
xxx

David J. Aldous∗ et al ???

University of California
Department of Statistics
367 Evans Hall # 3860
Berkeley CA 94720-3860

April 25, 2007

rough notes

Abstract

xxx

Key words. xx

MSC2000 subject classification. xxx

∗Research supported by N.S.F. Grant DMS0203062

1



1 Introduction

xxx the model is “made up” to be mathematically interesting. Use “cities” as convenient language,
not literally.

The model At each time t = 1, 2, 3, . . . there are cities at positions xi in the unit square [0, 1]2,
with populations Ni(t) ≥ 1, the total population being

∑
iNi(t) = t. The model has three

parameters
0 < c0 <∞, 0 < α <∞, β > 0

(though we focus on the case 0 < α < 1) which are used to define a function

I0(n, r) = c0n
αr−β (1)

interpreted as the “influence” of a city of population n at distance r from the city. For a position
y ∈ [0, 1]2 define

I(y, t) = max
i
I0(Ni(t), |y − xi|) = c0 max

i
Nα
i (t)|y − xi|−β (2)

and then define the sphere of influence of city i to be

S(i, t) = {y : I0(Ni(t), |y − xi|) = I(y, t)} (3)

where the convention about boundaries between cities’ spheres is unimportant. At time 1 there
is a single city of population 1 at a uniform random point of [0, 1]2. The general evolution rule is:

At time t+ 1 an immigrant arrives at a uniform random position U in [0, 1]2, and either
(i) (with probability 1/(1 + I(U, t))) founds a new city at position U with population 1;
or (ii) (with probability I(U, t)/(1 + I(U, t))) joins the city i for which U ∈ S(i, t), thereby
increasing its population to Ni(t+ 1) = Ni(t) + 1.

Remarks If city populations were equal then the partition into spheres of influence is just the
usual Voronoi tessellation [10]; so in general it is a form of weighted Voronoi tessellation.

Comments on model The two qualitative features of the model are
the growth rate of a city depends on its size and on the sizes and distances of other cities
some stochastic rule for founding of new cities.
One could imagine any different rules to formalize these features; while there is no necessary
connection between the two features, we are using a “slick” formulation in which both are xxx
via the same influence function.

Heuristic analysis Take 0 < α < 1. We study the order of magnitude of several quantities.
Suppose there are M(t) cities at time t, and suppose their populations are mostly the same order
of magnitude. Then typical city population N∗(t) ≈ t/M(t) and distance R∗(t) from typical
point to nearest city is ≈ M−1/2(t), so the typical value I∗(t) of the influence function I(y, t) is
≈ ( t

M(t))
α Mβ/2(t) = tαM−α+β/2(t). The chance that a new arrival founds a new city is about

1/I∗(t), so we get an equation

dM
dt ≈

1
I∗(t) ≈ t−αM−β/2+α. (4)

2



This has solution
M(t) ≈ tθ, θ =

1− α

1− α+ β/2

obtained from solving θ − 1 = −α+ θ(α− β/2). Note that the typical influence is therefore

I∗(t) ≈ (dM(t)/dt)−1 ≈ t1−θ; 1− θ = β
2−2α+β (5)

and the typical distance to nearest city is

R∗(t) ≈M−1/2(t) ≈ t−θ/2; θ/2 = 1−α
2−2α+β (6)

and the typical city population size is

N∗(t) ≈ t
M(t) ≈ t1−θ; 1− θ = β

2−2α+β . (7)

The heuristic argument above rests upon an intuitive picture of the qualitative behavior of the
process, that for large t and a typical position y
(a) most different cities’ populations are the same order of magnitude
(b) y is in the sphere of influence of some nearby city
(c) a city newly founded at t will grow, in time δt, to some population which is ε(δ) times the
typical time-t city population.

Call this the balanced growth scenario. But one can imagine an alternative picture, the unbalanced
growth scenario, in which
(d) y is in the sphere of influence of some city A at distance r which is much larger than the
distance to nearby cities
(e) the nearby cities’ populations are a smaller order of magnitude than city A’s, and their spheres
of influence are surrounded by that of city A.

To investigate these scenarios we try a self-consistency check. Consider a city founded at time t,
and consider N(s) = population of this city at time s after founding, looked at over a relatively
short time period 0 < s < 1

100 t, say. The radius r(s) of its sphere of influence satisfies

Nα(s)r−β(s) ≈ I∗(t) ≈ t1−θ.

The rate of population growth is proportional to area of sphere of influence, so

dN(s)
ds

≈ r2(s) ≈ t−2(1−θ)/β N2α/β(s); N(0) = 1.

We now have two cases.

Case 1. β < 2α.
The solution of dy(s)/ds = y2α/β(s) explodes in finite time s, but stays bounded for some small
time, and so N(s) stays bounded for some time s of order t2(1−θ)/β . But the assumption β < 2α
implies 2(1−θ)/β = 1

1−α+β/2 > 1 implying that N( 1
100 t) is bounded, in contradiction to behavior

(c) above.

Case 2. β > 2α.
Here the solution is

N(s) ≈ tξ(s+ t−ξ/φ)φ; φ =
β

β − 2α
, ξ =

2(θ − 1)
β − 2α

.
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Here −ξ/φ works out to be 1
1−α+β/2 < 1 and so N( 1

100 t) is order tξ+φ. Then (somewhat magi-
cally?) a calculation shows ξ + φ = 1− θ, consistent with behavior (c) above.

So the conclusion of these heuristics is that we predict (recall 0 < α < 1)

the balanced growth scenario holds when β > 2α
the unbalanced growth scenario holds when β < 2α.

One can a posteriori see a conceptually simpler distinction between the two cases. Consider a
city founded at time t. If the area of its sphere of influence upon founding is > 1/t then it will
tend to grow faster (proportional to size) than average, while if this area is smaller than 1/t it will
tend to grow slower. But to calculate this area one needs some information about the behavior
of the process, so we do not see any simple a priori heuristic that these two cases are β < 2α and
β > 2α.

In the unbalanced case we envisage that most of the population is in one city, or in a small
number of cities, and so the analogs of (5 - 7) are

N∗(t) = t1−o(1); R∗(t) = t−o(1); I∗(t) = t1−o(1).

Note that these exponents are therefore discontinuous as (α, β) cross the boundary between the
balanced and unbalanced regions.

In the case α > 1 we expect unbalanced growth (the solution of dy(s)/ds = y2α/β(s) explodes
in finite time s). The case α = 1 can be considered critical, in that growth rate is proportional
to population size. This case is loosely analogous to other models (see Gibrat’s law (section 1.2)
and the Chinese restaurant processs (section 1.2).

To summarize: heuristics suggest the parameter space should divide into three regions:

0 < α < 1 and β > 2α balanced growth
α > 1 or β < 2α unbalanced growth
α = 1 and β > 2α critical growth

and this guides our theoretical development.

1.1 Methodology

Our methodology is to seek statistics S(t) of the process for which we can control (upper or lower
bound) the incremental conditional expectation E(S(t + 1) − S(t)|F(t)) and thereby upper or
lower bound the growth rate of S(t) by martingale methods. Conceptually we imagine I(y, t)
as a time-varying “random environment” and study how the environment affects growth of city
population and distance to nearest city, and how these changes feed back into changing the
environment. The fact that I(y, t) is monotone in t is technically helpful.

xxx in balanced case, end up with a bunch of inequalities between rigorously-defined upper and
lower exponents for growth rates. In other cases, scattered results.

xxx state results!

As described in section 6.4 there is a certain associated dynamical system whose study might
lead to stronger results. xxx future work!
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1.1.1 Methodological difficulties

xxx geometry. Regardless of the parameter values, the first 1, 000 (say) immigrants might go to
one city, or 1, 000 different cities, or 50 cities in one corner of the square, . . . . xxx hard to track
evolution from atypical start.

Here are some specific intuitive ideas which we have not been able to implement.

Coupling When the time-t+1 immigrant arrives at a given position, there are two alternatives
(join existing city or found new city). One might hope that the two conditioned future processes
could be coupled in some manageable way (e.g. the second alternative differs from the first only
by transferring some inhabitants of other cities to the new city). But we do not have any rigorous
coupling construction of this type.

0−1 laws We do not know any general result saying that the asymptotic behavior of the process
is unaffected by initial behavior; and indeed in certain settings we know 0 − 1 laws do not hold
(see remarks after Theorem 2).

Repulsion of cities Because the influence function is infinite at a city, the positions of cities
should intuitively be “less clustered” than random cities. But we don’t know any simple formal-
ization of this idea.

1.2 Related work

We do not know any closely related previous work, but here are some more distantly related
topics.

Random processes with reinforcement See [11] for an elegant survey of such processes,
generalizing classical urn models. Such models typically do not have spatial structure, or else
spatial structure is represented by edges of a graph.

