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Chapter 1

Introduction (July 20, 1999)

We start in section 1.1 with some “word problems”, intended to provide
some extrinsic motivation for the general field of this book. In section 1.2
we talk about the broad conceptual themes of the book, partly illustrated
by the word problems, and then outline the actual contents and give advice
to readers.

1.1 Word problems

1.1.1 Random knight moves

Imagine a knight on a corner square of an otherwise empty chessboard.
Move the knight by choosing at random from the legal knight-moves. What
is the mean time until the knight first returns to the starting square?

At first sight this looks like a messy problem which will require numerical
calculations. But the knight is moving as random walk on a finite graph
(rather than just some more general Markov chain), and elementary theory
reduces the problem to counting the numer of edges of the graph, giving the
answer of 168 moves. See Chapter 3 yyy.

1.1.2 The white screen problem

Around 1980 I wrote a little Basic program that would display
a random walk on the screen of my home computer. First, a
pixel in the middle of the screen was lit up. Then one of the
four directions N,E,W .S was selected uniformly at random and
the walk proceeded one step in the chosen direction. That new
pixel was lit up on the screen, and the process was repeated

13



14 CHAPTER 1. INTRODUCTION (JULY 20, 1999)

from the new point, etc. For a while, the walk is almost always
quickly visiting pixels it hasn’t visited before, so one sees an
irregular pattern that grows in the center of the screen. After
quite a long while, when the screen is perhaps 95% illuminated,
the growth process will have slowed down tremendously, and the
viewer can safely go read War and Peace without missing any
action. After a minor eternity every cell will have been visited.
Any mathematician will want to know how long, on the average,
it takes until each pixel has been visited. Edited from Wilf [336].

Taking the screen to be m x m pixels, we have a random walk on the
discrete two-dimensional torus ZC%, and the problem asks for the mean cover
time, that is the time to visit every vertex of the graph. Such questions
have been studied for general graphs (see Chapter 6), though ironically this
particular case of the two-dimensional torus is the hardest special graph. It
is known that mean cover time is asymptotically at most 47~ 'm? log? m, and
conjectured this is asymptotically correct (see Chapter 7 yyy). For m = 512
this works out to be about 13 million. Of course, in accordance with Moore’s
Law what took a minor eternity in 1980 takes just a few seconds today.

1.1.3 Universal traversal sequences

Let S(n,d) be the set of all d-regular graphs G with n vertices and with
the edges at each vertex labeled (1,2,...,d). A universal traversal sequence
Q1,72 ...,4y € {1,...,d} is a sequence that satisfies

for each G € S(n,d) and each initial vertex of G the deterministic
walk “at step t choose edge i;” visits every vertex.

What is the shortest length u = u(n, d) of such a sequence?

To get a partial answer, instead of trying to be clever about picking the
sequence, consider what happens if we just choose 41, 1s,... uniformly at
random. Then the walk on a graph G is just simple random walk on G.
Using a result that the mean cover time on a regular graph is O(n?) one
can show (see Chapter 6 yyy) that most sequences of length O(dn?logn)
are universal traversal sequences.

Paradoxically, no explicit example of a universal traversal sequence this
short is known. The argument above fits a general theme that probabilistic
methods can be useful in combinatorics to establish the existence of objects
which are hard to exhibit constructively: numerous examples are in the
monograph by Alon and Spencer [29].
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1.1.4 How long does it take to shuffle a deck of cards?

Repeated random shuffles of a d-card deck may be modeled as a Markov
chain on the space of all d! possible configurations of the deck. Different
physical methods of shuffling correspond to different chains. The model for
the most common method, riffle shuffle, is described carefully in Chapter
9 (xxx section to be written). A mathematically simpler method is top-
to-random, in which the top card is reinserted at one of the d possible
positions, chosen uniformly at random (Chapter 9 section yyy). Giving a
precise mathematical interpretation to the question

how many steps of the chain (corresponding to a specified phys-
ical shuffle) are needed until the distribution of the deck is ap-
proximately uniform (over all d! configurations)?

is quite subtle; we shall formalize different interpretations as different mizing
times, and relations between mixing times are discussed in Chapter 4 for
reversible chains and in Chapter 8 (xxx section to be written) for general
chains. Our favorite formalization is via the variation threshold time 7, and
it turns out that

T~ 3logyd (riffle shuffie) (1.1)
71 ~ dlogd (top-to-random shuffle) .

For the usual deck with d = 52 these suggest 8 and 205 shuffles respectively.

1.1.5 Sampling from high-dimensional distributions: Markov
chain Monte Carlo

Suppose you have a function f : R? — [0,00) with k1= [pa f(z) dz < o0,
where f is given by some explicit but maybe complicated formula. How can
you devise a scheme to sample a random point in R? with the normalized
probability density f(z)/k?

For d = 1 the elementary “inverse distribution function” trick is avail-
able, and for small d simple acceptance/rejection methods are often prac-
tical. For large d the most popular method is some form of Markov chain
Monte Carlo (MCMC) method, and this specific d-dimensional sampling
problem is a prototype problem for MCMC methods. The scheme is to de-
sign a chain to have stationary distribution f(x)/k. A simple such chain is
as follows. From a point x, the next point X; is chosen by a two-step pro-
cedure. First choose Y from some reference distribution (e.g. multivariate
Normal with specified variance, or uniform of a sphere of specified radius)
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on R% then set X1 = x+ Y with probability min(1, f(x +Y)/f(x)) and set
X1 = x with the remaining probability.

