
Online Random Weight Minimal Spanning Trees

and a Stochastic Coalescent

David Aldous, Omer Angel, and Nathanael Berestycki

Draft version — June 16, 2008

Abstract

Let cost(n) be the minimal mean total cost of constructing a spanning
tree of the complete n-vertex graph using edges with i.i.d. U(0, 1) weights,
when decisions on acceptance or rejection of edges must be made online.
We give asymptotic upper and lower bounds of 4 and 1.368 on cost(n).
The key idea is that for each n we can calculate cost(n) via a recursion
over partitions Π of {1, . . . , n} for F (Π) := mean cost if starting with a
forest with components Π. Though we cannot solve the recursion analyt-
ically, a related inequality allows us to get explicit upper bounds. The
optimal algorithm is analogous to a certain time-inhomogeneous stochas-
tic coalescent. We conjecture that limn cost(n) exists and is determined
by the solution of a certain p.d.e. on the infinite simplex. Numerics
suggest limn cost(n) ≈ 1.9. We give lower bounds by different methods,
variants on classical optimal online selection results.

1 Introduction

[[Note(david): Have reverted to traditional U(0, 1) law for edge-weights]]
[[Note(david): We are using “costs” or “weights” interchangeably]]

To edges e of the complete n-vertex graph Kn assign i.i.d. weights We dis-
tributed uniformly on [0, 1]. A celebrated result of Frieze [5] asserts that the
weight Xoffline

n of the minimal spanning tree (MST) satisfies

EXoffline
n → ζ(3) = 1.20...... (1)

We study the corresponding online problem in which edges are presented one
by one and we must decide then whether to accept the edge for our spanning
tree (see precise model description below). In recent related work, [4] study the
two-stage process where one can choose some edges from one realization (W ′

e)
and then must choose remaining edges from an independent realization (W ′′

e):
they show the limit mean weight is bounded above ζ(3)/2. And [8] study an
adversarial version in which an adversary can choose the order of edges (without
knowing their weights); they show the mean weight is still O(1).

Here are the two models we study.

1

The combinatorial model. The
(
n
2

)
edges e are presented in uniform random

order at times 1, 2, . . . ,
(
n
2

)
with i.i.d. U(0, 1) weights We.

The Poisson model. Here we use the continuous time interval 0 ≤ t ≤ 1 and
the infinite “weight” interval R+. Take a Poisson point process with density

(
n
2

)
on [0, 1] × R+. For each point (t, x) of the process we are offered at time t a
randomly chosen edge, assigned weight x.

[[Note(david): Note I’m using “Poisson model” for the R+ case.]]
The combinatorial model is intuitively more natural, but the Poisson model

is technically simpler, because it has two properties that the combinatorial
model lacks (see section 2.1): a scaling property and a Markovian property.

Why should we expect similar behavior in these two models? The optimal
spanning tree will use edges of typical weight O(1/n). Indeed, for the weight
V offline

n of a random edge of the offline MST, there is an explicit limit distribution
for n×V offline

n : see e.g. [2] sec. 4.5. So truncating the weight space in the Poisson
model from R+ to (0, 1) should have no asymptotic effect. In this truncated
Poisson model, each edge e is presented a random (Poisson, mean 1) number of
times with i.i.d. weights. This still may appear different from the combinatorial
model, in which each e is presented exactly once. But if we consider only O(1/n)
weights, then in each model these are assigned to essentially the same number
O(n) of random edges in random order, and these are the edges which will be
used.

[[Note(david): We don’t yet have a complete proof that the costs
are asymptotically the same in the two models; section 4 gives one
side of proof.]]

Under either model let cost(n) be the minimal expected total cost, over
all online algorithms, of the spanning tree constructed by the algorithm. Our
fundamental result, Theorem 3, is that under the Poisson model one can derive
cost(n) from equations for the expected cost F (Π) of the optimal online algo-
rithm as a function of the starting components Π. Though we cannot get an
useful explicit expression for cost(n), by finding solutions F to an associated
system of inequalities we can get explicit upper bounds, of which the simplest
(Corollary 4) is cost(n) ≤ 4(n− 1)/n, and so in particular

Theorem 1. In the Poisson model, lim sup cost(n) ≤ 4.

We conjecture that limn cost(n) exists and is determined by the solution of
a certain partial differential equation on the infinite simplex: see section 2.3.
Numerics suggest limn cost(n) ≈ 1.9. Our best lower bound is proved in section
3 via different methods, variants on classical optimal online selection results.

Theorem 2. In either model, lim inf cost(n) ≥ 1.368 . . .

Let us briefly describe an intriguing connection with stochastic coalescence.
See [1] for general background and [7] for the following kind of technical results
on stochastic coalescence. Given a kernel K(x, y), x, y = 1, 2, 3, . . ., we can for
each n ≥ 2 define the Marcus-Lushnikov process on partitions of {1, . . . , n} as

2

the continuous-time Markov chain in which each pair of size x and size y compo-
nents may merge at rate n−1K(x, y). Under technical conditions, the random
process (Y n

i (t), i ≥ 1) where Y n
i (t) = n−1×(number of size-i components at

time t) converges as n → ∞ to a deteministic limit (yi(t), i ≥ 1) which is
the solution of the Smoluchowski coagulation equation (SCE). Now our optimal
online algorithm is (Theorem 3(b)) for each n conceptually similar to some time-
inhomogeneous Marcus-Lushnikov process. So the conjecture that limn cost(n)
is determined by the solution of the PDE (9) arises as a analog of convergence
of Marcus-Lushnikov processes to SCE. However, in the latter setting we use
the same, given K(x, y) for each n, whereas in our setting the coalescence rates
(θi,j,t at (5)) are defined in parallel with the algorithm in terms of the solutions
of a set of equations, separately for each n, making it much harder to get started
on a convergence proof.