The Chinese restaurant process In our terminology, this is the process where the arrival at
time t+ 1 either
(i) (with probability θ/(t+ θ)) founds a new city with population 1;
or (ii) (with probability Ni(t)/(t+ θ)) joins city i.
See [12] for a treatment of this model and generalizations; these do not involve any spatial
structure. A key feature of this model is that there exists a limit for normalized ordered city sizes

t−1(N(1)(t), N(2)(t), . . .)
d→ (X1, X2, . . .), Xi > 0,

∑
i

Xi = 1 (8)

where the limit has Poisson-Dirichlet distribution. The α = 1 case of our model is somewhat
analogous, so it is natural to ask whether it has the same behavior (8).

xxx add discussion. In the balanced (β > 2) case the growth seems to be slightly sublinear
(Theorem 23); could conjecture (8) holds for β < 2 but I haven’t thought about it yet . . .
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Note we could consider a variant of our model in which an immigrant at position y may join
any city i, with probabilities proportional to I0(Ni(t), |y − xi|); we have not studied this variant,
which is more similar to the Chinese restaurant process.

Random Johnson-Mehl tessellations [9] . In this model (in our language) cities appear as a
space-time Poisson process (xi, ti), and we imagine a wave traveling at speed one in all directions
starting from xi at time ti; the cell of the tessellation of xi is the set of points which are reached
by the wave from xi before being reached by the wave from any xj , j 6= i. So (indentifying
cell areas Ai with population) this gives a “static” model of positions and populations (xi, Ai) of
cities which involves spatial interaction.

Coagulation models There is a large literature in physical chemistry on coagulation, meaning
coalescence of clusters of mass. Though the underlying picture is of motion in space (with coa-
lescence when clusters meet), the usual models [1] ignore spatial position and study deterministic
equations for the density fi(t) of mass-i clusters at time t; a parameter in the equations is a kernel
K(i, j) giving the propensity for mass-i and mass-j clusters to merge. Closest to our model is the
special case of the Becker-Döring equations [8] of polymers growing by collisions with monomers;
mass -i clusters can grow only by coalescing with mass-1 clusters.

A spatial network model The only model we have found fitting our introductory xxx is one
studied by simulation in [2]. This model has additional graph structure, but (interpreting their
“number of edges” as “population”) is essentially the following model. Take an integer parameter
m ≥ 1 and a “distance scale” parameter rc.

(i) A city arrives at a uniform random point y in a given region, and is given population m.
(ii) Simultaneously m existing cities have their population increased by 1, with city i chosen with
probability proportional to Ni exp(−|y − xi|/rc).

This model was intended as a spatial analog of the “proportional attachment” models popular in
the statistical physics of complex networks literature. Their conclusions focus on network traffic
properties, and so are not comparable to ours.

Real-world cities: size and spatial distribution Two classic notions from economic geog-
raphy are

Zipf’s law: that the distribution of city size N follows (for larger cities) approximately the power
law P (N > n) ≈ cn−1 of exponent 1;

Gibrat’s law: that the (percentage) growth rate of cities is independent of their size.

See [5] for discussion. Empirical studies [6] generally find Zipf’s law to be quite accurate and
Gibrat’s law to be more crudely realistic. The simplest stochastic model for Gibrat’s law is that
percentage growth in successive time units is i.i.d. (over cities and times). This model of course
leads to a log-normal distribution for city size; attempts to reconcile mathematically the two laws
have led to a body of literature [5] which the authors find rather confused.

A modern big picture of spatial aspects of economics is provided by the textbook [4]. We do not
know any treatment in economic geography of an explicitly stochastic model of cities sizes and
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positions. Interesting empirical study in [7] concludes

City location is essentially a random process and interactions between cities do not
help determine the size of a city. Both of these findings contradict our theoretical
priors about the role of geography (physical and economic) in determining city out-
comes.

1.3 Notation

Here we fix notation for the rest of the paper. Index cities as i = 1, 2, . . . in their order of founding.
The state of the process at time t can be described as (Ni(t), xi; 1 ≤ i ≤ M(t)) where M(t) is
the number of cities at t, and Ni(t) and xi denote the population and position of city i. Write
the ordered city sizes as N(1)(t) ≥ N(2)(t) ≥ . . . ≥ NM(t)(t) ≥ 1. Write (F(t)) for the natural
filtration. Recall from (2,3) the influence random field

I(y, t) = c0 max
i
Nα
i (t)|y − xi|−β

and the sphere of influence of city i

S(i, t) = {y : Nα
i (t)|y − xi|−β = max

j
Nα
j (t)|y − xj |−β}.

The definition of process dynamics says

P (Ni(t+ 1) = Ni(t) + 1|F(t)) =
∫
S(i,t)

I(y, t)
1 + I(y, t)

dy

P (M(t+ 1) = M(t) + 1, NM(t+1)(t+ 1) = 1, xM(t+1) ∈ dy|F(t)) =
1(y∈S(i,t))

1 + I(y, t)
dy

M(t)∑
i=1

Ni(t) = t.

We also study
R(y, t) = distance from y to closest city at time t.

We write D(y, r) for the disc of center y and radius r.

Convention: Write κ < ∞ and κ−1 > 0 for constants depending only on the model parameters
(c0, α, β).
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2 The unbalanced scenario

In the case α > 1 or β < 2α we heuristically expect most of the population to be attracted into
one or several large cities. There are many possible ways to xxx; here is our conjecture for xxx.
Note that the number M(t) of cities, and the population t−N(1)(t) outside the largest city, are
increasing in t, so there exist a.s. limits

M(∞) := lim
t→∞

M(t) ≤ ∞; N(≥2)(∞) := lim
t→∞

(t−N(1)(t)) ≤ ∞.

Conjecture 1 (a) If α > 1 then M(∞) <∞ a.s.
(b) If β < 2α then N(1)(t)/t→ 1 a.s. as t→∞.
(c) If α > 1 and β < 2α then N(≥2)(∞) <∞ a.s.

What we can actually prove is somewhat weaker.

Theorem 2 (a) If α > 1 then P (N(≥2)(∞) = 0) > 0.
(b) If β < 2α, then for all ε > 0

P (N(1)(t) > t1−ε) → 1 as t→∞.

(c) Suppose α < 1 and β < 2α. Then there exists κ such that

P (N(≥2)(t) ≤ κt1−α ∀t) > 0

and hence
P (N(1)(t)/t→ 1) > 0.

Remarks. (i) Of course it is possible that the first t + 1 arrivals form different cities, so
P (N(≥2)(∞) ≥ t) ≥ P (M(∞) ≥ t+ 1) > 0 for each t <∞. Thus Theorem 2(a) shows there can
be no simple 0− 1 law for tail events, and we see no simple way to improve the conclusion of (c)
to “with probability one”.

(ii) It is easy to see that

M(∞) <∞ a.s. if and only if Earea {y :
∑
t

1
I(y, t)

<∞} = 1.

So by considering the influence of the largest city, we see

if α > 1 and if limt
N(1)(t)

t1−ε = ∞ a.s. for all ε > 0 then M(∞) <∞ a.s. (9)

In the case β < 2α, Theorem 2(b) shows limt
N(1)(t)

t1−ε = ∞ in probability; can we improve this to
“a.s.”?

(iii) To study the conjectures in the case β < 2α, the conjectured instability of the associated
dynamic system (Conjecture 32) may be relevant.
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Proof of Theorem 2(a) This is easy, by considering the event “at time t the whole population
is in one city” and observing
(i) P (N1(t) = t) > 0 for each t ≥ 1.
(ii) P (N1(t+ 1) = t+ 1|Ft) ≥ 1− κt−α on {N1(t) = t}
for κ = 2β/2/c0. These imply

if α > 1 then P (N1(t) = t ∀t) > 0

as required.

2.1 Proof of Theorem 2(c)

We start with a simple fixed-time geometry lemma. Let NA and xA be the population and
position of city A.

Lemma 3 (a) If NA > NB then {y : I(B, y) ≥ I(A, y)} is contained in the disc with center xB
and radius r solving

1 + |xA−xB |
r = (NA/NB)α/β. (10)

(b) If NA/NB ≥ κ := (1 − π1/2/4)−β/α then the area of the sphere of influence of B is at most
8(NB/NA)2α/β.

Proof. For any point y with |y − xB| = s,

I(B, y)
I(A, y)

≤
(
NB

NA

)α (s+ |xA − xB|
s

)β
.

For the left side to be ≥ 1, we require s to be smaller than the solution r of

1 =
(
NB

NA

)α (r + |xA − xB|
r

)β
which reduces to (10). For (b), the choice of κ is such that NA/NB ≥ κ implies (NA/NB)α/β−1 ≥√
π/4 (NA/NB)α/β. Then the solution r of (10) satisfies

r ≤ |xA − xB|
√

4/π(NB/NA)α/β ≤
√

8/π(NB/NA)α/β

and the area in question is at most πr2.

The next lemma studies a process which will be used for comparison.

Lemma 4 Let α > 0, γ > 1. Consider the continuous time particle process on sites {1, 2, 3, . . .},
starting at time t0 with no particles, where particles arrive at site 1 at rate t−α, and where a
particle at site j jumps to site j + 1 at rate (j/t)γ. Suppose j is sufficiently large that α + (γ −
1)(j − 1) > 1. Then

E( number of particles which ever reach site j ) → 0 as t0 →∞.
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Proof. First consider the continuous-time Markov chain on sites {1, 2, 3, . . .}, with transitions
j → j + 1 at rate jγ , and started at time 0 at site 1. Let Tj be the first hitting time to site j.
Because Tj is the sum of j − 1 independent Exponentials,

P (Tj ≤ u) = O(uj−1) as u ↓ 0.