Routine theory says that the stationary density is indeed f(x)/k and
that as t — oo the distribution of the chain after ¢ steps converges to this
stationary distribution. So a heuristic algorithm for the sampling problem
is

Choose a starting point, a reference distribution and a number
t of steps, simulate the chain for ¢ steps, and output the state of
the chain after ¢ steps.

To make a rigorous algorithm one needs to know how many steps are needed
to guarantee closeness to stationarity; this is a mizring time question. The
conceptual issues here are discussed in Chapter 11. Despite a huge litera-
ture on methodology and applications of MCMC in many different settings,
rigorous results are rather scarce. A notable exception is in the sampling set-
ting above where log f is a concave function, where there exist complicated
results (outlined in Chapter 11 xxx to be written) proving that a polynomial
(in d) number of steps suffice.

1.1.6 Approximate counting of self-avoiding walks

A self-avoiding walk (SAW) of length [ in the lattice Z? is a walk 0 =
Vo, V1, V2, . . ., v for which the (v;) are distinct and successive pairs (v;, vi11)
are adjacent. Understanding the [ — oo asymptotics of the cardinality ||
of the set S; of SAWSs of length [ (dimension d = 3 is the most interesting
case) is a famous open problem. A conceptual insight is that, for large [,
the problem

find an algorithm which counts |S;| approximately
can be reduced to the problem

find an algorithm which gives an approximately uniform random
sample from Sj.

To explain, note that each walk in S;;1 is a one-step extension of some walk
in S;. So the ratio |Si41|/|Si| equals the mean number of extensions of a
uniform random SAW from S;, which of course can be estimated from the
empirical average of the number of extensions of a large sample of SAWs
from Sj.

Similar schemes work for various other families (5;) of combinatorial sets
of increasing size, provided one has some explicit connection between S; and
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Sii1. As in the previous word problem, one can get an approximately uni-
form random sample by MCMC, i.e. by designing a chain whose stationary
distribution is uniform, and simulating a sufficiently large number of steps
of the chain: in making a rigorous algorithm, the issue again reduces to
bounding the mixing time of the chain. The case of SAWSs is outlined in
Chapter 11 section yyy.

1.1.7 Simulating a uniform random spanning tree

The last two word problems hinted at large classes of algorithmic problems;
here is a different, more specific problem. A finite connected graph G has a
finite number of spanning trees, and so it makes sense to consider a uniform
random spanning tree of G. How can one simulate this random tree?

It turns out there is an exact method, which involves running random
walk on G until every vertex v has been visited; then for each v (other than
the initial vertex) let the tree include the edge by which the walk first visited
v. This gives some kind of random spanning tree; it seems non-obvious that
the distribution is uniform, but that is indeed true. See Chapter 8 section

yyy-

1.1.8 Voter model on a finite graph

Consider a graph where each vertex is colored, initially with different colors.
Each vertex from time to time (precisely, at times of independent Poisson
processes of rate 1) picks an adjacent vertex at random and changes its color
to the color of the picked neighbor. Eventually, on a finite graph, all vertices
will have the same color: how long does this take?

This question turns out to be related (via a certain notion of duality) to
the following question. Imagine particles, initially one at each vertex, which
perform continuous-time random walk on the graph, but which coalesce
when they meet. Eventually they will all coalesce into one particle: how
long does this take? On the complete graph on n vertices, the mean time in
each question is ~ n. See Chapter 10 section yyy.

1.1.9 Are you related to your ancestors?

You have two parents, four grandparents and eight great-grandparents. In
other words, for small g > 1

you have exactly 29 g’th-generation ancestors, and you are re-
lated to each of them.
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But what about larger g? Clearly you didn’t have 2'2° ~ 10!? distinct
120’th-generation ancestors! Even taking g = 10, one can argue it’s unlikely
you had 1,024 different 10th-generation ancestors, though the number is
likely only a bit smaller — say 1,000, in round numbers. Whether you are ac-
tually related to these people is a subtle question. At the level of grade-school
genetics, you have 46 chromosomes, each a copy of one parental chromosome,
and hence each a copy of some 10th-generation ancestor’s chromosome. So
you're genetically related to at most 46 of your 10th-generation ancestors.
Taking account of crossover during chromosome duplication leads to a more
interesting model, in which the issue is to estimate hitting probabilities in
a certain continuous-time reversible Markov chain. It turns out (Chapter
13 yyy) that the number of 10th-generation ancestors who are genetically
related to you is about 340. So you're unlikely to be related to a particu-
lar 10th-generation ancestor, a fact which presents a curious sidebar to the
principle of hereditary monarchy.

1.2 So what’s in the book?

1.2.1 Conceptual themes

Classical mathematical probability focuses on time-asymptotics, describing
what happens if some random process runs for ever. In contrast, the word
problems each ask “how long until a chain does something?”, and the focus
of this book is on finite-time behavior. More precisely, the word problems
ask about hitting times, the time until a state or a set of states is first visited,
or until each state in a set is visited; or ask about mizing times, the number
of steps until the distribution is approximately the stationary distribution.
The card-shuffling problems (section 1.1.4) provide a very intuitive setting
for such questions; how many shuffles are needed, as a function of the size
of the deck, until the deck is well shuffled? Such size-asymptotic results, of
which (1.1) is perhaps the best-known, are one of the themes of this book.
Thus in one sense our work is in the spirit of the birthday and coupon-
collector’s problems in undergraduate probability; in another sense our goals
are reminiscent of those of computational complezity (P Z NP and all that),
which seeks to relate the time required to solve an algorithmic problem to
the size of the problem.
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1.2.2 Prerequisites

The reader who has taken a first-year graduate course in mathematical prob-
ability will have no difficulty with the mathematical content of this book.
Though if the phrase “randomized algorithm” means nothing to you, then
it would be helpful to look at Motwani - Raghavan [265] to get some feeling
for the algorithmic viewpoint.