2 Exact formulas and upper bounds

2.1 The recursive equation for optimal cost

The key insight is Theorem 3, which gives equations for the mean cost of the
optimal online algorithm as a function of the starting configuration. We work
with the Poisson model, so the time interval is 0 ≤ t ≤ 1, and it is convenient
to reverse direction of time so that “time t” means there is time t remaining. In
this section, n is fixed. The proof below assumes that cost(n) is finite, which
is easy to prove directly but is also a corollary of known (less easy) results: see
section 2.2.

The Poisson model has the following two features that make it technically
simpler than the combinatorial model. The scaling property is the fact that
the map (t, x) → (at, x/a) from [0, 1]×R+ to [0, a]×R+ preserves the distribution
of the Poisson point process. In words, working on a time interval of length a,
has the same effect as dividing all weights by a, hence the optimal algorithm’s
cost will be divided by a. The Markov partition property is that the current
state of the optimal algorithm can be represented by the partition of {1, . . . , n}
into tree-components; we do not need to keep track of which edges were rejected
previously.

To set up some notation, write Π for a partition of {1, . . . , n} into #Π
components of sizes X1(Π), . . . , X#Π(Π). For 1 ≤ i < j ≤ #Π, let Πi,j denote
the partition obtained from Π by merging the i’th and j’th components of Π.
Write [n] for the partition into the single component {1, 2, . . . , n} and write
[11 . . . 11] for the partition into n components of size 1. Consider a non-negative
function F of partitions satisfying

F (Π) > F (Πi,j) for all Π and all 1 ≤ i < j ≤ #Π; F ([n]) = 0. (2)

For any such F define

Ft(Π) =
1
t
F (Π), 1 ≥ t > 0. (3)

3

Theorem 3. (a) Recursively on #Π ≥ 2 define F (Π) to be the minimal solution
satisfying (2) of the quadratic equation

F (Π) =
∑
i<j

Xi(Π)Xj(Π)
(F (Π)− F (Πi,j))2

2
. (4)

Then F (Π) equals the optimal cost of constructing an online spanning tree start-
ing with a forest with components Π. In particular, cost(n) = F ([11 . . . 11]).
(b) The unique algorithm attaining cost(n) is of the form: at time t, accept an
edge connecting components i and j of the current partition Πt if its weight is
smaller than

θi,j,t := Ft(Πt)− Ft(Π
i,j
t). (5)

(c) Let F (Π) be any function on partitions satisfying (2) and

F (Π) ≤
∑
i<j

Xi(Π)Xj(Π)
(F (Π)− F (Πi,j))2

2
for all Π. (6)

Then cost(n) ≤ F ([11 . . . 11]).

[[Note(david): Previous version asserted “maximal solution” in (a)
but I don’t see an argument. Of course the solution may be unique
under (2) but again I don’t see an argument. The logical layout of
the “minimality” proof below is slightly subtle.]]

Proof. Define F̂ (Π) to be the optimal cost of constructing an online spanning
tree starting with a forest with components Π. Clearly F̂ satisfies (2). The
scaling property implies that for 1 ≥ t > 0, the optimal cost starting at time t
with components Π equals F̂t(Π) := 1

t F̂ (Π).
Fix Π and consider an optimal algorithm starting from Π at time 1. Let W

be the total cost and Πt be the partition at time t. Let Gt denote the filtration
generated by the edges and weights seen during time [1, t]. Then Mt = E(W |Gt)
is a martingale. Note we can write Mt = St + F̂t(Πt) where St is the sum of
all payments during time [1, t]. Note also that an optimal algorithm must be of
the form

at time t, accept an edge connecting components i and j of the
current partition Πt if its weight is smaller than

θi,j,t := F̂t(Πt)− F̂t(Π
i,j
t).

So for small ε,

E(M1−ε −M1) = ES1−ε +
∑
i<j

Xi(Π)Xj(Π)θi,j,1ε[F̂ (Πi,j)− F̂ (Π)] (7)

+(F̂1−ε(Π)− F̂ (Π))(1−O(ε)) + o(ε).

4

Now

ES1−ε =
∑
i<j

Xi(Π)Xj(Π)
θ2

i,j,1

2
ε + o(ε)

and using the definition of θi,j,1 we see that the sum of the two terms on the

right of (7) equals −
∑

i<j Xi(Π)Xj(Π) θ2
i,j,1
2 ε. The scaling property implies

(F1−ε(Π)− F (Π)) = F (Π)ε + o(ε). So we have shown

0 = E(M1−ε −M1) = −
∑
i<j

Xi(Π)Xj(Π)
θ2

i,j,1

2
ε + F̂ (Π)ε + o(ε), (8)

implying F̂ (Π) =
∑

i<j Xi(Π)Xj(Π) θ2
i,j,1
2 . In other words, F̂ satisfies equation

(4). The minimality assertion in (a) will follow from part (c), as explained later,
and then assertion (b) will follow from the construction.

To prove (c) we re-use the same calculations but intepret them slightly dif-
ferently. Suppose a function F (Π) satisfies (6) and (2). Define Ft by the scaling
(3) and consider the algorithm specified by the threshold θi,j,t defined by (5).
Write Πt for the partition at time t, and define the accumulated cost St as
before. Define a process

Mt := St + Ft(Πt) , 1 ≥ t > 0.

Repeating the calculations that gave (8) shows that, for the algorithm started
with partition Π,

E(M1−ε −M1) = −
∑
i<j

Xi(Π)Xj(Π)
θ2

i,j,1

2
ε + F (Π)ε + o(ε).

By inequality (6) and scaling, this implies that EMt is non-increasing as t de-
creases over 1 ≥ t > 0, and so

F (Π) = EM1 ≥ lim
t↓0

EMt = ES0 + lim
t↓0

EFt(Πt) ≥ ES0.

