
1 A special aggregation-fragmentation process

Consider the state space Sn = {m = (mj) : mj ≥ 0,
∑

j jmj = n}. Picture
a state as a partition of n items into clusters, with mj clusters of size j,
1 ≤ j ≤ n. Picture each cluster as a linear polymer, with j items linked
by j − 1 edges. Fix a parameter 0 < β < ∞, and define a continuous-time
chain (M(t)) on Sn as follows. Let each edge disappear at rate β, splitting
a size-j (say) item into two items of sizes i and j − i, for some 1 ≤ i ≤ j/2.
And for each distinct pair of clusters, of sizes i and j− i say, let them merge
into one cluster of size j (by creation of a linking edge) at rate 2/n. So the
transition rates are as follows. Write δj for the unit vector δj

i = 1(i=j).

m→ m− δj + δi + δj−i : rate 2βmj , 1 ≤ i < j/2
(fragmentation) : rate βmj , i = j/2

m→ m + δj − δi − δj−i : rate 2mimj−i/n, 1 ≤ i < j/2
(aggregation) : rate mi(mi − 1)/n, i = j/2.

Writing c(m) =
∑

j mj for the number of clusters in configuration m, it is
easy to check that the chain is reversible with stationary distribution

π(m) ∝ (βn)c(m)
∏

j

1
mj !

.

In fact this model is a particular case of general reversible models of ag-
gregation and fragmentation: see Kelly [?] Chapter 8. We will use special
structure of this particular case to prove a bound on the relaxation time.

Proposition 1 For the aggregation-fragmentation chain (M(t)) specified
above,

(1− o(1))(β2 + 4β)−1/2 ≤ τ2 ≤ β−1 as n →∞.

Proof. Consider the following interacting particle process B(t) = (Bi(t), 1 ≤
i ≤ n) on the edges of the n-cycle. Each edge can be in state 0 or state 1,
so the states are b = (b1, . . . , bn) ∈ Cn := {0, 1}n. The transition rates at
each edge are:

0 → 1 rate β

1 → 0 rate s(b)−1
n , where s(b) :=

∑

i

bi.
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This chain is reversible with stationary distribution

π(b) ∝ (βn)s(b)/(s(b)− 1)!.

Now we can specify a function f : Cn → Sn as follows. In a configuration
b, cut each edge in state 1. Let mj be the resulting number of connected
components with exactly j vertices, and let f(b) = (mj). We claim that the
chain on Sn induced by f (recall Chapter 4 section 6.1) from the interact-
ing particle process B(t) on Cn is precisely the aggregation-fragmentation
chain (M(t)). The key fact is that the process (Bi(t)) is exchangeable in
the edge-labels i. So conditional on f(B(t)) = m, for fixed t and m, the
blocks comprising m are in uniform random order. Thus if a particular edge
changes state from 1 to 0 at time t, the chance that it causes some size-i
block and some size-(j − i) block to join together equals 2mimj−1

s(b)(s(b)−1) , where
b = B(t). Since there are s(b) edges in state 1 and each makes a transition
at rate (s(b) − 1)/n, the total rate of aggregation of size-i and size-(j − i)
blocks equals 2mimj−i/n, as required. Verifying the other transition rates
is similar.

So the contraction principle (Chapter 4 section 6.1) says τ2 ≤ τ̃2, where
τ̃2 is the relaxation time of the process B(t). We shall bound τ̃2 by coupling.
Let D = {(b,b) : b ∈ Cn} be the diagonal in Cn × Cn and let

D1 = {(b,b′) : b′ − b = δe for some edge e}
D2 = {(b,b′) : b′ − b = δe − δe′ for some edges e, e′}.

We now specify a coupling (B(t),B′(t)) such that, from any initial states
(b,b′) ∈ D1, the coupled process stays in D1 until entering D∪D2. Specify
the transition rates for the coupled process at each edge to be

(0, 0) → (1, 1) ; rate β

(0, 1) → (1, 1) : rate β

(1, 1) → (0, 0) : rate (s(b)− 1)/n

(1, 1) → (1, 0) : rate 1/n.

