI + I1CoI > (n+ 1)2) <P(n<ro<oo).

 The last computation is not far from a proof that P((..) is differentiable for
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 p E (Pc, 1). Let fnm(p) = an,mPn(1 - p)tm and observe that for fixed, n, m,

 (a) fnn(p) is continuous and
 rp+h

 fnm(P + h) - fn,m(p) = J fA,m(x) dx

 and

 (b) if e > O and 6 is chosen so that [p - 6, p + 6] C (pc, 1) we can pick N so
 large that for allx E [p - 6,p + 6]

 Xn:N;rm Ifnm(X) I < C.

 With these two observations in mind it is routine to establish that as h -O 0

 1/h (Yn,m fn,m(P + h) - En,m fn,m(P) - En,m fn,.(P)) 0

 and the details are left to the reader.
 To show that the second derivative exists we let

 fnm(P) = - 1 _)Pl (1 -P)
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 ORIENTED PERCOLATION IN D = 2 1037

 and observe that

 fnm(p) = -- - p)m - + (1 - p)m

 so (a) and (b) are still satisfied, and we can repeat the proof above to show that
 P(Qoo) is twice differentiable. The same proof works for higher derivatives and it
 follows that P(U.o) is infinitely differentiable for p E (PC, 1).
 To get infinite differentiability at p = 1 we have to find a way of bounding

 fmn(P) in a neighborhood of 1. To do this we observe

 En anm = no. of clusters with boundary of size m.

 By observations in Section 10 if the boundary has size m the associated contour
 has length c 2m (at least half the bonds cut by the contour must be part of the
 boundary) so

 En an,m C km=2 32k < C 32m

 Writing the derivative as

 Em,n an,m(npn l(l - p)tm - mpn(l - p)m-1

 and using the estimate above we see that if p > 8/9

 Em,n an,mMp (l - p)m1 C Em C 32m(1 -p)m-1 < 00

 and since n cM2

 Em,n an,mnp 1(1 - p)m C 2m C 32mm2(1 - p)m < 00.

 The last two estimates show that we can pick M so large that for all x E [.9, 1]

 2m>M;n Ifn m(x) I 2 ?

 so again (a) and (b) are satisfied and we can conclude P(Qo) is differentiable at
 1, etc.
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