[[Note(david): Curiously, the argument so far has not proved or as-
sumed that the algorithms do produce spanning trees! All we have
assumed is that some algorithm has finite mean cost.]] From the strict
inequality in the side conditions (2) it is easy to check that the algorithm does
produce a spanning tree (not just a forest), because the threshold grows as 1/t
as t ↓ 0. So ES0 is the mean total cost of this algorithm starting with Π. So we
have proved, in setting (c), that

F (Π) ≥ F̂ (Π) := cost of optimal algorithm starting with Π.

Applying this recursively to a F satisfying the equality (4) proves the minimality
assertion in (a). Applying instead to a F satisfying the inequality (6) and to
Π = [11 . . . 11] proves (c).

[[Note(david): Proving limt↓0 EFt(Πt) = 0 would not help with unique-
ness. It would just show that, if F satisfies the equations (4), then
running the algorithm associated with F has cost F (Π).]]

5

Remarks. (a) Computing F ([11 . . . 11]) for n ≤ 73 suggests that cost(n) is
decreasing after n = 4 and converges slowly to roughly 1.9.
(b) In the case n = 2, (4) becomes the single equation f = f2/2 and so cost(2) =
2. This is a classical “optimal online selection” result, the continuous version of
Proposition 6 with n = 1.
(c) Theorem 3(b) shows there is a unique algorithm attaining the minimum
cost, and so it makes sense to talk about the random variable Xonline

n giving the
total cost in a realization. Of course cost(n) = EXonline

n . There is also a random
variable V online

n giving the weight of a random edge of the constructed spanning
tree, and it is natural to conjecture that (as in the offline case) there is a limit
distribution for n× V online

n .

2.2 Upper bounds

The fact that supn cost(n) < ∞ can be deduced (in the combinatorial model)
from the “adversaries” result in [8], because it’s just the special case where the
adversary picks edges in random order. But our Theorem 3(c) can be used to
give more explicit bounds (in the Poisson model).

Corollary 4. cost(n) ≤ 4(n− 1)/n.

Proof. Consider component sizes x1, x2, . . . , xb+1 in a partition of {1, . . . , n}
into b + 1 components. The maximum possible value of

∑
i x2

i occurs when the
sizes are n− b, 1, 1, . . . , 1, so we always have

∑
i x2

i ≤ (n− b)2 + b. So∑
i<j

xixj = 1
2 (n2 −

∑
i

x2
i)

≥ 1
2 (n2 − (n− b)2 − b)

= b(n− 1
2 (b + 1))

≥ bn
2

the final equality because b + 1 ≤ n. We want to check that the inequalities (6)
hold for

F (Π) := c(#Π− 1)

and this reduces to checking

cb ≤ c2

2
bn
2 for all b.

This is true for c = 4/n, and so by Theorem 3(c)

cost(n) ≤ F ([11 . . . 11]) = 4(n− 1)/n.

In fact, we can take any F (Π) satisfying (2), then by considering the smallest
c such that cF satisfies (6), Theorem 3(c) implies

6

Corollary 5.

cost(n) ≤ F ([11 . . . 11])×max
Π

F (Π)∑
i<j Xi(Π)Xj(Π) (F (Π)−F (Πi,j))2

2

.

[[Note(david): I assume we can do better with another choice of
F , such as

∑
i 1/Xi(Π).]]

2.3 A limit PDE

In section 2.1 n was fixed, and we represented a partition Π of {1, . . . , n} via
its component sizes (X1, . . . , X#Π). To study the optimal algorithm as n varies
we use a different representation. Associate a partition Π with the vector y =
(y1, y2, . . .) where

yi = i
n#{j : #Xj = i} = proportion of elements in size-i components.

Note that the set Dn of possible such vectors y is a subset of the infinite dimen-
sional simplex D∞ := {y : yi ≥ 0 ∀i,

∑
i yi ≤ 1}. Translating the definition of

Πi,j , we define yi,j
n as the vector y + n−1((i + j)δi+j − iδi − jδj). Theorem 3

translates to

Fn(y) = n2
∑
i<j

yiyj
(Fn(y)− Fn(yi,j))2

2
+
∑

i

(
nyi

2

)
(Fn(y)− Fn(yi,i))2

2
; y ∈ Dn.

This suggests formulating the intuitively corresponding n → ∞ limit equation
for a function G from D∞ to R+:

G(y) =
∑

i

∑
j

1
4 ijyiyjG

2
ij(y), y ∈ D∞ (9)

where Gij denotes partial derivative. If we impose boundary conditions analo-
gous to (2):

(i + j)Gi+j − iGi − jGj < 0; G(0, 0, 0, . . .) = 0

then it is natural to conjecture that (9) has a unique solution G(y), that
limn Fn(y) = G(y) and therefore limn cost(n) = G(1, 0, 0, . . .).

[[Note(david): A first step in proving the above would be to prove
the following claim. At first I thought some simple coupling argument
would work, but it now seems more difficult . . .]]

Claim: Let yn, zn ∈ Dn be such that

lim
n

yn
i = lim

n
zn
i ∀i.

Then limn(Fn(zn)− Fn(yn)) = 0.

7

3 Lower bounds

3.1 A classical selection problem

The discrete version of Proposition 6 is due to Moser [6]: see [3] for history and
connection to the better known secretary problem. The continuous version is
(at least) folklore [[Note(david): which means I’m too lazy to look for
references . . .]]

Proposition 6. [Discrete version]. Over all online algorithms for selecting
exactly one item I from n items with i.i.d. U(0, 1) weights Wi, let C0(n) be the
minimum value of the expected weight EWI . Then C0(n) ∼ 2/n as n →∞.
[Continuous version]. Consider a Poisson process of points (t, x(t)) with
density n on [0, 1] × R+. Over all online algorithms for selecting exactly one
point (T, x(T)), let C∗

0 (n) be the minimum value of the expected weight Ex(T).
Then C∗

0 (n) = 2/n.