Now consider a particle in the particle process arriving at time t1 > t0, and write hj(t1) for the
chance it ever reaches site j. Its motion is a deterministic time-change of the Markov chain, with
time τ > t1 for the particle process corresponding to time∫ τ

t1

t−γ dt =
t1−γ1 − τ1−γ

γ − 1

for the Markov chain. So

hj(t1) = P

(
Tj <

t1−γ1
γ−1

)
= O

(
t
(1−γ)(j−1)
1

)
as t1 →∞.

Now
E( number of particles which ever reach site j ) =

∫ ∞

t0

t−αhj(t) dt

and the result follows.

Returning to our “cities” process, set γ = 2α/β > 1. Fix large t0 and suppose the first t0 arrivals
join the same city. Let C(t) be the population of this city. Fix large K and consider the event

Bt := {s− C(s) ≤ Ks1−α, 1 ≤ s ≤ t}.

Given K, by choosing t0 sufficiently large we can assume

Bt ⊆ {C(s) ≥ s/2, 1 ≤ s ≤ t}. (11)

xxx rest of argument only sketched. key points are that we are working on Bt at each t, and that
constants κ and j0 do not depend on K.

On the event Bt, using (11),
min
y
I(y, t) ≥ κ−1tα ∀t. (12)

We now claim that the process of “populations of other cities” evolves as a discrete-time analog
of the particle process in Lemma 4. That is, at time t

(i) chance ≤ κt−α to found a new city
(ii) for a city of population j, chance ≤ κ(j/t)γ to increase to j + 1

the former by (12) and the latter by Lemma 3(b). So by the conclusion of Lemma 4 (xxx modified
to discrete time and the extra constants) we can choose j0 and t0 such that the probability that
any other city ever reaches population j0 is less than 1/100. The expected number of new cities
up to time t is by (i) bounded by κt1−α and so (outside the event of probability < 1/100) the
expected total population of the other cities is bounded by κj0t1−α. Now specify

K = 4κj0

and we have shown
P (Bt) ≥ 99

100 −
1
4 .

This gives the result, recalling (12).
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2.2 Proof of Theorem 2(b)

Note that Lemmas 5 - 7 are true for all parameter values.

Lemma 5

min
y
I(y, t) ↑ ∞ a.s. as t→∞.

Proof. Fix K and define r(K) by
c0(3r(K))−β = K.

Fix a position y. We must have

sup
u∈D(y,r(K))

I(u, t) ↑ ∞ a.s. as t→∞

otherwise cities would be founded in the disc, making the sup be infinite. If the nearest city to y
is at distance ≥ 2r(K) then the ratio

supu∈D(y,r(K)) I(u,t)

infu∈D(y,r(K)) I(u,t)
is bounded, and hence

P (R(y, t) ≥ 2r(K), inf
u∈D(y,r(K))

I(u, t) ≤ K) → 0.

But by definition of r(K)

if R(y, t) < 2r(K) then infu∈D(y,r(K)) I(u, t) > K

and so we have shown that for each y

P ( inf
u∈D(y,r(K))

I(u, t) ≤ K) → 0.

The result now follows by compactness (apply to a finite r(K)-dense set (yj) ).

Lemma 6 For each K <∞
E
∑
i

ai(t)1(Ni(t)≤K) → 0.

Proof. Fix K and define
Wt =

∑
i

ai(t)(K + 1−Ni(t))+.

We want to upper bound the increment Wt+1 −Wt. There are three cases for the arrival at time
t+ 1.
(i) If the arrival joins a city with population > K then Wt+1 −Wt ≤ 0.
(ii) If the arrival joins a city i with population 1 ≤ Ni(t) ≤ K then Wt+1 −Wt ≤ −ai(t).
(iii) If the arrival founds a new city whose sphere of influence has area a∗ then Wt+1−Wt ≤ Ka∗.
Write I∗ = miny I(y, t). In case (iii) the sphere of influence is contained within a disc of radius r
satisfying c0r−β = I∗ and so a∗ ≤ π(c0/I∗)2/β . Thus

E(Wt+1 −Wt|Ft) ≤ − I∗
I∗+1

∑
i

ai(t)1(Ni(t)≤K) +Kπ(c0/I∗)2/β

≤ − I∗
I∗+1

Wt
K +Kπ(c0/I∗)2/β .
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Fix t0 and J , and for t ≥ t0 consider

w(t) = EWt1(miny I(y,t0)≥J).

Then
w(t+ 1)− w(t) ≤ − J

J+1
w(t)
K +Kπ(c0/J)2/β

which implies
lim sup

t
w(t) ≤ J+1

J K2π(c0/J)2/β .

Observe ∑
i

ai(t)1(Ni(t)≤K) ≤Wt1(miny I(y,t0)≥J) + 1(miny I(y,t0)<J).

So
lim sup

t
E
∑
i

ai(t)1(Ni(t)≤K) ≤ J+1
J K2π(c0/J)2/β + P (min

y
I(y, t0) < J).

By Lemma 5 we can let t0 →∞ to make the final term → 0, and then letting J →∞ we see the
right side equals 0.

Lemma 7 E
∫

log I(y, t) dy ≥ (α− o(1)) log t as t→∞.

Remarks. Thus is true for all parameter values. But in the balanced (β > 2α) case the
conjectured exponent ζ[I] satisfies ζ[I] > α and so the assertion of the lemma is not sharp.

Proof. Write
Vt :=

∫
log I(y, t) dy.

Monotonicity of I implies log I(y, t + 1) − log I(y, t) ≥ 0. To get a quantitative lower bound on
this increment, observe that if the arrival at time t + 1 joins city i then for y ∈ S(i, t) we have
I(y, t+ 1) = I(y, t)(Ni(t)+1

Ni(t)
)α and so

log I(y, t+ 1)− log I(y, t) = α log(1 +N−1
i (t)).

So
E(Vt+1 − Vt|Ft) ≥

∑
i

p(i, t)ai(t)α log(1 +N−1
i (t))

where p(i, t) is the conditional probability that the arrival at time t+ 1 joins city i. Now

p(i, t) ≥ J
J+1ai(t)1(miny I(y,t)≥J)

and so
E(Vt+1 − Vt|Ft) ≥

αJ

J + 1

∑
i

a2
i (t) log(1 +N−1

i (t)) × 1(miny I(y,t)≥J).

Choose n(J) such that
log(1 + n−1) ≥ J−1

Jn , n ≥ n(J)

we see
E(Vt+1 − Vt|Ft) ≥

α(J − 1)
J + 1

∑
i:Ni(t)≥n(J)

a2
i (t)

Ni(t))
× 1(miny I(y,t)≥J).
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Using the inequality (from Cauchy-Schwarz)∑
i

a2
i /νi ≥ (

∑
i

ai)2/(
∑
i

νi)

this becomes

E(Vt+1 − Vt|Ft) ≥
α(J − 1)
t(J + 1)

(∑
i

ai(t)1(Ni(t)≥n(J))

)2

× 1(miny I(y,t)≥J).

Using Lemmas 5 and 6 we can put this into the format

E(Vt+1 − Vt|Ft) ≥ α(J−1)
t(J+1) (1−∆J,t)

where
0 ≤ ∆J,t ≤ 1; lim

t
E∆J,t = 0.

This implies
EVt+1 − EVt ≥ (α− o(1))/t as t→∞

and the result follows

The next lemma shows that, in the unbalanced case, we can relate the presence of large cities to
the value of

∫
log I(y, t) dy.

Lemma 8 Let 0 < α <∞ and β < 2α. Set κ = β
2 log(eπcβ/20 ). Consider an arbitrary configura-

tion at time t.
(a)

∫
log I(y) dy ≤ α log t+ κ.

(b) If
∫

log I(y) dy ≥ α log t+ κ− J then N(1) ≥ t exp(− 2
2α−βJ).

Proof. By solving for r the equation c0Nα
i r

−β = x we get

area {y : influence of city i at y is ≥ x } ≤ πr2 = π(c0x−1Nα
i )2/β

and so
area {y : I(y) ≥ x} ≤ πc

2/β
0

∑
i

N
2α/β
i x−2/β .

So, setting A = πc
2/β
0

∑
iN

2α/β
i ,∫

log I(y) dy =
∫ ∞

0
area {y : log I(y) ≥ u} du

≤
∫ ∞

0
min(1, A exp(−2u/β) du

= β
2 (1 + logA)

= κ+ β
2 log(

∑
i

N
2α/β
i ). (13)

Now 2α/β > 1, so the maximum possible value of
∑

iN
2α/β
i under the constraint

∑
iNi = t is

attained by taking N1 = t. That is,
∑

iN
2α/β
i ≤ t2α/β and then (13) gives (a). Alternatively, fix

m < t and constrain each Ni to be at most m. Then the maximum possible value of
∑

iN
2α/β
i

13



is attained by taking N1 = N2 = . . . = m for t/m cities (xxx say more carefully) and so∑
iN

2α/β
i ≤ t

m m2α/β. In other words,

∑
i

N
2α/β
i ≤ tN

2α−β
β

(1) .

Using (13) and the hypothesis of (b),

α log t+ κ− J ≤ κ+ β
2 log t+ 2α−β

2 logN(1)

which rearranges to the conclusion of (b).