We have tried to keep much of the book accessible to readers whose math-
ematical background emphasizes discrete math and algorithms rather than
analysis and probability. The minimal background required is an undergrad-
uate course in probability including classical limit theory for finite Markov
chains. Graduate-level mathematical probability is usually presented within
the framework of measure theory, which (with some justification) is often
regarded as irrelevant “general abstract nonsense” by those interested in
concrete mathematics. We will point out as we go the pieces of graduate-
level probability that we use (e.g. martingale techniques, Wald’s identity,
weak convergence). Advice: if your research involves probability then you
should at some time see what’s taught in a good first-year-graduate course,
and we strongly recommend Durrett [133] for this purpose.

1.2.3 Contents and alternate reading

Amongst the numerous introductory accounts of Markov chains, Norris [270]
is closest to our style. That book, like the more concise treatment in Dur-
rett [133] Chapter 5, emphasizes probabilistic methods designed to work in
the countable-state setting. Matrix-based methods designed for the finite-
state setting are emphasised by Kemeny - Snell [214] and by Hunter [186].
We start in Chapter 2 by briskly reviewing standard asymptotic theory of
finite-state chains, and go on to a range of small topics less often empha-
sised: obtaining general identities from the reward-renewal theorem, and
useful metrics on distributions, for instance. Chapter 3 starts our system-
atic treatment of reversible chains: their identification as random walks on
weighted graphs, the analogy with electrical networks, the spectral repre-
sentation and its consequences for the structure of hitting time distribu-
tions, the Dirichlet formalism, extremal characterization of eigenvalues and
various mean hitting times. This material has not been brought together
before. Chen [88] gives a somewhat more advanced treatment of some of the
analytic techniques and their applications to infinite particle systems (also
overlapping partly with our Chapters 10 and 11), but without our finite-
time emphasis. Kelly [213] emphasizes stationary distributions of reversible
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stochastic networks, Keilson [212] emphasizes structural properties such as
complete monotonicity, and Doyle - Snell [131] give a delightful elementary
treatment of the electrical network connection. Chapter 4 is the center-
piece of our attempt to create coherent intermediate-level theory. We give a
detailed analysis of different mixing times: the relaxation time (1/spectral
gap), the variation threshold (where variation distance becomes small, uni-
formly in initial state) and the Cheeger time constant (related to weighted
connectivity). We discuss relations between these times and their surpris-
ing connection with mean hitting times; the distinguished paths method for
bounding relaxation time, Cheeger-type inequalities, and how these param-
eters behave under operations on chains (watching only on a subset, taking
product chains). Little of this exists in textbooks, though Chung [93] gives a
more graph-theoretic treatment of Cheeger inequalities and of the advanced
analytic techniques in Chapter 12.

The rather technical Chapter 4 may seem tough going, but the payoff is
that subsequent chapters tend to “branch out” without developing further
theoretical edifices. Chapter 5 gives bare-hands treatments of numerous
examples of random walks on special graphs, and of two classes of chains
with special structure: birth-and-death chains, and random walks on trees.
Chapter 6 treats cover times (times to visit every vertex), which feature in
several of our word problems, and for which a fairly complete theory exists.
Chapter 7 discusses a hierarchy of symmetry conditions for random walks on
graphs and groups, emphasising structural properties. A conspicuous gap is
that we do not discuss how analytic techniques (e.g. group representation
theory, orthogonal polynomials) can be systematically used to derive exact
formulas for ¢-step transition probabilities or hitting time distributions in the
presence of enough symmetry. Diaconis [112] has material on this topic, but
an updated account would be valuable. Chapter 8 returns to not-necessarily
reversible chains, treating topics such as certain optimal stopping times, the
Markov chain tree theorem, and coupling from the past. Chapter 9 xxx.
Chapter 10 describes the coupling method of bounding the variation thresh-
old mixing time, and then discusses several interacting particle systems on
finite graphs related to random walks. As background, Liggett [231] is the
standard reference for interacting particle systems on infinite lattices. Chap-
ter 11 xxx. Chapter 12 recounts work of work of Diaconis and Saloff-Coste,
who bring the techniques of Nash inequalities, log-Sobolev inequalities and
local Poincaré inequalities to bear to obtain sharper estimates for reversible
Markov chains. These techniques were originally developed by analysts in
the study of heat kernels, cf. the sophisticated treatment in Varopoulos
et al [332]. Chapter 13 xxx and mentions topics not treated in detail be-
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cause of mathematical depth or requirements for extraneous mathematical
techniques or the authors’ exhaustion.

As previously mentioned, our purpose is to provide systematic intermediate-
level discussion of reversible Markov chains and random walks on graphs,
built around the central theme of mixing times and hitting times developed
in Chapter 4. Various topics could be tackled in a more bare-hands way; an
opposite approach by Lovasz [237] (N.B. second edition) is to lead the reader
through half a chapter of problems concerning random walk on graphs. Our
approach is to treat random walk on an unweighted graph as a specialization
of reversible chain, which makes it clear where non-trivial graph theory is
being used (basically, not until Chapter 6).