Proof. [Discrete version]. The key idea is that it is easy to describe the optimal
algorithm in terms of its expected cost. If we reject the first offer we are faced
with the same problem with one less random variable, so the expected cost
on rejection is C0(n − 1). If we accept the first offer we have no further cost
afterwards, so the threshold for accepting the first offer is C0(n− 1). This gives
a recursion

C0(n) =
C0(n− 1)2

2
+ (1− C0(n− 1))C0(n− 1) = C0(n− 1)− C0(n− 1)2

2
,

which determines the sequence. One can transform it into the equivalent recur-
sion 1

C0(n) = 1
C0(n−1) + 1

2−C0(n−1) , and it easily follows that C0(n) ∼ 2/n.

[Continuous version]. By the scaling property for this Poisson process, C∗
0 (n) =

n−1C∗
0 (1), so we may take take n = 1. Define h(t) to be the minimum expected

value in the problem restricted to time [t, 1]. As in the discrete case, the optimal
algorithm is of the form

select the point (t, x) with smallest t subject to x ≤ h(t).

The time T of selection has

G(t) := P(T > t) = exp(−
∫ t

0

h(s) ds)

and so from the definition of h(t)

h(t) =
∫ 1

t

1
2h(s)× P(T ∈ ds|T > t) =

∫ 1

t

1
2h(s)× h(s)G(s)

G(t) ds.

Since G′/G = −h we find

−G′(t)
G(t) = h(t) =

∫ 1

t

1
2 (G′(s)

G(s))2 × G(s)
G(t) ds.

8

This reduces to G′(t) = − 1
2

∫ 1

t
(G′(s))2

G(s) ds and then to G′′ = (G′)2

2G . The boundary
conditions G(0) = 1, G(1) = 0 determine the solution G(t) = (1 − t)2. This
gives h(t) = 2/(1− t) and then

C∗
0 (1) = h(0) =

∫ 1

0

1
2h2(s)G(s) ds =

∫ 1

0

1
2

4
(1−s)2 (1− s)2 ds = 2.

[[Note(david): The continuous proof above can be shortened by
noting that, by scaling, h must be of the form γ/(1− t). But one still
needs a calculation to find γ.]]

Let us also record the much simpler result where the constraint is on the
mean number of items selected. For the rest of section 3 we treat the combina-
torial model; the Poisson model is similar but simpler.

Lemma 7. Fix n and a real a ∈ [0, n]. Consider algorithms for selecting a
(possibly empty) subset S from n items with i.i.d. U(0, 1) weights Wi, with con-
straint E|S| ≥ a. Let C1(a, n) be the minimal mean cost over all (offline) such
algorithms. Then C1(a, n) = a2

2n , and this is attained by the online algorithm
“choose all items with Wi < a

n”.

Proof. [[Note(david): Simpler than Cauchy-Schartz?]] Clearly the stated
online algorithm satisfies the constraint and has mean cost a2

2n . Consider some
offline algorithm, and let ν(·) =

∑
i P(i ∈ S, Wi ∈ ·). Then ν has total mass

≥ a, and ν(·) ≤ nΛ(·) for the U(0, 1) law Λ; subject to these constraints on a
measure ν, the associated mean cost

∫
xν(dx) is clearly minimized when ν(·) =

nΛ(· ∩ [0, a/n]), as for the online algorithm.

3.2 A quick lower bound

This is a digression to give a simple argument showing that the online case is
different from the offline case.

Proposition 8.

lim inf
n→∞

cost(n) ≥ 5
4

> ζ(3) = 1.202 . . .

Proof. We divide each edge as two half-edges each of which is attached to one
of the endpoints. Each half-edge has the same weight as the full edge. The only
properties of spanning trees we use are that a spanning tree contains at least
one half-edge attached to each vertex, and 2n− 2 half-edges altogether.

Consider an online algorithm to generate a spanning tree T on Kn. We
separate the half-edges of the tree into sets A,B. The first half-edge attached
to a vertex is put into A, and all later ones are put into B. Note that the first
half-edge attached to a vertex is selected with no knowledge of unseen edges
attached to the vertex, so by Proposition 6 the expected weight of the half-edge

9

in A attached to each i is at least C0(n − 1) = (2 + o(1))/n. Thus W (A) (:=
the sum of weights of half-edges in A) satisfies EW (A) ≥ 2 + o(1).

For the half-edges in B we only use the fact that |B| = n − 2, so W (B) ≥
W (B′), where B′ contains the n − 2 lightest half-edges in the graph. Now, B′

contains both halves of the lightest b(n− 2)/2c edges in the graph (and another
half-edge if n is odd). Since the k’th lightest edge out of N =

(
n
2

)
has expected

weight k/(1 + N) ≈ 2k/n2, we find that EW (B′) ≥ 1/2 + o(1) (remembering to
count both halves of each edge).

Now, W (T) = 1
2 (W (A) + W (B)), since each edge of T is counted twice in

A,B, so EW (T) > 5/4 + o(1).

3.3 Proof of Theorem 2

Theorem 2, the best numerical lower bound we know, is obtained by combining
the three lemmas stated next.

Definition. Consider algorithms for selecting a subset S from n items with
i.i.d. U(0, 1) weights Wi, with constraints

|S| ≥ 1; E|S| = 2. (10)

Let C2(n) be the minimal mean cost E
∑

i∈S Wi over all online such algorithms.

Lemma 9. lim infn cost(n) ≥ 1
2 lim infn nC2(n).

Lemma 10. 2C2(n) equals the minimum, over 1 = q0 ≥ q1 ≥ . . . ≥ qn−1 ≥
qn = 0, of

n∑
k=1

(qk−1 − qk)2

qk−1
+

1
n−

∑n
k=0 qk

.

Lemma 11. Define γ∗ as the minimum of∫ 1

0

(G′(t))2

G(t)
dt +

1

1−
∫ 1

0
G(t) dt

(11)

over functions G constrained by

G(0) = 1; G(1) = 0; G decreasing, absolutely continuous. (12)

Then γ∗ = 5.47494... is determined by equation (18). Moreover

lim
n

nC2(n) = γ∗/2. (13)

So Theorem 2 holds with limit lower bound γ∗/4. The key idea is that,
instead of trying to analyze directly the finite-n discrete optimization problem
in Lemma 10, we analyze the n →∞ limit continuous optimization problem in
Lemma 11.