Proof of Theorem 2(b) Again write Vt :=
∫

log I(y, t) dy. By Lemmas 8(a) and 7

Vt ≤ α log t+ κ; EVt ≥ (α− o(1)) log t

which imply that for fixed ε > 0

P (Vt < (α− ε) log t) → 0.

Lemma 8(b) now implies that for each ε > 0

P (N(1)(t) ≥ t1−ε) → 0

as required.
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3 The balanced scenario: α < 1 and β > 2α

Recall notation:
Ni(t) = size of city i at time t
R(y, t) = distance from y to nearest city at time t.

We seek to formalize the heuristics in section 1 by studying the following rigorously defined upper
and lower exponents for the growth rates of three quantities. In each case we have ζ∗ ≤ ζ∗.

ζ∗[I] is the infimum of φ such that

Earea {y : I(y, t) ≥ tφ} → 0.

ζ∗[I] is the supremum of φ such that

Earea {y : I(y, t) ≤ tφ} → 0.

ζ∗[R] is the infimum of ξ such that

Earea {y : R(y, t) ≥ tξ} → 0.

ζ∗[R] is the supremum of ξ such that

Earea {y : R(y, t) ≤ tξ} → 0.

ζ∗[N ] is the infimum of ψ such that

E
∑
i

ai(t)1(Ni(t)≥tψ) → 0.

ζ∗[N ] is the supremum of ψ such that

E
∑
i

ai(t)1(Ni(t)≤tψ) → 0.

In the final two definitions, ai(t) = area S(i, t), and the quantity under consideration is a tech-
nically convenient proxy for the more intuitive quantity t−1

∑
iNi(t)1(Ni(t)≥tψ) representing pro-

portion of population in large cities (see Lemma 12).

The heuristic arguments suggest the conjectures

ζ∗[I] = ζ∗[I] = ζ∗[N ] = ζ∗[N ] = β
2−2α+β > 0; ζ∗[R] = ζ∗[R] = α−1

2−2α+β < 0.

We summarize our analysis as follows.

Prop.9 ζ∗[I] ≤ αζ∗[N ]− βζ∗[R] definition of I(y, t)
Prop.11 ζ∗[N ] ≤ β−2ζ∗[I]

β−2α I large implies cities can’t grow fast
Prop.15 ζ∗[I] ≥ 1 + 2ζ∗[R] I small implies nearby cities founded often
Prop.15 ζ∗[I] ≥ 1 + 2ζ∗[R] I small implies nearby cities founded often
Prop.18 ζ∗[I] ≤ 1 + 2ζ∗[R] I large implies nearby cities founded seldom

Note these are all “sharp” in the sense of being equalities for the conjectured values.

15



xxx obviously this isn’t enough to prove the conjectures, but organizes what we know. Maybe
helps us to formulate what we need to prove!

xxx the inequalities above imply
ζ∗[I] = 1 + 2ζ∗[R]

and then (using the first two inequalities) we get

(β2 − 2αβ + 4α)ζ∗[I] + 2(β − 2α)ζ∗[I] ≤ β2.

Then using ζ∗[I] ≤ ζ∗[I] we get
ζ∗[I] ≤ β

2−2α+β

where the right side is the conjectured value.

xxx need 12 inequalities; 3 are trivial; so we have gotten 8 so far!!!!!!

16



3.1 From the definition of I(y, t)

Proposition 9 ζ∗[I] ≤ αζ∗[N ]− βζ∗[R].

Proof. Write σ(y) for the city in whose sphere of influence y resides. Then

I(y) = c0N
α
σ(y)|y − xσ(y)|−β ≤ c0N

α
σ(y)r

−β(y).

So if ψ and ξ are such that

Earea {y : Nσ(y,t)(t) < tψ and R(y, t) > tξ} → 1 (14)

then
Earea {y : I(y, t) ≤ c0t

αψ−βξ} → 1

and so ζ∗[I] ≤ αψ − βξ. Now because

Earea {y : Nσ(y,t)(t) ≥ tψ} = E
∑
i

ai(t)1(Ni(t)≥tψ),

(14) holds when ξ < ζ∗[R] and ψ > ζ∗[N ], establishing the result.

xxx next lemma is similar; not yet used. Its point is that the conjectured exponents satisfy

1 = 1
αζ[I] + β−2α

α ζ[R]

and so it says that, if I∗ is larger than the conjectured value, this cannot be caused by cities
farther away than the conjectured value r∗(t).

Lemma 10 Let β > 2α. For an arbitrary configuration at time t,

area {y : I(y, t) ≥ b and y ∈ S(i, t) for some i with |y − xi| ≥ r} ≤ κt

b1/αr
β−2α
α

where κ = πc
1/α
0 .

Proof. Fix b and r. Let city i have population ni. Then

area {y : |y − xi| ≥ r, I0(ni, |y − xi|) ≥ b} ≤ π(s2i − r2)+

where si is the solution of c0nαi s
−β
i = b, so s2i = (c0nαi b

−1)2/β . Define n0 by

r2 = (c0nα0 b
−1)2/β .

Then the area under consideration in the lemma (A, say) satisfies

A ≤ π
∑
i

(s2i − r2)+

≤ π
∑

i:ni≥n0

s2i

= πc
2/β
0 b−2/β

∑
i:ni≥n0

n
2α/β
i .

17



Note the general inequality ∑
i

nγi ≤
∑

i ni

mini n
1−γ
i

, 0 < γ < 1, ni > 0. (15)

Applying this with γ = 2α/β gives

A ≤ πc
2/β
0 b−2/β × t

n
1−2α/β
0

.

Solving the equation for n0 leads to

n
1−2α/β
0 = r

β−2α
α (b/c0)

β−2α
αβ

and the result follows.
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3.2 I large implies cities can’t grow fast

xxx idea: if the typical value I∗(t) is large then the sphere of influence of a city is small and so
cities can’t grow fast. So an lower bound on I∗(t) gives an upper bound on city size.

Proposition 11 Let β > 2α. Let α < φ < β/2 and suppose

Earea {y : I(y, t) ≤ tφ} → 0 as t→∞. (16)

Then
E
∑
i

ai(t)1(Ni(t)≥tψ) → 0. (17)

for all ψ satisfying

1 > ψ >
β − 2φ
β − 2α

. (18)

That is,

ζ∗[N ] ≤ β − 2ζ∗[I]
β − 2α

.

Proof. The general inequality (15) implies that for each t∑
i

Nγ
i (t)1(Ni(t)≥tψ) ≤

t

tψ(1−γ) .

Applying this with γ = 2α/β gives

tψ(1−2α/β)−1 E
∑
i

N
2α/β
i (t)1(Ni(t)≥tψ) ≤ 1.

Let ri(t) be the solution of
c0N

α
i (t)/rβi (t) = tφ.

Then
r2i (t) = c

1/β
0 N

2α/β
i (t) t−2φ/β.

The lower bound on ψ implies −2φ/β < ψ(1− 2α/β)− 1 and so

E
∑
i

r2i (t)1(Ni(t)≥tψ) → 0. (19)

Now let ai(t) be the area of the sphere of influence of city i and let a(t) = area {y : I(y, t) ≤ tφ}.
Then ∑

i

ai(t)1(Ni(t)≥tψ) ≤ a(t) +
∑
i

πr2i (t)1(Ni(t)≥tψ)

the two terms corresponding the the regions y where I(y, t) < tφ and where I(y, t) > tφ. So using
(19) and (16)

E
∑
i

ai(t)1(Ni(t)≥tψ) → 0.

The next lemma records a relation between ζ∗[N ] and the more intuitive quantity t−1
∑

iNi(t)1(Ni(t)≥tψ).
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Lemma 12 For all ψ > ζ∗[N ],

t−1E
∑
i

Ni(t)1(Ni(t)≥tψ) → 0.

Proof. Take ψ > ζ∗[N ], so by definition

E
∑
i

ai(t)1(Ni(t)≥tψ) → 0.

Let q(t + 1) be the probability that the arrival at time t + 1 joins a city with population ≥ tψ.
Then

q(t+ 1) ≤ E
∑
i

ai(t)1(Ni(t)≥tψ) → 0

the inequality arising from the possibility of founding a new city. Now consider at time t a city
with population Ni(t) ≥ 2tψ. Then at least half the population arrived at times s + 1 ≤ t for
which Ni(s+ 1) ≥ tψ ≥ sψ, and so

E
∑
i

1
2Ni(t)1(Ni(t)≥2tψ) ≤

t∑
s=1

q(s) = o(t).

This establishes the Proposition, since we may replace ψ by a slightly smaller ψ′.
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3.3 I small implies nearby cities founded often

xxx these arguments use D(y, r) = disc of radius r around center y and implicitly assume disc is
inside the unit square, so they’re not precisely correct as stated in this version, but “essentially
correct” because we only care about typical positions y and small r.

xxx study trade-off between influence at a point y and the distance to nearest city. Proposition
15 shows we cannot have both the influence being small and the distance being large.

We start with an easy geometry lemma.

Lemma 13 Suppose the nearest city to position y is at distance r∗. Then for all x ∈ D(y, r∗)(
1 + |x−y|

r∗

)−β
≤ I(x)
I(y)

≤
(
1− |x−y|

r∗

)−β
.