We have not included exercises, though filling in omitted details will
provide ample exercise for a conscientious reader. Of the open problems,
some seem genuinely difficult while others have just not been thought about
before.
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Chapter 2

General Markov Chains
(September 10, 1999)

The setting of this Chapter is a finite-state irreducible Markov chain (X}),
either in discrete time (¢ = 0,1,2,...) or in continuous time (0 < ¢t <
o0). Highlights of the elementary theory of general (i.e. not-necessarily-
reversible) Markov chains are readily available in several dedicated textbooks
and in chapters of numerous texts on introductory probability or stochastic
processes (see the Notes), so we just give a rapid review in sections 2.1 and
2.1.2. Subsequent sections emphasize several specific topics which are useful
for our purposes but not easy to find in any one textbook: using the funda-
mental matrix in mean hitting times and the central limit theorem, metrics
on distributions and submultiplicativity, Matthews’ method for cover times,
and martingale methods.

2.1 Notation and reminders of fundamental re-
sults

We recommend the textbook of Norris [270] for a clear treatment of the
basic theory and a wide selection of applications.

Write I = {i,j,k,...} for a finite state space. Write P = p; ; for the
transition matrix of a discrete-time Markov chain (X; : ¢ = 0,1,2,...).
To avoid trivialities let’s exclude the one-state chain (two-state chains are
useful, because surprisingly often general inequalities are sharp for two-state
chains). The t-step transition probabilities are P(X; = j|Xo = 1) = pz(;),

where P() = PP ... P is the t-fold matrix product. Write P;(-) and E;(-)

23
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for probabilities and expectations for the chain started at state ¢ and time
0. More generally, write P,(-) and E,(-) for probabilities and expectations
for the chain started at time 0 with distribution p. Write

T, =min{t >0: X; =i}
for the first hitting time on state i, and write
T;" =min{t > 1: X; = i}.

Of course Ti+ = T; unless Xy = 4, in which case we call TZ-+ the first return
time to state i. More generally, a subset A of states has first hitting time

Ty =min{t >0: X; € A}.

We shall frequently use without comment “obvious” facts like the fol-
lowing.

Start a chain at state ¢, wait until it first hits j, then wait until
the time (S, say) at which it next hits k. Then E;S = E;T; +
Eka.

The elementary proof sums over the possible values ¢ of Tj. The sophisti-
cated proof appeals to the strong Markov property ([270] section 1.4) of the
stopping time T}, which implies

Ei(S‘Xt,t < T]) = T] + EJTk

Recall that the symbol | is the probabilist’s shorthand for “conditional on”.

2.1.1 Stationary distribution and asymptotics

Now assume the chain is #rreducible. A fundamental result ([270] Theorems
1.7.7 and 1.5.6) is that there exists a unique stationary distribution m = (m; :
i € I), i.e. a unique probability distribution satisfying the balance equations

T = Zmpij for all j. (2.1)
i

One way to prove this existence (liked by probabilists because it extends
easily to the countable state setting) is to turn Lemma 2.6 below into a
definition. That is, fix arbitrary ig, define 7(ig) = 1, and define

7(j) = Ei,(number of visits to j before time T}'), j # io.
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It can then be checked that m; := 7(i)/ >>; 7(j) is a stationary distribution.
The point of stationarity is that, if the initial position Xy of the chain is
random with the stationary distribution =, then the position X; at any
subsequent non-random time ¢ has the same distribution 7, and the process
(Xi,t=0,1,2,...) is then called the stationary chain.

A highlight of elementary theory is that the stationary distribution plays
the main role in asymptotic results, as follows.

Theorem 2.1 (The ergodic theorem: [270] Theorem 1.10.2) Let N;(t)
be the number of visits to state i during times 0,1,...,t — 1. Then for any
initial distribution,

tINi(t) = m; a.s., as t — oco.

Theorem 2.2 (The convergence theorem: [270] Theorem 1.8.3) For
any initial distribution,

P(X;=j) = mj ast — oo, forallj
provided the chain is aperiodic.

Theorem 2.1 is the simplest illustration of the ergodic principle “time aver-
ages equal space averages”. Many general identities for Markov chains can
be regarded as aspects of the ergodic principle — in particular, in section
2.2.1 we use it to derive expressions for mean hitting times. Such identities
are important and useful.

The most classical topic in mathematical probability is time-asymptotics
for i.i.d. (independent, identically distributed) random sequences. A vast
number of results are known, and (broadly speaking) have simple analogs
for Markov chains. Thus the analog of the strong law of large numbers is
Theorem 2.1, and the analog of the central limit theorem is Theorem 2.17
below. As mentioned in Chapter 1 section 2.1 (yyy 7/20/99 version) this
book has a different focus, on results which say something about the behavior
of the chain over some specific finite time, rather than what happens in the
indefinite future.

2.1.2 Continuous-time chains

The theory of continuous-time Markov chains closely parallels that of the
discrete-time chains discussed above. To the reader with background in
algorithms or discrete mathematics, the introduction of continuous time
may at first seem artificial and unnecessary, but it turns out that certain
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results are simpler in continuous time. See Norris [270] Chapters 2 and 3
for details on what follows.