10

Proof of Lemma 9. For any spanning tree on Kn+1, the set S of edges at a
uniform random vertex satisfies

|S| ≥ 1; E|S| = 2n
n+1 . (14)

By considering how an online spanning tree algorithm on Kn+1 selects edges at
a uniform random vertex, we see that

cost(n + 1) ≥ 1
2 (n + 1)C∗

2 (n)

where C∗
2 (n) is defined as C2(n) but with constraint (10) replaced by constraint

(14). So
lim inf

n
EXn ≥ 1

2 lim inf
n

nC∗
2 (n).

To relate C∗
2 (n) to C2(n), consider 1 ≤ m < n and set a = 2 − 2m

m+1 = 2
m+1 .

Apply to (Wi, 1 ≤ i ≤ m) the selection procedure attaining C∗
2 (m), and then

use Lemma 7 to choose from (Wi,m+1 ≤ i ≤ n) a minimum-weight set of items
with mean number of items = a. This construction shows

C2(n) ≤ C∗
2 (m) + a2

2(n−m) = C∗
2 (m) + 2

(m+1)2(n−m)

and then choosing m ≈ n− n1/2, say, shows

lim inf
n

nC2(n) ≤ lim inf
n

nC∗
2 (n).

Proof of Lemma 10. Consider an online algorithm. Let T be the index of the
first selected item and let qk = P(T > k) be the probability that the first k
offers are all rejected. This sequence is decreasing from q0 = 1 to qn = 0.
The threshold θk = θk(W1, . . . ,Wk−1) for accepting the k’th offer will have
Eθk1(T ≥ k) = qk−1−qk

qk−1
. Conditional on {T ≥ k}, the expected cost of accepting

item k equals Eθ2
k/2, so in an optimal algorithm θk must be non-random, which

we now assume. [[Note(david): Argument above is correct but hard to
write convincingly]]

On the event {T = k} let ak = ak(W1, . . . ,Wk) be the conditional expected
number of subsequent offers accepted . By Lemma 7 the conditional expected
cost of the subsequent offers is at least a2

k/2(n− k). Thus

E(total cost) ≥
n∑

k=1

(qk−1 − qk)
(

qk−1 − qk

2qk−1
+

E(a2
k|T = k)

2(n− k)

)
and by taking ak non-random we make this an equality.

Any choice of

1 = q0 ≥ q1 ≥ . . . ≥ qn = 0; 0 ≤ ak ≤ n− k, 1 ≤ k ≤ n

11

is feasible, and the constraint E|S| = 2 becomes the constraint
n∑

k=1

(qk−1 − qk)ak = 1. (15)

Thus

C2(n) = min
n∑

k=1

(qk−1 − qk)
(

qk−1 − qk

2qk−1
+

a2
k

2(n− k)

)
minimized over (qk) and (ak) satisfying the constraints above.

Fixing (qk) and optimizing over the ak’s we find ak = β(n− k) for some β.
Note we can then use (15) to calculate

β−1 =
n∑

k=1

(qk−1 − qk)(n− k) = n−
n−1∑
k=0

qk. (16)

We have now shown

2C2(n) = min
1=q0≥q1≥...≥qn=0

n∑
k=1

(qk−1 − qk)
(

qk−1 − qk

qk−1
+ (n− k)β2

)
for β = β(q0, . . . , qn) defined by (16). Note that the sum can be rewritten, using
the first equality in (16), as

β +
n∑

k=1

(qk−1 − qk)2

qk−1

and then the second equality in (16) gives the form stated in Lemma 10.

[[Note(david): To be precise we should check β ≤ 1, needed to
make ak feasible.]]

3.4 Proof of Lemma 11

[[Note(david): This is presented just as an analysis problem, without
the interpretation of T as a random selection time in a continuous
model]]

We treat the optimization problem as a “minimization under constraint”
problem with an equality constraint on

∫ 1

0
G(t) dt. This will lead to a one-

parameter family of solutions, and we will ultimately pick the best one. Thus
we introduce a Lagrange multiplier λ2 and consider the problem: minimize

Λ(G) :=
∫ 1

0

(G′)2

G
dt + λ2

∫ 1

0

G(t) dt

subject to (12). Recall the basic idea of the calculus of variations: introduce
a test function D(t) and note that the minimizing function G must have the
property

d
dεΛ(G + εD) = 0 at ε = 0.

12

In our case this becomes∫ 1

0

(
2G′D′

G
− (G′)2D

G2
+ λ2D

)
dt = 0.

Integrating the first term by parts:∫ 1

0

(
−
(

2G′

G

)′
− (G′)2

G2
+ λ2

)
D dt = 0.

Because this must hold for all test functions D, we get the differential equation

−
(

2G′

G

)′
− (G′)2

G2
+ λ2 = 0.

Introducing
h := −G′/G

we have the differential equation

2h′ = h2 − λ2. (17)

The boundary conditions (12) imply

Gλ(t) = exp
(
−
∫ t

0

hλ(s) ds

)
where hλ(t) →∞ as t ↑ 1.

The latter constraint on h(t) →∞ fixes the particular solution of (17)

hλ(t) = λ

(
2

1− eλ(t−1)
− 1
)

=
λ

tanh(λ(t− 1))
.

Returning to the statement of Lemma 11, the function G attaining γ∗ must
minimize

∫ 1

0
(G′)2

G dt for its given value of
∫ 1

0
G(t) dt, and so by the theory of

Lagrange multipliers must be Gλ for some λ. That is,

γ∗ = min
0<λ<∞

(∫ 1

0

(G′
λ(t))2

Gλ(t)
dt +

1

1−
∫ 1

0
Gλ(t) dt

)
.