Note that the coupled process exits D1 at rate β+(s(b)−1)/n ≥ β, We next
specify a coupling (B(t),B′(t)) such that, from any initial states (b,b′) ∈
D2, the coupled process stays in D2 until entering D. In this coupling, if e, e′

are the initially unmatched edges, then the other edges remain matched and
we specify that when one of the unmatched edges in B(t) makes a transition
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then the other unmatched edge in B′(t) makes the same transition. So the
process becomes coupled at rate 2β + 2(s(B(t))− 1)/n ≥ 2β.

Combining the two couplings, it is easy to deduce from the coupling
inequality that for any (b,b′) ∈ D1 ∪D2

||Pb(B(t) ∈ ·)− Pb′(B(t) ∈ ·)|| = O(e−(β−ε)t) as t →∞

for any ε > 0. Using the triangle inequality this extends to any (b,b′) ∈
Cn × Cn and so

||Pb(B(t) ∈ ·)− π(·)|| = O(e−(β−ε)t).

So by the characterization of relaxation time as asymptotic rate of conver-
gence to stationarity, (Chapter 4 Lemma yyy; currently sitting as Lemma 16
of Chapter 13), we have τ̃2 ≤ 1/(β + ε) and the upper bound in Proposition
1 follows.

The process s(B(t)) is clearly the continuous-time birth-and-death chain
(Qt, say) on states {1, 2, . . . , n} with transition rates

i → i + 1 : rate β(n− i); i → i− 1 : rate i(i− 1)/n.

One can check that in the aggregation-fragmentation process M(t) the num-
ber c(M(t)) of clusters also evolves as this birth-and-death chain Qt. Ap-
pealing again to the contraction principle, the relaxation time τ∗2 for Qt is
a lower bound for the relaxation time τ2 for M(t). So to prove the lower
bound in Proposition 1 it is enough to prove

τ∗2 ≥ (1− o(1))(β2 + 4β)−1/2 as n →∞.

From the explicit formula for the stationary distribution πQ of Qt it is
straightforward to show that πQ is asymptotically Normal(nµ, nσ2) as n →
∞, where

µ =
√

β2/4 + β − β/2, σ2 := µ(1− µ)/(2− µ)

and µ is the positive solution of µ2 = β(1 − µ). We apply the extremal
characterization with test function f(i) := i and find

varπf ∼ nσ2

E(f, f) =
∑

i

πQ(i)q(i, i + 1) ∼ qi∗,i∗+1 ∼ β(1− µ)n where i∗ := +µn,.
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The extremal characterization now implies

τ∗2 ≥ (1− o(1))
σ2

β(1− µ)
.

Finally,

σ2

β(1− µ)
=

µ

β(2− µ)
(definition of σ)

=
1

β + 2µ
(use quadratic satisfied by µ to check µ(β + 2µ) = β(2− µ))

= (β2 + 4β)−1/2 (definition of µ).

Remarks. From the stationary distribution of B(t) we see that the size
of a typical cluster has geometric(µ) distribution, asymptotically.

Our arguments continue to apply in the setting where β = βn ∼ b/n,
say, though here the upper and lower bounds on τ2 have orders n and n1/2.
Here the size of a typical cluster is geometric(µ = β1/2

n ) and it gets split at
rate βn/µ = order n−1/2, suggesting that the relaxation time should indeed
be order n1/2. The coupling analysis we gave is very crude in this setting
and can perhaps to improved. In particular, since the exit rate from D1 is
typically about β + µ one might hope to get 1/(β + µ) as an upper bound
for τ2, and this would be the same order of magnitude as the lower bound.

2 Example: horizontally convex polyominoes

Here we give an elementary, but non-obvious, example of a reversible chain
arising in the study of the uniform distribution on a combinatorial set.

Consider horizontally convex polyominoes, which we’ll abbreviate to poly-
ominoes. A size-n polyomino is obtained by breaking unit cells {1, 2, . . . , n}
into consecutive blocks, and placing each block on top of the previous block,
where “on top” means that some component of the current block is imme-
diately above some component of the previous block. The figure shows a
polyomino with n = 17.
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