A continuous-time chain is specified by transition rates (¢(i,j) = qij, j #
i) which are required to be non-negative but have no constraint on the sums.
Given the transition rates, define

qi = Z dij (2:2)

Jig#i

and extend (g;;) to a matrix Q by putting ¢;; = —¢;. The chain (X; : 0 <
t < 00) has two equivalent descriptions.
1. Infinitesimal description. Given that X; = ¢, the chance that
Xitaqt = J is g;jdt for each j # 1.
2. Jump-and-hold description. Define a transition matrix J by
Jn’ =0 and
Jij == Gij/qi, J F# i (2.3)

Then the continuous-time chain may be constructed by the two-step proce-
dure
(i) Run a discrete-time chain X with transition matrix J.

(i) Given the sequence of states ig, i1,1%2, ... visited by X7, the durations
spent in states i,, are independent exponential random variables with rates
iy, -

The discrete-time chain X7 is called the jump chain associated with X;.
The results in the previous section go over to continuous-time chains
with the following modifications.

(a) P(X; = j) = QY where Q) := exp(Qt).
(b) The definition of T;" becomes

T;" = minf{t > Tp; : X; = i}

(c) If the chain is irreducible then there exists a unique stationary dis-
tribution 7 characterized by

Zﬂ'iqij =0 for all j
%

(d) In the ergodic theorem we interpret N;(¢) as the total duration of
time spent in state ¢ during [0, ¢]:

t
Nz(t> Z:/O 1(X5=i) ds.
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(e) In the convergence theorem the assumption of aperiodicity is un-
necessary. [This fact is the one of the technical advantages of continuous
time.]

(f) The evolution of P(X; = j) as a function of time is given by the
forwards equations

%p(xt = j) =3 P(X: = i)ay. (2.4)

Given a discrete-time chain X with some transition matrix P, one can
define the continuized chain X to have transition rates qij = DPij, J # 1.
In other words, we replace the deterministic time-1 holds between jumps
by holds with exponential(1) distribution. Many quantities are unchanged
by the passage from the discrete time chain to the continuized chain. In
particular the stationary distribution 7 and mean hitting times FE;T4 are
unchanged. Therefore results stated in continuous time can often be imme-
diately applied in discrete time, and vice versa.

In different parts of the book we shall be working with discrete or contin-
uous time as a current convention, mentioning where appropriate how results
change in the alternate setting. Chapter 4 (yyy section to be written) will
give a survey of the differences between these two settings.

2.2 Identities for mean hitting times and occupa-
tion times

2.2.1 Occupation measures and stopping times

The purpose of this section is to give a systematic “probabilistic” treat-
ment of a collection of general identities by deriving them from a single
result, Proposition 2.3. We work in discrete time, but give the correspond-
ing continuous-time results in section 2.2.3. Intuitively, a stopping time is
a random time which can be specified by some on-line algorithm, together
(perhaps) with external randomization.

Proposition 2.3 Consider the chain started at state i. Let 0 < .S < oo be
a stopping time such that Xg =i and E;S < co. Let j be an arbitrary state.
Then

E;i(number of wisits to j before time S) = m;E;S.

In the phrase “number of ...before time ¢”, our convention is to include
time 0 but exclude time t.
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We shall give two different proofs. The first requires a widely-useful
general theorem in stochastic processes.

Proof. Consider the renewal process whose inter-renewal time is dis-
tributed as S. The reward-renewal theorem (e.g. Ross [299] Thm. 3.6.1)
says that the asymptotic proportion of time spent in state j equals

E;(number of visits to j before time S)/E;S.

But this asymptotic average also equals 7;, by the ergodic theorem. O

We like that proof for philosophical reasons: a good way to think about
general identities is that they show one quantity calculated in two different
ways. Here is an alternative proof of a slightly more general assertion. We
refer to Propositions 2.3 and 2.4 as occupation measure identities.

Proposition 2.4 Let 0 be a probability distribution on I. Let 0 < S < oo
be a stopping time such that Py(Xg € ) = 0(-) and E¢S < co. Let j be an
arbitrary state. Then

Eg(number of visits to j before time S) = m;EgS.

Proof. Write p; = Ep(number of visits to j before time S§). We will show

> pipjk = pi k. (2.5)
J

Then by uniqueness of the stationary distribution, p(:) = en(-) for ¢ =

>k Pk = EpS.
Checking (2.5) is just a matter of careful notation.

pe = Y Pp(Xi=kS>t)
t=0

= Y Py(Xep1 =k, 8 > t) because Py(Xs = k) = Py(Xo = k)
t=0
o

= Y R(Xy=j,5>t X1 =k)
t=0 j
o

= ZZP9(Xt = 4,8 > t) pji by the Markov property
t=0 j

= > Pipjk-
J



2.2. IDENTITIES FOR MEAN HITTING TIMES AND OCCUPATION TIMES29

2.2.2 Mean hitting time and related formulas

The following series of formulas arise from particular choices of j and S in
Proposition 2.3. For ease of later reference, we state them all together before
starting the proofs. Some involve the quantity

Zij = 2 (o) — ) (2.6)

In the periodic case the sum may oscillate, so we use the Cesaro limit or
(equivalently, but more simply) the continuous-time limit (2.9). The matrix
Z is called the fundamental matriz (see Notes for alternate standardizations).
Note that from the definition

> Zij =0 for all i. (2.7)
J

Lemma 2.5 Ein =1/m.
Lemma 2.6
E;(number of visits to j before time T;") = m;/m;.
Lemma 2.7 For j # i,
E;(number of visits to j before time T;) = w;(E;T; + EiT}).
Corollary 2.8 For j # 1,

1
mi( BT + E;T;)

P(T; <T;") =

Lemma 2.9 Fori # 1 and arbitrary j,
E;i(number of wvisits to j before time T}) = m;(E/T; + ET; — EiTj).