Dropping the subscript λ, observe that because

d
dt log(e−λ(t−1) − 1) =

−λe−λ(t−1)

e−λ(t−1) − 1
=

−λ

1− eλ(t−1)

we can integrate h to get∫ t

0

h(u) du = −2 log
(

e−λ(t−1) − 1
eλ − 1

)
− λt.

13

So

G(t) = exp
(
−
∫ t

0

h(s) ds

)
=
(

e−λ(t−1) − 1
eλ − 1

)2

eλt.

Because G′/G = −h and G′ = −hG we have

(G′)2/G = h2G.

Writing

h = λ
1 + eλ(t−1)

1− eλ(t−1)
= λ

e−λ(t−1) + 1
e−λ(t−1) − 1

we find

h2G =
λ2

(eλ − 1)2
eλt(e−λ(t−1) + 1)2.

So it is elementary to calculate∫ 1

0

h2(t)G(t) dt =
λ2

(eλ − 1)2

∫ 1

0

eλt(e−λ(t−1) + 1)2 dt

=
λ2

(eλ − 1)2

(
e2λ − 1

λ
+ 2eλ

)
= a(λ), say.

Similarly ∫ 1

0

G(t) dt =
1

(eλ − 1)2

∫ 1

0

eλt(e−λ(t−1) − 1)2 dt

=
1

(eλ − 1)2

(
e2λ − 1

λ
− 2eλ

)
= b(λ), say.

Thus
γ∗ = min

λ
Q(λ) where Q(λ) := a(λ) + 1/(1− b(λ)). (18)

Numerically, Q(λ) is remarkably close to constant over 0 < λ < 2. It turns out
[[Note(david): can one of you supply the algebra?]] that d

dλQ(λ) factors
nicely and Q takes its minimal value at λ∗ = 1.45 . . . defined as the positive
solution of (λ− 2)e2λ + 2eλ + λ = 0. Then γ∗ = Q(λ∗) = 5.47494.

Finally, let us just outline the convergence result (13). We can rephrase
Lemma 10 as saying that 2nC2(n) is the minimum of

1
n

n∑
k=1

(n(qk−1 − qk))2

qk−1
+

1
1− 1

n

∑n
k=0 qk

. (19)

Given G∗ attaining γ∗, set qk = G∗(k/n) and check that the quantity in (19)
converges to γ∗: this shows

lim inf
n

2nC2(n) ≤ γ∗.

14

Conversely, take Gn to be the function that linearly interpolates the points
(k

n , qk) for the (qk) attaining the minimum in (19), and pass to a subsequence
of n through which lim supn 2nC2(n) is attained and Gn(t) converges pointwise
to some limit G(t). Check that

lim sup
n

2nC2(n) ≥
∫ 1

0

(G′(t))2

G(t)
dt +

1

1−
∫ 1

0
G(t) dt

≥ γ∗.

3.5 xxx

[[Note(david): This is all comments for co-authors!]]
Our methodology suggests an alternative approach to the result of [4]. I

haven’t tried to do the calculation but one of you might like to try!
Setup; We are given one realization 0 < ξ1

1 < ξ1
2 < ξ1

3 , . . . of a rate-1 Poisson
process of weights of items; we have to choose some number N1 ≥ 0 of these
items. We are then given another realization 0 < ξ2

1 < ξ2
2 < ξ2

3 , . . . of a rate-1
Poisson process of weights of items; we have to choose some number N2 ≥ 0 of
these items. Our constraint is that N := N1 + N2 must satisfy

N ≥ 1; EN = 2.

Let C4 be the minimal expectation of sum of weights of items picked. Then
C4/2 is a lower bound (different from theirs) for the problem in [4].

Question: is C4 > ζ(3)?

15

4 Equivalence of the two models

Write costPois(n) and costcomb(n) for the optimal mean costs under the two
models. We would like to show (as a separate issue from existence of a limit)
that costPois(n) − costcomb(n) → 0. Below we give an argument (xxx a few
details missing) for one half:

Proposition 12. costcomb(n) ≤ costPois(n) + o(1).

[[Note(david): Not so easy to prove as one might think. I haven’t
tried to think about the opposite half.]]

In the first part of the argument (Proposition 13) we show that in the combi-
natorial model we can mimic the optimal Poisson-model algorithm in choosing
the first (1 − δ)n edges. In the second part (section 4.3)) we analyze a simple
algorithm to complete the spanning tree.

[[Note(david): In the Poisson model, time decreases from 1 to
0. In the combinatorial model, items are presented in usual order
1, 2, . . . ,

(
n
2

)
. This is a bit awkward to remember]]

xxx notation “cost” below.

Proposition 13. Fix t and take m(n) ∼ (1−t)
(
n
2

)
. There is an online algorithm

which produces, from the first m(n) edges offered in the combinatorial model, a
forest with edge-set Fm(n) such that

Ecost(Fm(n)) ≤ (1− 2t)−1costPois(n) (20)
E#Fm(n) ≥ (1− o(1))n. (21)

[[Note(david): The proof doesn’t use the explicit structure of the
optimal algorithm in the Poisson model.]]

4.1 A construction scheme

In order to apply results for the Poisson model to the combinatorial model
we need a scheme by which, given the combinatorial model as input, one can
synthesize the Poisson model. Here is the scheme we will use. Fix n and (small)
b = b(n) > 0. Take (Ui, 1 ≤ i ≤

(
n
2

)
) i.i.d. U(0, 1) and take (e′i, 1 ≤ i ≤

(
n
2

)
) as

a uniform random ordering of the edges of Kn. Independently take (e′′i , 1 ≤ i ≤(
n
2

)
) to be i.i.d. uniform on the edges of Kn. Define (ei, 1 ≤ i ≤

(
n
2

)
) as follows.