Proof. I(x) = I(x,B) for some city B at some position z with |z−y| ≥ r∗. Since I(y) ≥ I(y,B),

I(x)
I(y)

≤ I(x,B)
I(y,B)

≤
[

inf
z: |z−y|≥r∗

|z−x|
|z−y|

]−β
and the infimum is attained at the point on the boundary closest to x, where the ratio equals
(r∗ − |x − y|)/r∗. For the lower bound, I(y) = I(y,B) for some city B at some position z with
|z − y| ≥ r∗, so

I(x)
I(y)

≥ I(x,B)
I(y,B)

=
(
|z−x|
|z−y|

)−β
≥
(
|z−y|+|y−x|

|z−y|

)−β
and the fraction is maximized when |z − y| = r∗.

The next result is an immediate consequence, using the rule for founding new cities.

Corollary 14 Consider an arbitrary configuration at time t and a position y. Let r∗ be the
distance from y to the nearest city. Define f(r), 0 < r < r∗ by

f(r)dr = P (arrival at time t+ 1 founds city at distance ∈ (r, r + dr) from y).

Then
2πr

1+I(y)(1−
r
r∗ )

β ≤ f(r) ≤ 2πr
I(y)(1 + r

r∗ )
β .

Proposition 15 Fix a position y. Let R(y, t) be the distance from y to the nearest city. Then

P (I(y, t) ≤ b, R(y, t) ≥ z) ≤ κ(b+ 1)
tz2

, t ≥ 1, 0 < b, z (20)

where κ = 2β+2/π. So
ζ∗[I] ≥ 1 + 2ζ∗[R]; ζ∗[I] ≥ 1 + 2ζ∗[R].

Proof. Consider T := min{t : I(y, t) > b or R(y, t) < z}. On the event {T > t} the lower bound
in Corollary 14 implies

P (r(t+ 1) ≤ z
2 |F(t)) ≥ 2π

1 + I(y, t)

∫ z/2

0
r(1− r

R(y,t))
β dr ≥ 2π

1 + b

∫ z/2

0
r(1

2)β dr =
z2

κ(b+ 1)
.
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But
P (T = t+ 1|F(t)) ≥ P (r(t+ 1) ≤ z

2 |F(t)) on {T > t}

and so the distribution of T − 1 is stochastically bounded by the Geometric distribution with
mean κ(b + 1)/z2. The event in (20) is {T ≥ t + 1}, so inequality (20) follows from Markov’s
inequality.

Now consider ξ < ζ∗[R], so
Earea {y : R(y, t) ≤ tξ} → 0.

Applying (20) with z = tξ shows

Earea {y : I(y, t) ≤ b(t)} → 0 whenever b(t)/t1+2ξ → 0

implying ζ∗[I] ≥ 1 + 2ξ and thus ζ∗[I] ≥ 1 + 2ζ∗[R]. Conversely, consider φ > ζ∗[I], so

Earea {y : I(y, t) ≥ tφ} → 0.

Applying (20) with b = tφ shows

Earea {y : R(y, t) ≥ z(t)} → 0 whenever tφ/(tz2(t)) → 0

implying φ ≥ 1 + 2ζ∗[R] and thus ζ∗[I] ≥ 1 + 2ζ∗[R].
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3.4 I large implies nearby cities founded seldom

xxx continues ideas of previous section.

Lemma 16 Let 0 < ν < µ < 1. Then there exists a constant J = J(ν, µ) such that for each T
there exist integers 1 = s1 ≤ s2 ≤ . . . ≤ sJ+1 = T + 1 such that

s−µj (sj+1 − sj) ≤ T 1−ν , 1 ≤ j ≤ J.

Proof. (xxx sketch). Define sj inductively by s−µj (sj+1 − sj) = T 1−ν . Then sj+1 ≈ sµj T
1−ν and

inductively
sj ≈ T aj ; aj+1 = µaj + (1− ν)

so that aj → 1−ν
1−µ > 1 and we just choose J such that aJ+1 > 1.

The next lemma relates exponents for the quantities to exponents for sums of inverses. It uses
only the momotonicity property of I(y, ·).

Lemma 17 For all φ < ζ∗[I]

Earea {y :
t∑

s=1

I−1(y, s) ≥ t1−φ} → 0.

Proof. Take 0 < φ < ζ∗[I], so by definition

Earea {y : I−1(y, t) ≥ t−φ} → 0.

Given ε > 0 we can choose Kε <∞ such that

Earea {y : I−1(y, t) ≥ Kεt
−φ} ≤ ps, ∀t. (21)

Take 0 < ν < φ. Take J = J(ν, φ) as in Lemma 16 and for given t take (1 = s1, s2, . . . , sJ+1 =
t+ 1) as in that lemma. If

I−1(y, sj) ≤ Kεs
−ν
j , 1 ≤ j ≤ J

then by monotonicity

t∑
s=1

I−1(y, s) ≤
J∑
j=1

Kεs
−φ
j (sj+1 − sj) ≤ JKεt

1−ν .

So using (21)

Earea {y :
t∑

s=1

I−1(y, s) > JKεt
1−ν) ≤ Jε

and the result follows.

Proposition 18 ζ∗[I] ≥ 1 + 2ζ∗[R].
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Proof. (xxx sketchy). Fix a position y. We want to compare the joint process (I(y, t), R(y, t))
with a joint process (I(y, t), r̂(y, t)) where r̂(y, t) is defined as follows. Create “virtual points”
according to the rule:

given the configuration at time t, place a virtual point at time t + 1 uniformly in the disc with
center y and area I(y)/2β.

Let r̂(y, t) be the distance from y to the closest virtual point. Using the upper bound in Corollary
14, (xxx details omitted) we can couple R(y, t) and r̂(y, t) such that

r̂(y, t) ≤ R(y, t).

Then

P (R(y, t) ≤ r|I(y, s), s ≤ t) ≤ P (r̂(y, t) ≤ r|I(y, s), s ≤ t)

≤ 2βπr2
t∑

s=1

I−1(y, s).

So if 2φ+ q < 0 then

P (R(y, t) ≤ tφ,

t∑
s=1

I−1(y, s) ≤ tq) → 0.

Now using Lemma 17,
Earea {y : R(y, t) ≤ tφ} → 0

provided 2φ+ (1− ζ∗[I]) < 0 and the result follows.
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4 xxx nontrivial geometry

Proposition 19 gives (in the case β > 2α) a lower bound on the influence function over discs of
the size that contains Θ(1) cities. Here’s the essential idea. Suppose there are at least 1 and at
most K cities in a disc at time t. If the influence function is small, then at least one city must
grow, over the time interval [t, t + t

10 ], and this growth in population implies a lower bound on
the influence function at time t+ t

10 .

Proposition 19 Let 0 < α < ∞ and β > 2α. Let D(y, 2r) be in the unit square. Consider an
arbitrary feasible configuration at time t0. Fix t1 > t0 and fix b,K. Suppose

sup{I(z, t0) : z ∈ D(y, r/2)} ≥ b. (22)

Write Q(y, t, 2r) for the number of cities in D(y, 2r) at time t. Then,

P

(
Q(y, t, 2r) ≤ q; inf

z∈D(y,r)
I(z, t1) ≤ 3−βb

)
≤ κ∆(q)

(t1 − t0)
b1/αr

β
α
−2 (23)

where κ depends only on the model parameters and ∆(q) depends only on q.

Note in particular that hypothesis (22) holds for all b if there is some city in D(y, r/2).

xxx in proof below we have written K(t) = Q(y, t, 2r).

We start with a “pure geometry” lemma, not involving our process. Write D(r) for the disc of
radius r centered at the origin.

Lemma 20 Fix K ≥ 1. Let D1, . . . , DK be discs of arbitrary radii, each centered at some point
in D(2). Let S = ∪Ki=1Di and let Ai ⊆ Di be such that (Ai ∩ D(1), 1 ≤ i ≤ K) is a partition of
S ∩D(1). Suppose
(i) S intersects D(1/2);
(ii) S does not cover D(1).
Then

max
1≤i≤K

area (Ai ∩D(1))
area (Di)

≥ δ(K) (24)

where δ(K) > 0 depends only on K.

Note that we may take δ(K) to be decreasing in K. Our argument gives δ(K) ∼ K−3, which
presumably could be improved (xxx but improvement would not help of arguments, I guess).

Proof. We may suppose D1 intersects D(1/2). Consider the connected cluster, say D1, . . . , DL

(1 ≤ L ≤ K) of overlapping discs containing disc D1. Consider first the case where this cluster
lies within D(1). We assert, in this case,

max
1≤i≤L

area (Ai)
area (Di)

≥ L−1 ≥ K−1 (25)

establishing (24). If (25) fails then, for each 1 ≤ j ≤ L,

area (Dj) =
L∑
i=1

area (Dj ∩Ai) ≤
L∑
i=1

area (Ai) < L−1
L∑
i=1

area (Di)
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and summing over j gives a contradiction.

Now consider the alternate case. Here we can choose a sequence D1, D2, . . . , DL where each
successive pair Di, Di+1 overlap and where

L = min{i : Di is not contained in D(1)} satisfies 1 ≤ L ≤ K.