Corollary 2.10 Fori#1 and j # 1,

E{Ti + ET; — ET;

P <T)=—p7 T ET
J J

Lemma 2.11 mE,;T;, = Z;;.

Lemma 2.12 m,E/T; = Z;; — Z;;.
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Corollary 2.13 >, m; E;T; =3, Zj; for each i.

Corollary 2.14 (The random target lemma) 3, 7;E;T; does not de-
pend on i.

Lemma 2.15

E.(number of visits to j before time T;) = %Zii — Zij.
7
Lemmas 2.11 and 2.12, which will be used frequently throughout the book,
will both be referred to as the mean hitting time formula. See the Remark
following the proofs for a two-line heuristic derivation of Lemma 2.12. A
consequence of the mean hitting time formula is that knowing the matrix
Z is equivalent to knowing the matrix (E;Tj), since we can recover Z;; as
mi(ExTy — EiTj).
Proofs. The simplest choice of S in Proposition 2.3 is of course the first
return time TZ-+. With this choice, the Proposition says

E;(number of visits to j before time 7;") = m; E;T;" .

Setting j = i gives 1 = mEiT;r, which is Lemma 2.5, and then the case of
general j gives Lemma 2.6.

Another choice of S is “the first return to i after the first visit to j”.
Then E;S = E;T; + E;T; and the Proposition becomes Lemma 2.7, because
there are no visits to j before time 7}. For the chain started at 7, the number
of visits to 4 (including time 0) before hitting j has geometric distribution,
and so

E;(number of visits to i before time T}) = 1/P;(T; < T.").

So Corollary 2.8 follows from Lemma 2.7 (with ¢ and j interchanged).
Another choice of S is “the first return to ¢ after the first visit to j after
the first visit to {”, where i, j,[ are distinct. The Proposition says

(BT + E/T; + E;T;) = E;(number of visits to j before time 77)

+Ej(number of visits to j before time T;).

Lemma 2.7 gives an expression for the final expectation, and we deduce that
(for distinct i, j,1)

E;(number of visits to j before time 1) = m;(E;T; + E/T; — E;T}).
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This is the assertion of Lemma 2.9, and the identity remains true if j = ¢
(where it becomes Lemma 2.7) or if j = [ (where it reduces to 0 = 0). We
deduce Corollary 2.10 by writing

E;(number of visits to j before time 7;) =

P;(T; < T;)Ej(number of visits to j before time T;)

and using Lemma 2.7 to evaluate the final expectation.
We now get slightly more ingenious. Fix a time tg > 1 and define S as
the time taken by the following 2-stage procedure (for the chain started at
(i) wait time t
(ii) then wait (if necessary) until the chain next hits .
Then the Proposition (with j = i) says
to—1

where p(-) = Pi(Xy, = ) Rearranging,

Z pZZ — i) _FZET
t=0

Letting t9 — oo we have p — 7 by the convergence theorem (strictly,
we should give a separate argument for the periodic case, but it’s simpler
to translate the argument to continuous time where the periodicity issue
doesn’t arise) and we obtain Lemma 2.11.

For Lemma 2.12, where we may take j # 4, we combine the previous
ideas. Again fix ¢y and define S as the time taken by the following 3-stage
procedure (for the chain started at 7).

(i) wait until the chain hits k.

(ii) then wait a further time t.

(iii) then wait (if necessary) until the chain next hits 4.

Applying Proposition 2.3 with this S and with j =i gives

to—1
E;(number of visits to i before time T}) + Z p,(;.) = mi(ETy, + to + E,T5),
t=0

where p(-) = Py(X:, = -). Subtracting the equality of Lemma 2.7 and
rearranging, we get

S ) —m) = m(E,T: - ByTh).
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Letting typ — oo, we have (as above) p — 7, giving
Zyi = mi(ExT; — EyT).

Appealing to Lemma 2.11 we get Lemma 2.12. Corollary 2.13 follows from
Lemma 2.12 by using (2.7).

To prove Lemma 2.15, consider again the argument for (2.8), but now
apply the Proposition with j # ¢. This gives

to—1
Z pg) + E,(number of visits to j before time T;) = m;(tg + E,T;)
t=0

where p(-) = P;j(Xy, = -). Rearranging,

to—1
Z (pg-) — mj) + E,(number of visits to j before time T;) = 7, E,T;.
t=0

Letting tg — oo gives
Zij + Ex(number of visits to j before time T;) = m; E;T;.

Applying Lemma 2.11 gives Lemma 2.15.
Remark. We promised a two-line heuristic derivation of the mean hitting
time formula, and here it is. Write

9] T;-1 (9]
> (1(Xt=j) - ”j) = ]Z (1(Xt=j) - Wj) + ) (1(Xt=j) - Wj) :
t=0 t=0 t=T)

Take E;(-) of each term to get Z;; = —m;E;T; + Z;;. Of course this argu-
ment doesn’t make sense because the sums do not converge. Implicit in our
(honest) proof is a justification of this argument by a limiting procedure.