We use an accompanying process Ei of edge-sets, with E0 empty.
if Ui > b then set ei = e′′i and Ei = Ei−1

if Ui ≤ b then with probability 1−#Ei−1/
(
n
2

)
set ei = e′i and Ei = Ei−1∪{ei},

and for each e∗ ∈ Ei−1 with probability 1/
(
n
2

)
set ei = e∗ and Ei = Ei−1.

This construction makes (Ui, ei) be i.i.d. uniform on (0, 1)×{edges of Kn},
and

Ei = {ej : 1 ≤ j ≤ i, ej = e′j and Uj ≤ b}.

We record some other properties needed later.

16

Lemma 14. (a) If nb(n) ↑ ∞ sufficiently slowly then

E#{1 ≤ j ≤
(

n

2

)
: Uj ≤ b(n) and j 6∈ E(n

2)} = o(n).

(b) Fix 1 ≤ m <
(
n
2

)
. Conditionally on ((ei, Ui), 1 ≤ i ≤ m), the distribution of

(e′j ,m < j ≤
(
n
2

)
) is as sampling without replacement from {edges of Kn} \ Em.

Proof. An elementary calculation shows E#Em =
(
n
2

) (
1− (1− b/

(
n
2

)
)m
)

and
so

if b(n) → 0 then E#E(n
2) ∼ b(n)

(
n

2

)
.

But E#{1 ≤ j ≤
(
n
2

)
: Uj ≤ b(n)} = b(n)

(
n
2

)
and so

if b(n) → 0 then E#{1 ≤ j ≤
(

n

2

)
: Uj ≤ b(n) and j 6∈ E(n

2)} = o

(
b(n)

(
n

2

))
and (a) follows (xxx by general abstract nonsense).

xxx and (b) is intuitively obvious, but needs explanation because it’s key to
later analysis.

Now introduce a rate -
(
n
2

)
Poisson process of times 1 > τ1 > τ2 > τ3 . . . >

τ(n
2) ≈ 0. Then the process (formally, a weighted point process) which at time

τj offers edge ej with weight Uj can be modified to become the process in the
Poisson model, as follows:

if τ(n
2) < 0 delete the points with τj < 0;

if τ(n
2) > 0 add extra points following the Poisson model with time-weight density(

n
2

)
on [τ(n

2), 0]× (0, 1];

add further points according to the Poisson model with time-weight density
(
n
2

)
on [1, 0]× (1,∞).

Given an online spanning tree algorithm A for the Poisson model, we can now
define an algorithm A′ for the combinatorial model (e′i, Ui, 1 ≤ i ≤

(
n
2

)
) which

at step m has produced a forest (represented by its edge-set) Fm, as follows.
Synthesize the Poisson model as above, apply algorithm A, and say that A′

accepts edge em if A accepts edge em and em ∈ Em. In this case em = e′m and
so Fm ⊆ {e′1, . . . , e′m}.

Lemma 15. Fix t > 0. Let A be an online spanning tree algorithm for the
Poisson model, with mean cost c(n) such that supn c(n) < ∞, and such that A
only accepts points in the time interval [1, 1 − 2t]. Take nb(n) ↑ ∞ sufficiently
slowly and let A′ be the algorithm for the combinatorial model described above
and Fm the forest of accepted edges. Then for m(n) ∼ (1− t)

(
n
2

)
,

Ecost(Fm(n)) ≤ c(n) (22)
E#Fm(n) ≥ n− o(n). (23)

17

Proof. Every edge accepted by A′ is accepted by A, with the same weight, so
(22) is immediate.

Ignoring an event of exponentially small probability (which makes negligible
contribution to (23)) we may assume the time τm(n) is between 2t and 0. The
difference q(n, t0)− E#Fm(n) is upper bounded by the mean number of j such
that either
(a) ej is accepted by A and Uj > b(n); or
(b) Uj ≤ b(n) and j 6∈ Ej .

Now Lemma 14 says that the mean number in (b) is o(n), and Markov’s in-
equality says the mean number in (a) is ≤ c(n)/b(n) = o(n).

Proof of Proposition 13. By Poisson scaling, the optimal algorithm in the Pois-
son model can be used to define an algorithm A which only accepts points in
the time interval [1, 1− 2t] and which has mean cost (1− 2t)−1cost(n). Apply
Lemma 15 to this A.

4.2 Technical lemmas

Before continuing to the proof of Proposition 12 we give two technical lemmas
which will be needed.

Lemma 16. Suppose there exists an algorithm A in the combinatorial model
that produces a random forest F such that, for Ωn := {F is a spanning tree },
we have 1− P(Ωn) = o(n−1). Then costPois(n) ≤ Ecost(F)1(Ωn) + o(1).

Proof. On event Ωc
n there is some first time m such that the current offered edge

would connect two components but no remaining unseen edges connect these
components, and such that A refuses this edge. Modify A by accepting this
edge and then greedily accept every future edge connecting two components.
The cost (conditional on Ωc

n) of this modification is O(n), and the modified
algorithm produces a spanning tree.

Next is a variation of the classical selection problem (Proposition 6) where a
random number of items will be offered. In this context we just need the correct
order of magnitude, not the optimal constant.

Lemma 17. In each of r(n) steps 1 ≤ i ≤ r(n) we are offered, with probability
≥ p(n), an item at cost Ui, for i.i.d. U(0, 1) costs. Consider the algorithm:
choose the first offered item i, if any, with 1 ≤ i ≤ r(n) − bn4/3c and Ui ≤
γ(i) := 4

p(n)(r(n)−i) . Suppose r(n) ∼ εn2 and p(n) ∼ 1/n. Then with probability
o(n−2) the algorithm selects no item and otherwise selects exactly one item at
some time T such that Eγ(T) ≤ n−1(6

ε + o(1)).

Proof. w.l.o.g. the probability = p(n). Check (xxx details omitted) that

P(T > j) ≈
(

r(n)−j
r(n)

)4

and calculate Eγ(T).