We assert that
area (S ∩D(1)) ≥ π( 1

8K )2. (26)

If L = 1 then D1 intersects both D(1/2) and the complement of D(1), so D1 ∩ D(1) contains a
disc of diameter 1/2, implying (26). If L ≥ 2 and one of D1, . . . , DL−1 has radius ≥ 1

8K , then
(26) is clearly true. If L ≥ 2 and none of D1, . . . , DL−1 has radius ≥ 1

8K , then DL−1 is contained
inside D(3/4) and so DL intersects both D(3/4) and the complement of D(1), and thus (repeating
the argument for D1 above) area (DL ∩D(1)) ≥ π(1/8)2. This establishes (26). Now each Di has
radius at most 3, because it is centered in D(2) and does not cover D(1). So

max
1≤i≤K

area (Ai ∩D(1))
area (Di)

≥
∑K

i=1 area (Ai ∩D(1))∑K
i=1 area (Di)

≥ area (S ∩D(1))
K π32

≥
π( 1

8K )2

9πK
.

The next lemma is a routine martingale-type bound.

Lemma 21 Let (Ni(t), 1 ≤ i ≤ K, t = 1, 2, . . .) be {0, 1, 2, . . .}-valued and adapted to a filtration
(F(t)). Suppose that, for each t,
either Ni(t+ 1) = Ni(t) ∀i;
or Nj(t+ 1) = Nj(t) + 1 and Ni(t+ 1) = Ni(t) ∀i 6= j, for some random j.
Define qi(t) = P (Ni(t + 1) = Ni(t) + 1|F(t)). Fix a time interval [t0, t1] and fix c > 0 and
0 < γ < 1. Suppose that, for each t0 ≤ t < t1,

qi(t) ≥ c(Ni(t))γ , for some i with Ni(t) ≥ 1. (27)

Suppose maxiNi(t0) ≥ 1. Then for any integer z,

P (max
i
Ni(t1) < z) ≤ K2z1−γ

(1− γ)c(t1 − t0)
.

Proof. Define τi(0) = min{t ≥ t0 : Ni(t) ≥ 1, qi(t) ≥ c(Ni(t))γ} and then inductively for
s = 1, 2, 3, . . . define

τi(s) = min{t > τi(s− 1) : qi(t) ≥ c(Ni(t))γ}.

Set Ñi(s) = Ni(τi(s)) and F̃i(s) = F(τi(s)). Then Ñi(0) ≥ 1 and

P (Ñi(s+ 1) ≥ Ñi(s) + 1|F̃(s)) ≥ c(Ñi(s))γ .

By comparison with the related pure birth process, Ti := min{t : Ñi(t) ≥ z} satisfies

ETi ≤
z−1∑
j=1

1
cjγ

≤ z1−γ

(1− γ)c
.
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Using Markov’s inequality, for any σ

P (Ñi(σ) < z) = P (Ti > σ) ≤ z1−γ

σ(1− γ)c

and so

P (Ni(τi(σ)) < z for some i) ≤ Kz1−γ

σ(1− γ)c
.

Setting σ = (t1 − t0)/K, the hypothesis (27) implies τi(σ) ≤ t1 − t0 for some (random) i, so

P (max
i
Ni(t1) < z) ≤ Kz1−γ

σ(1− γ)c
.

xxx some unimportant details slid over in proof above: τi(s) may be ∞; as defined σ not integer.

Proof of Proposition 19 Index the cities in D(y, 2r) at time t by 1 ≤ i ≤ K(t), and write

Di(t) = {z : Ii(z, t) ≥ b}.

Suppose, at some time t0 ≤ t ≤ t1, the influence I(A, z, t) at some z ∈ D(y, r) from some city
A outside D(y, 2r) is ≥ b. Then min{I(A, z, t1) : y ∈ D(y, r)} ≥ 3−βb and so the event in (23)
cannot happen. So we may ignore the possibility that the influence within D(y, r) from some city
outside D(y, 2r) exceeds b. That is, defining

S(t) = ∪K(t)
i=1 Di(t),

we may assume that S(t) coincides with {z : I(z, t) ≥ b} on D(y, r). Note that the quantity in
(23) can now be bounded as

P (K(t1) ≤ K, S(t1) does not cover D(y, r)).

Write Ni(t) for the population of city i. Let Ai(t) be the “sphere of influence” of city i at time t.
We now claim that we can apply Lemma 20 at each time t0 ≤ t < t1. Hypothesis (i) of Lemma
20 follows from hypothesis (22); and if hypothesis (ii) fails we are done. From the conclusion of
Lemma 20, at each time t0 ≤ t < t1 there is a random i such that

area (Ai(t)) ≥ δ(K)area (Di(t)).

(xxx notes: we have scaled Lemma 20 by r; and we may assume Ki(t) ≤ K or we are done).
From the explicit form of the influence function

I0(m, r) = c0m
αr−β

we calculate
area (Di(t)) = π(c0b−1Nα

i (t))2/β .

So (xxx ignoring possibility that a new arrival founds a new city) condition (27) holds with

c = δ(K)π(c0b−1)2/β , γ = 2α/β

and by assumption we are in the case 0 < γ < 1. Now define w by

c0w
α(3r)−β = b.
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At time t1, if some city in D(y, 2r) has size at least w, then its influence is at least b over all of
D(y, r). So by the conclusion of Lemma 21

P (K(t1) ≤ K, S(t1) does not cover D(y, r)) ≤ P (K(t1) ≤ K, max
i
Ni(t1) < w)

≤ K2w1−γ

(1− γ)c(t1 − t0)

and this bound reduces to the form stated in (23).
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5 The critical case

xxx haven’t tried to study the unbalanced case yet . . . . . .

Here we take α = 1 and β > 2.

Heuristics Looking at the heuristic argument in section 1, equation (4) becomes

dM
dt ≈ t−1M−β/2+1

whose solution is
M(t) ≈ log2/β t.

Continuing the heuristics as before gives

I∗(t) ≈ N∗(t) ≈ t log1− 2
β t; R∗(t) ≈ log−1/β t.

So in particular we may conjecture the following “just sublinear” growth rate for the largest city.

Conjecture 22 If α = 1 and β > 2 then N(1)(t) = t log1− 2
β
±o(1)

t a.s.

A natural first step would be to prove t−1N(1)(t) → 0 a.s.. In this draft we have managed only
to prove the “lim inf” version.

Theorem 23 If α = 1 and β > 2 then lim inft t−1N(1)(t) = 0 a.s.

Remarks. Not only is the result unsatisfactory, but the proof “by contradiction” is complicated.
Hopefully one can use these ingredients to find a better proof of a better result! The proof uses
the “geometry” result, Proposition 19.

Proof of Theorem 23 To start the proof by contradiction, we take the negation of “lim inft t−1N(1)(t) =
0 a.s.” to be (xxx not precise, but fix-able)

∃a′ such that N(1)(s) ≥ a′s ∀s.

This implies there exists c1 such that

min
y
I(y, s) ≥ c1s ∀s. (28)

We now embark upon a series of lemmas.

The first lemma uses a more delicate analysis of the interplay between R(y, t) and I(y, t) given in
Corollary 14. The main idea in its proof is to compare R(y, t) to the process on states {2−j} which
transitions from 2−j to 2−j−1 at rate 2−2j . We will apply with r = O(log−1/2 t) and q = O(1),
making the bound small.
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Lemma 24 Let α = 1 and β > 2. Suppose (28) holds, where we may take c1 < 1. Take constants
0 < c2, r < 1 < K <∞, a position y and a time t0, and an integer q ≥ 1. Let Q(y, t1, 2r) be the
number of cities at time t1 > t0 within distance 2r from y. Then

P

(
1

log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and {R(y, t0) > r/2 or Q(y, t1, 2r) ≥ q}

)

≤ 4πr2(1 + log t1)
qc1

+ C exp

(
−

2−3r2(c2 log t0 − 7
2 + log2 r)

κK

)
(29)

where κ depends only on β and C is the numerical constant defined at (36).

Proof. The expected density of cities at position x at time t equals

E(1 +
t−1∑
s=1

1
1 + I(x, s)

) ≤ 1 +
t−1∑
s=1

1
1 + c1s

≤ 1 +
∫ t

0

1
1 + c1s

ds = 1 + c−1
1 log(c1t) ≤ c−1

1 (1 + log t)

the final inequality because c1 < 1. So

EQ(y, t, 2r) ≤ c−1
1 (1 + log t)× π(2r)2

and Markov’s inequality gives

P (Q(y, t, 2r) ≥ q) ≤ c−1
1 (1 + log t)π(2r)2/q

which (for t = t1) is the first term in (29). Thus it remains to show

P

(
1

log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and R(y, t0) > r/2

)
≤ C exp

(
−

2−3r2(c2 log t0 − 5
2 + log2 r)

κK

)
.