Example 2.16 Patterns in coin-tossing.
This is a classical example for which Z is easy to calculate. Fix n. Toss

a fair coin repeatedly, and let Xy, X1, Xo,... be the successive overlapping
n-tuples. For example (with n = 4)

tosses H T H H T T
Xo= H T H H

X = T H H T

X9 = H H T T
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So X is a Markov chain on the set I = {H,T}" of n-tuples i = (i1,...,i),
and the stationary distribution = is uniform on I. For 0 < d < n — 1 write
I(i,7,d) for the indicator of the set “pattern j, shifted right by d places,
agrees with pattern ¢ where they overlap”: formally, of the set

Ju = fturd, 1 <u<n-—d.

For example, withn =4, = HHTH and j = HI'HH,
d 01 2 3
I(i,5,d) 0 1 0 1
Then write

n—1
c(i,j) =>_27%(,j,d).
d=0

From the definition of Z, and the fact that Xy and X; are independent for
t>n,
Zij = c(i,j) —n27".

So we can read off many facts about patterns in coin-tossing from the general
results of this section. For instance, the mean hitting time formula ( Lemma
2.11) says E;T; = 2"c(i,i) — n. Note that “time 0” for the chain is the
n’th toss, at which point the chain is in its stationary distribution. So the
mean number of tosses until first seeing pattern i equals 2™¢(7,7). Forn =5
and ¢ = HHTHH, the reader may check this mean number is 38. We leave
the interested reader to explore further — in particular, find three patterns
1,7,k such that

P(pattern i occurs before pattern j) > 1/2

P(pattern j occurs before pattern k) > 1/2
P(pattern k occurs before pattern i) > 1/2.

Further results. One can of course obtain expressions in the spirit of
Lemmas 2.5-2.15 for more complicated quantities. The reader may care to
find expressions for

E; min(Ty, T;)

E;(number of visits to j before time min(7%, 77))
P;(hit j before time min(Tk,T7)).

Warning. Hitting times T4 on subsets will be studied later (e.g. Chapter
3 section 5.3) (yyy 9/2/94 version) in the reversible setting. It is important
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to note that results often do not extend simply from singletons to subsets.
For instance, one might guess that Lemma 2.11 could be extended to
ZaA .
ExTa= =5, Zaa=Y (Pr(Xi € AlXo € A) — w(A)),
m(A) =0

but it is easy to make examples where this is false.

2.2.3 Continuous-time versions

Here we record the continuous-time versions of the results of the previous
section. Write

Zij = /OOO(Pi(Xt =J) —m;)dt (2.9)

This is consistent with (2.6) in that Z is the same for a discrete-time chain
and its continuized chain. Recall from section 2.1.2 the redefinition (b) of
Ti+ in continuous time. In place of “number of visits to ¢” we use “total
duration of time spent in ¢”. With this substitution, Proposition 2.3 and
the other results of the previous section extend to continuous time with only
the following changes, which occur because the mean sojourn time in a state
i is 1/¢; in continuous time, rather than 1 as in discrete time.

Lemma 2.5. EZT;r = qilm_.

Lemma 2.6.

E;(duration of time spent in j before time 7;") = T
qiTi
Corollary 2.8. For j # i,
1

qimi (BT + E;T;)

P(T; < T7) =

2.3 Variances of sums

In discrete time, consider the number N;(t) of visits to state i before time ¢.
(Recall our convention is to count a visit at time 0 but not at time ¢.) For
the stationary chain, we have (trivially)

EﬂNi(t) = tﬂ'i.

It’s not hard to calculate the variance:

t—1t—1

var o N;(t) = Z Z(Pw(Xr =i, X, =1i) —m)

r=0s=0
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(ZQ pu _Tri) _t(l _’/Ti)>

setting u = |s — r|. This leads to the asymptotic result

var . N;(t)
t
The fundamental matrix Z of (2.6) reappears in an apparently different con-
text. Here is the more general result underlying (2.10). Take arbitrary func-
tions f : I — Rand g : I — R and center so that E; f(Xo) := >, mf(i) =0
and Erg(Xo) = 0. Write

_>7Ti(2Zii_1+7Ti)- (2.10)

t—1
sT=Yf(x
s=0

and similarly for SY. Then

t—1t—1
ErS{S7 =323 F(i)9() D D (Pr(Xy = i, X = j) — mimy).
i g r=0s=0

The contribution to the latter double sum from terms r < s equals, putting
u=s-—r,

t—1

mi (¢ =)l — ) ~ tmiZ.
u=0

Collecting the other term and subtracting the twice-counted diagonal leads
to the following result.

E,S/s9
7; t — fI'g ZZf z]g (2.11)

where I' is the symmetric positive-definite matrix
FZ] = 7T1Z1]—|-7TJZ +7Ti77j_7ri6ij- (212)
As often happens, the formulas simplify in continuous time. The asymp-
totic result (2.10) becomes

var IV;(t)
t

and the matrix I' occurring in (2.11) becomes

Fij = WiZij + Wiji‘

Of course these asymptotic variances appear in the central limit theorem
for Markov chains.
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Theorem 2.17 For centered f,
t126! 4 Normal(0, fT'f) as t — oo.

The standard proofs (e.g. [133] p. 378) don’t yield any useful finite-time
results, so we won’t present a proof. We return to this subject in Chapter
4 section 4.1 (yyy 10/11/94 version) in the context of reversible chains. In
that context, getting finite-time bounds on the approximation (2.10) for
variances is not hard, but getting informative finite-time bounds on the
Normal approximation remains quite hard.