18

4.3 Proof of Proposition 12

[[Note(david): This is still rather sketchy, due to lack of time]]
Recall the conclusion of Proposition 13. We have m(n) ∼ (1− t)

(
n
2

)
, and we

have an edge-set Fm(n) which defines a partition Πm(n) with o(n) components.
We condition on Πm(n) = Π∗ with k(n) = o(n) components. By Lemma 14(b)
the remaining edges (e′j ,m(n) < j ≤

(
n
2

)
) which will be offered to the algorithm

are distributed as
(
n
2

)
−m(n) samples without replacement from {edges of Kn}\

Fm(n). [[Note(david): Please check you believe this!]]
To prove Proposition 12 we will use an algorithm, over time m(n) < j ≤

(
n
2

)
producing a partition Πj and filtration Gj , of the “threshold” format. There are
constants γj . The edge ej+1 offered at time j + 1 with weight Uj+1 is accepted
if Uj+1 ≤ γj+1 and ej+1 connects two components of Πj .

Lemma 18. For any such threshold algorithm, and any edge e connecting two
components of Πj,

P(e offered at step j + 1|Gj) ≥ 1/

(
n

2

)
.

Proof. (xxx outline). Imagine first seeing Uj+1; if Uj+1 > γj+1 we move on
without looking at ej+1; otherwise we look at ej+1 and either accept it or add
it to a stack Hj+1 of “seen but unused” edges. Then the conditional probability
in question equals 1/ (number of unseen edges) and

(number of unseen edges) =
(

n

2

)
−#Fj −#Hj ≤

(
n

2

)
.

The algorithm we use over time m(n) < j ≤
(
n
2

)
has two stages. The first

stage lasts as long as the maximal component size is ≤ n/2, which implies
that the number of edges between components is at least n2/4. Apply the
algorithm in the format above with threshold γj = 1/n. Then by Lemma 18,
the conditional probability of some edge linking two components being offered
is at least 1/2, so the chance of such an edge being offered and accepted is at
least 1/(2n). Since there are k(n) = o(n) components to connect, this stage
takes o(n2) steps, outside an exponentially rare event. The latter event is taken
care of by Lemma 16. The cost of this stage is o(1). So we may assume that
at some time m′(n) ∼ (1 − t)

(
n
2

)
the algorithm has produced a forest with

o(n) components, with one “giant component” having size > n/2, at total cost
≤ (1− 2t)−1costPois(n) + o(1).

[[Note(david): Heuristically, for the second stage we just connect
small components to the giant component. But there’s a technical
problem. To bound conditional probabilities at each step we need
something like Lemma 18. But Lemma 18 just isn’t true for a general
online algorithm (it could code non-acceptence of some offered edge
in some weird way). No doubt one could prove a version of Lemma 18

19

for the heuristic scheme. Instead I give an indirect way of using the
existing Lemma 18.]]

For the second stage, set γ(j) = 4
1
n ((n

2)−j)
for m′(n) < j ≤

(
n
2

)
and consider

the associated threshold algorithm. Let (Tu) be the times of accepted edges;
note the cost is at most

∑
u γ(Tu). We need to specify a labeling scheme. At

“original” time m′(n) label components u = 1, 2, . . . in (say) increasing order
of size. Then we can define Tu as the first time that the component containing
the original component u is merged with a component containing some higher-
labeled original component. This scheme gives each Tu a different label u.

A time Tu might be a time when two small components merge, but we
can compare as follows with times involving the giant component. From each
original component u pick a vertex vu. Define T ∗u as the first time j, if any,
that an edge ej between vu and the original giant component is offered with
Uj ≤ γ(j). Clearly Tu ≤ T ∗u .

Because we are using a threshold algorithm, the conclusion of Lemma 18
holds, and now we can use Lemma 17 to bound ET ∗u . That is, the hypotheses of
Lemma 17 hold for “edges between vu and the original giant component” with
p(n) = 1/n and r(n) =

(
n
2

)
−m′(n) giving ε = t/2; and our γj corresponds (xxx

say better) to γi. The conclusion of Lemma 17 is that Tu exists outside an event
of probability o(n−2) and that Eγ(T ∗u) ≤ n−1(12

t + o(1)). Because the number
of components at time m′(n) is o(n), we see that the threshold algorithm does
produce a spanning tree (outside an event of probability o(n−1)) and that the
mean cost of the second stage is o(1). So the total cost of the algorithm is still
≤ (1− 2t)−1costPois(n) + o(1). Now Proposition 12 follows from Lemma 16.

20

References

[1] D.J. Aldous. Deterministic and stochastic models for coalescence (aggrega-
tion and coagulation): a review of the mean-field theory for probabilists.
Bernoulli, 5:3–48, 1999.

[2] D.J. Aldous and J.M. Steele. The objective method: Probabilistic com-
binatorial optimization and local weak convergence. In H. Kesten, editor,
Probability on Discrete Structures, volume 110 of Encyclopaedia of Mathe-
matical Sciences, pages 1–72. Springer-Verlag, 2003.

[3] T. S. Ferguson. Who solved the secretary problem? Statist. Sci., 4(3):282–
296, 1989.

[4] A. D. Flaxman, A. Frieze, and M. Krivelevich. On the random 2-stage
minimum spanning tree. Random Structures Algorithms, 28(1):24–36, 2006.

[5] A.M. Frieze. On the value of a random minimum spanning tree problem.
Discrete Appl. Math., 10:47–56, 1985.

[6] L. Moser. On a problem of Cayley. Scripta Math., 22:289–292, 1956.

[7] J.R. Norris. Smoluchowski’s coagulation equation: Uniqueness, non-
uniqueness and a hydrodynamic limit for the stochastic coalescent. Ann.
Appl. Probab., 9:78–109, 1999.

[8] J. Remy, A. Souza, and A. Steger. On an online spanning tree problem in
randomly weighted graphs. Combin. Probab. Comput., 16(1):127–144, 2007.

21