(30)
Write R(s) = R(y, s). Using the lower bound in Corollary 14, (xxx provided disc in square)

P (R(s+ 1) ≤ 1
2R(s)|F(s)) ≥ κ−1 R2(s)

1 + I(y, s)
(31)

for κ−1 =
∫ 1/2
0 2πr(1− r)β dr. Define stopping times

Hj = min{u : R(u) ≤ 2
3
2
−j}, j = 1, 2, 3, . . .

where H1 = 1 because R(1) ≤
√

2. Define stopping times τ1 = 0 and

τj = min{u > τj−1 :
u∑

s=τj−1+1

s−11(1+I(y,s)≤Ks) ≥ wj − wj−1}

where 0 = w1 < w2 < w3 < . . . are constants to be defined later. Because 1
1+I(y,s) ≥

1
Ks on

{1 + I(y, s) ≤ Ks}, this definition implies

τj∑
s=τj−1+1

1
1 + I(y, s)

≥ wj − wj−1

K
. (32)
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We seek to upper bound P (Hj > τj + 1), inductively on j. Fix j and u and consider the event
{τj = u− 1, 2

1
2
−j < R(u) ≤ 2

3
2
−j}. On this event

P (Hj+1 > τj+1 + 1|F(u)) = P (R(τj+1 + 1) > 2
1
2
−j |F(u))

≤ P (R(s+ 1) ≥ 1
2R(s), R(s) > 2

1
2
−j , ∀u ≤ s ≤ τj+1|F(u))

= E

( τj+1∏
s=u

P (R(s+ 1) ≥ 1
2R(s)|F(s)) 1

(R(s)>2
1
2−j)

∣∣∣∣∣F(u)

)

≤ E

( τj+1∏
s=u

(
1− κ−1 R2(s)

1 + I(y, s)

)
1
(R(s)>2

1
2−j)

∣∣∣∣∣F(u)

)
by (31)

≤ E

( τj+1∏
s=u

(
1− κ−1 21−2j

1 + I(y, s)

)
1
(R(s)>2

1
2−j)

∣∣∣∣∣F(u)

)

≤ E

(
exp

(
−κ−121−2j

τj+1∑
s=u

1
1 + I(y, s)

)∣∣∣∣∣F(u)

)

≤ exp
(
−21−2j(wj+1 − wj)

κK

)
by (32) .

Now consider the event {τj = u− 1,Hj ≤ u}. On this event, R(u) ≤ 2
3
2
−j . If R(u) ≤ 2

1
2
−j then

Hj+1 ≤ u ≤ τj+1, and so the previous bound implies

P (Hj+1 > τj+1 + 1|F(u)) ≤ exp
(
−21−2j(wj+1 − wj)

κK

)
on {τj = u− 1,Hj ≤ u}.

This can be rewritten as

P (Hj+1 > τj+1 + 1|F(τj + 1)) ≤ exp
(
−21−2j(wj+1 − wj)

κK

)
on {Hj ≤ τj + 1}.

By induction (xxx details)

P (HJ > τJ + 1) ≤
J−1∑
j=1

exp
(
−21−2j(wj+1 − wj)

κK

)
. (33)

To relate this to (30), note first that the definition of (τj) implies

τJ∑
s=1

s−11(1+I(y,s)≤Ks) ≤ wJ + J

the final “+1” term from overshoot at each stage. Suppose we choose (wj) and J such that

wJ + J ≤ c2 log t0. (34)

Then

{ 1
log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2} implies {τJ < t0}

and {R(t0) > 2
3
2
−J} implies {HJ ≥ t0 + 1}. So

P ( 1
log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and R(y, t0) > 2
3
2
−J) ≤ P (τJ < t and HJ ≥ t+ 1)

≤ P (HJ > τJ + 1). (35)
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Given J , set w1 = 0 and

wj+1 − wj = (c2 log t− J)2j−J , 1 ≤ j ≤ J − 1

so that wj =
∑J−1

j=1 (wj+1 − wj) < (c2 log t − J) and hence (34) is satisfied. Note for future
reference that there exists a numerical constant C such that

min

(
1,

∞∑
i=0

exp(−a2i)

)
≤ C exp(−a), 0 < a <∞. (36)

Combining (35) and (33),

P ( 1
log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and R(y, t0) > 2
3
2
−J) ≤

J−1∑
j=1

exp
(
−21−j−J(c2 log t0 − J)

κK

)

=
J−2∑
i=0

exp(−a2i)

where we have substituted i = J − 1− j and set

a =
4(c2 log t0 − J)2−2J

κK
;

so now

P ( 1
log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and R(y, t0) > 2
3
2
−J) ≤ C exp(−a).

Given r, let J be the smallest integer such that 2
3
2
−J ≤ r/2; so 2

3
2
−J > 2−2r and so

2−2J > 2−7r2; −J > log2 r − 7
2

giving finally

P ( 1
log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and R(y, t0) > r/2) ≤ C exp

(
−

2−3r2(c2 log t0 − 7
2 + log2 r)

κK

)

which is (30).

Lemma 25 Under the hypotheses of Lemma 24, for K ≤ B <∞,

P

(
1

log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and I(y, t1) ≤ Bt1)

)
→ 0

uniformly over the range t0 →∞, t1 →∞, 1 +D−1 ≤ t1
t0
≤ D for fixed 1 < D <∞.

Proof. This is basically just a matter of identifying the conclusions of Lemma 24 with the
hypotheses of Proposition 19. In fact Proposition 19 implies that for any b

P
(
Q(y, t1, 2r) ≤ q; I(y, t1) ≤ 3−βb|F(t0)

)
≤ κ∆(q)

(t1 − t0)
b rβ−2 (37)
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on the event {R(y, t0) ≤ r/2}. We apply this inequality with b defined by 3−βb = Bt1. Combining
with Lemma 24 (the logic here is abstracted in Lemma 26 below) we conclude that

P

(
1

log t0

t0∑
s=1

s−11(1+I(y,s)≤Ks) > c2 and I(y, t1) ≤ Bt1)

)

≤ 4πr2(1 + log t1)
qc1

+ C exp

(
−

2−3r2(c2 log t0 − 7
2 + log2 r)

κK

)
+

κ∆(q)
(t1 − t0)

(3βBt1)rβ−2.

Here we may choose 0 < r < 1 and integer q ≥ 1. To obtain asymptotics (xxx very messy to
say this precisely, so I haven’t tried!) first set r = w log−1/2 t0 for large w, and the terms are
essentially

O(w2/q) +O(exp(−κw2)) +O
(
∆(q) t1

t1−t0 log−(β−2)/2 t0

)
.

By taking q = q(t0) ↑ ∞ very slowly we make the first and third terms tend to 0; finally we can
take w arbitrarily large.

The logic used to combine (37) with Lemma 24 can be abstracted as follows; the proof is straight-
forward.

Lemma 26 Let A1(t0), A2(t0) be arbitrary events in F(t0) and let A3(t1), A4(t1) be arbitrary
events in F(t1), where t1 > t0. If

P (A1(t0) and {A2(t0) or A3(t1)}) ≤ a1

P (Ac3(t1) and A4(t1)|F(t0)) ≤ a2 on Ac2(t0)

then P (A1(t0) and A4(t1)) ≤ a1 + a2.

To continue, we isolate the following lemma, perhaps suitable for a homework problem in a
graduate probability course.

Lemma 27 Let Sn =
∑n

i=1Xi where 0 ≤ Xi ≤ 1. Suppose that for each ε > 0

E(Xn+1 − ε)+1(Sn>εn) → 0.

Then n−1Sn → 0 in probability.

Proof. Fix ε and consider T := max{m ≤ n : Sm ≤ εm} ≥ 0. On the event {Sn ≥ 2εn} we have

2εn− εT ≤ Sn − ST =
n∑

i=T=1

Xi ≤ (n− T )ε+
n∑

i=T+1

(Xi − ε)+.

This implies

εn ≤ 1 +
n−1∑
i=1

(Xi+1 − ε)+1(Si>εi) on {Sn ≥ 2εn}.

Taking expectations,

εnP (Sn ≥ 2εn) ≤ 1 +
n−1∑
i=1

E(Xi+1 − ε)+1(Si>εi) = o(n)

by hypothesis, so P (Sn ≥ 2εn) → 0 as required.
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Lemma 28 Let α = 1 and β > 2, and suppose (28) holds. Then

lim
t

1
log t

t∑
s=1

s−1Earea {y : I(y, s) ≤ Ks} = 0 for each K <∞. (38)

Proof. Fix B = K and c2 and a position y, and set

Xi =
2i∑

s=2i−1+1

s−11(1+I(y,s)≤Ks).

From the conclusion of Lemma 25 we may apply Lemma 27 (xxx details omitted; really need to
put in small gap and sum over [(1 + η)2i−1, 2i]) to show

1
log t

t∑
s=1

s−11(1+I(y,s)≤Ks) → 0 in probability.

Taking expectations and integrating over y gives (38) .

Lemma 28 and the next lemma now complete the “proof by contradiction” of Theorem 23. Recall
we are seeking to prove (40) by assuming it false, which implies (28), so then Lemmas 28 and 29
imply (40) true. Note however that, because of this peculiar proof structure, we have not actually
proved (39) to be true!

Lemma 29 Let α = 1 and β > 2. Suppose (28) and (38) hold. Then

lim
t

1
log t

t∑
s=1

s−1E(s−1N(1)(s)) = 0 (39)

and in particular
lim inf

t
t−1N(1)(t) = 0 a.s. (40)

Remark The lemma remains true if we omit the logarithmic averaging in both hypothesis (38)
and conclusion (39).

Proof. Set γ = 2− 2
β , so 1 < γ < 2, and consider

S(t) :=
∑
i

Nγ
i (t).

From the process dynamics,

E(S(t+ 1)− S(t)|F(t)) ≤ 1 +
∑
i

ai(t) ((Ni(t) + 1)γ −Nγ
i (t))

where the 1 bounds the contribution from possible founding of a new city. Taking κ such that
(n+ 1)γ − nγ ≤ κnγ−1 for all n ≥ 1,

E(S(t+ 1)− S(t)|F(t)) ≤ 1 + κ
∑
i

ai(t)N
γ−1
i (t). (41)
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Fix K and write

AK(t) = area {y : I(y, t) ≤ Kt}
AK,i(t) = area {y ∈ S(i, t) : I(y, t) ≤ Kt}.

Now
area S(i, t) ≤ πr2 +AK,i(t) where r solves c0Ni(t)r−β = Kt

and so
ai(t) ≤ π

(
c0Ni(t)
Kt

)2/β
+AK,i(t).

Inserting into (41), we can bound by the case where the largest city i has AK,i(t) = AK(t), and
so

E(S(t+ 1)− S(t)|F(t)) ≤ 1 + κAK(t)Nγ−1
(1) (t) + κπ

(
c0
Kt

)2/β∑
i

N
2/β
i (t)Nγ−1

i (t).

We chose γ to make 2
β + γ − 1 = 1, so the final sum equals t; crudely bounding N(1)(t) by t in

the other term leads to

E(S(t+ 1)− S(t)|F(t)) ≤ 1 + κtγ−1AK(t) + κπ(c0/K)2/β tγ−1.

Now take expectation, multiply by t−γ and sum:

1
log t

t∑
s=1

s−γ(ES(s+ 1)− ES(s)) ≤ O( 1
log t) + κ

log t

t∑
s=1

s−1EAK(s) +O(K−2/β).

Taking K arbitrarily large and using hypothesis (??), the right side is o(1), so summing by parts
gives

1
log t

t∑
s=1

s−γ−1ES(s) = o(1).

For fixed ε > 0,

E(s−1N(1)(s)) ≤ ε+ P (N(1)(s) ≥ εs) ≤ ε+ (εs)−γES(s)

and so
1

log t

t∑
s=1

s−1E(s−1N(1)(s)) ≤ ε+ o(1)

giving (39). Now note that for any real sequence (as) we have

lim inf
t

at ≤ lim inf
t

1
log t

t∑
s=1

s−1as.

So by Fatou’s lemma

E lim inf
t

t−1N(1)(t) ≤ lim inf
t

E(t−1N(1)(t))

≤ lim inf
t

1
log t

t∑
s=1

s−1E(s−1N(1)(s))

= 0.
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6 Ideas not used

6.1 xxx

xxx idea: if I∗(t) too small then new cities appear locally and increase it

xxx seek to argue ζ[I] ≥ α− (β − 2α)ζ[R]

Proposition 30 Fix a position y and time t0, and consider an arbitrary configuration at time
t0. Suppose at time t0 the closest point to y is at distance r∗. Suppose at time t0 + 1 a new city
A is founded at distance r < r∗ from y. Let t1 > 0. Then

P (I(y, t0 + t1) < b, no other city in D(y, r∗) at time t0 + t1) = o(1)

for

b =
c [(1− 2α/β)πt1(r∗ − r)/(4r∗)]α

(r∗)β−2α
. (42)

xxx vague about meaning of o(1).

Proof. Set
ε = r∗−r

2r∗ .

Write J(·) for influence function when we exclude the influence of city A. Note that for x ∈
D(y, (1− ε)r∗) and z 6∈ D(y, r∗) we have |z−x|/|z− y| ≥ ε and hence, if there are no other cities
inside D(y, r∗).

max{J(x)/J(y) : x ∈ D(y, (1− ε)r∗)} ≤ ε−β

Thus we may assume (xxx explain)

J(x) ≤ bε−β , x ∈ D(y, (1− ε)r∗).

Let N(t) be the population of city A at time t0 + t. Define n0 by

c0n
α
0 /(εr

∗)β = bε−β.

As long as N(t) ≤ n0, the sphere of influence of city A contains the disc, centered at city A, of
radius r(t) ≤ εr∗ given by

c0N
α(t)/rβ(t) = bε−β.

So, as long as N(t) ≤ n0,

P (N(t+ 1) = N(t) + 1|N(t)) ≥ πr2(t) = πε(c0/b)2/βN2α/β(t).

Temporarily write the right side as cNγ(t). Consider T := min{t : N(t) = n0}. By comparison
with the related pure birth process,

ET ≤
n0−1∑
j=1

1
cjγ

≤ n1−γ
0

(1− γ)c
.

By calculating the variance of the related pure birth process and using Chebyshev’s inequality
(xxx details omitted)

P

(
T >

2n1−γ
0

(1− γ)c

)
= o(1)
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xxx vague about sense of limit.

From the definitions of n0 and c

2n1−γ
0

(1− γ)c
=

2
(1− 2α/β)πε

(b/c0)1/α(r∗)
β−2α
α .

The choice (42) for b makes this equals t1, so

P (N(t1) < n0) = P (T > t1) = o(1).

But when N(t1) ≥ n0 the influence of city A at t is at least

c0n
α
0 /(r

∗)β = b

and so I(y, t0 + t1) ≥ b.
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6.2 xxx

Heuristics. Let’s indicate one way to try to use Proposition 19. Choose r(t) such that at time
≈ t a typical disc of radius ≈ r(t) is likely to have at least 1 but at most O(1) vertices. Apply
Proposition 19: we get a lower bound

P (min{I(y, t) : y in typical radius-r disc} ≤ b(t)) is small

where b(t) solves
b1/αr

β
α
−2

t
≈ 1; so b(t) ≈ tα(r(t))−(β−2α).

If this were a lower bound over the entire square then we would have an upper bound on the
rate of growth of M(t) = number of cities: dM(t)/dt ≤ 1/b(t). Suppose we can show this. Then
suppose M(t) ≈ tθ for some θ. A disc of radius r(t) = t(1−θ)/2 has mean O(1) cities; suppose we
can show enough non-clustering that such discs are likely to have at least one city. Then, since
dM(t)/dt ≈ tθ−1, we get the inequality

θ − 1 ≤ −α+ (β − 2α)(1− θ)/2

which becomes
θ ≤ 1− 2α+ β/2

1− α+ β/2
.

This is consistent with the previous heuristic which gave

θ =
1− α

1− α+ β/2
.
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6.3 xxx

Lemma 31 Let 1 = W1 ≥W2 ≥ . . . > 0 be adapted to (Ft), and suppose

E(Wt+1 −Wt|Ft) ≤ −aWt
t

for fixed a > 0. Then
P (Wt ≥ tε−a) → 0; all ε > 0.

Proof. Set Vt+1 = Wt−Wt+1

Wt
, so that 0 ≤ Vt+1 < 1 and E(Vt+1|Ft) ≥ a/t. Then

Wt =
t∏

s=2

Ws

Ws−1
=

t∏
s=2

(1− Vs) ≤ exp(−
t∑
2

Vs) ≤ exp(−
t∑
2

Ṽs) (43)

where 0 ≤ Ṽs ≤ Vs is constructed such that E(Ṽs+1|Fs) = a/s. Now

var (
t−1∑
1

Ṽs+1) ≤
t−1∑
1

a
s (1−

a
s ) ≤

t−1∑
1

a
s = E(

t−1∑
1

Ṽs+1) ∼ a log t

and Chebyshev’s inequality implies that for ε > 0

P (
t−1∑
1

Ṽs+1 ≤ (a− ε) log t) → 0 as t→∞.

Applying (43) gives the result.
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6.4 The associated dynamic system

Suppose we modify the model by starting with n cities in given positions x1, . . . , xn ∈ [0, 1]2, and
then not allowing any new cities to be founded. Writing Ni(t) for city i population at time t in this
setting, it is intuitively clear that normalized and time-changed populations Zi(t) = e−tNi(et)
should approximate the following deterministic process which we call the associated dynamic
system (zi(t), 1 ≤ i ≤ n). Its state space is

{(z1, . . . , zn) : zi ≥ 0,
∑
i

zi = 1}

and its dynamics are
dzi
dt

= −zi + area Si(z1, . . . , zn)

where Si is the “sphere of influence of city i” defined in essentially the same way as before:

Si(z1, . . . , zn) = {y ∈ [0, 1]2 : zαi |y − xi|−β = max
j
zαj |y − xj |−β}.

In the following conjecture, we suppose the city positions (xi) and the initial values zi(0) are “in
general position” and that each zi(0) > 0.

Conjecture 32 (a) If α > 1 or 0 < β < 2α then there exists an i such that zi(t) → 1.
(b) If 0 < α < 1 and β > 2α then zi(t) → zi(∞), the limit not depending on initial values and
satisfying zi(∞) > 0 ∀i.

xxx relate to our stochastic model.

In this connection we mention the notion of centroidal Voronoi tessellation [3], an unweighted
tessellation in which each point is the centroid (center of mass) of its cell. Such tessellations
are obviously the fixed points of a dynamical system in which points (xi) are moved toward the
centroids of their cells.
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