Remark. Here’s another way of seeing why asymptotic variances should
relate (via Z) to mean hitting times. Regard N;(t) as counts in a renewal pro-
cess; in the central limit theorem for renewal counts ([133] Exercise 2.4.13)
the variance involves the variance var ;(7;") of the inter-renewal time, and
by (2.22) below this in turn relates to E;T;.

2.4 Two metrics on distributions

A major theme of this book is quantifying the convergence theorem (Theo-
rem 2.2) to give estimates of how close the distribution of a chain is to the
stationary distribution at finite times. Such quantifications require some
explicit choice of “distance” between distributions, and two of the simplest
choices are explained in this section. We illustrate with a trivial

Example 2.18 Rain or shine?

Suppose the true probability of rain tomorrow is 80% whereas we think
the probability is 70%. How far off are we? In other words, what is the
“distance” between m and 6, where

7(rain) = 0.8, m(shine) = 0.2
O(rain) = 0.7, O(shine) = 0.3.

Different notions of distance will give different numerical answers. Our first
notion abstracts the idea that the “additive error” in this example is 0.8 —
0.7=0.1.

2.4.1 Variation distance

Perhaps the simplest notion of distance between probability distributions is
variation distance, defined as

|01 — 62| = IX&}<|91(A) — 02(A)].
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So variation distance is just the maximum additive error one can make, in
using the “wrong” distribution to evaluate the probability of an event. In
example 2.18, variation distance is 0.1. Several equivalent definitions are
provided by

Lemma 2.19 For probability distributions 61,69 on a finite state space I,

%Zwl@—em = 2_(01(3) = 02(0))"

7

= > (61(i) — 62(3))

= 1-— Z min (601 (i), 02(7))
= IES}( |91 (A) - GQ(A)‘
= min P(V; # V)

the minimum taken over random pairs (Vy,Va) such that V,, has distribution
O (m = 1,2). So each of these quantities equals the variation distance
161 — 62]].

Proof. The first three equalities are clear. For the fourth, set B = {i :
01 (Z) > 92(2)} Then

01(A) — 02(A) = > (61(i) — ba(i))

icA

<> (01(i) — 6a(i)
i€ANB

<> (0u(i) — 02(3))
i€B

= > (6:(i) — 6a2(i)) "

)

with equality when A = B. This, and the symmetric form, establish the
fourth equality. In the final equality, the “<” follows from

01(A) — 62(A)[ = [P(Vi € A) = P(Va € A)| < P(Va # W).

And equality is attained by the following joint distribution. Let 6(i) =
min(6;(7), #2(7)) and let

P(Vi =i,Va = i) = 0(d)



38CHAPTER 2. GENERAL MARKOV CHAINS (SEPTEMBER 10, 1999)

: L (01(6) — 0(2))(02(5) — 0(5))
P = = =
== =5, 00F)
(If the denominator is zero, then §; = 62 and the result is trivial.) O
In the context of Markov chains we may use

; LF

di(t) == ||P.(X, =) — 7 ()| (2.13)

as a measure of deviation from stationarity at time ¢, for the chain started
at state ¢. Also define

d(t) == max d;(t) (2.14)

as the worst-case deviation from stationarity. Finally, it is technically con-
venient to introduce also

d(t) = HIZ.?XHPv:(Xt =) = B(Xe =)l (2.15)

In Chapter 4 we discuss, for reversible chains, relations between these “vari-
ation distance” notions and other measures of closeness-to-stationarity, and
discuss parameters 7 measuring “time until d(¢) becomes small” and their
relation to other parameters of the chain. For now, let’s just introduce a
fundamental technical fact, the submultiplicativity property.

Lemma 2.20

(a) d(s+1t) < d(s)d(t), s,t >0 [the submultiplicativity property].
(b) d(s+t) < 2d(s)d(t), s,t >0 .

(c) d(t) < d(t) < 2d(t), t > 0.

(d) d(t) and d(t) decrease as t increases.

Proof. We use the characterization of variation distance as
[|01 — 02| = min P(V} # V), (2.16)

the minimum taken over random pairs (V1, V5 ) such that V;,, has distribution
O (Mm=1,2).
Fix states 1,42 and times s, t, and let Y!, Y? denote the chains started

at i1, ig respectively. By (2.16) we can construct a joint distribution for
(Y, Y2) such that

PYJ #Y2) = |[Py(Xs =) = Py(Xs =)l
d(s).

IN
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Now for each pair (51, j2), we can use (2.16) to construct a joint distribution
for (Y, Y2%) given (Y = j1, Y7 = ja) with the property that

P(Yjyy # Y24Y) = 1Y = j2) = [|1Pjy (Xe = ) — Ppp(Xe = )],

The right side is 0 if j; = jo, and otherwise is at most d(t). So uncondition-
ally -
P(Yi # Vi) < d(s)d(t)

and (2.16) establishes part (a) of the lemma. For part (b), the same argu-
ment (with Y? now being the stationary chain) shows

d(s+1t) < d(s)d(t) (2.17)

so that (b) will follow from the upper bound d(t) < 2d(t) in (c). But this
upper bound is clear from the triangle inequality for variation distance.
And the lower bound in (c) follows from the fact that p — || — p|| is a
convex function, so that averaging over j with respect to 7 in (2.15) can
only decrease distance. Finally, the “decreasing” property for d(t) follows
from (a), and for d(t) follows from (2.17). O

The assertions of this section hold in either discrete or continuous time.
But note that the numerical value of d(t) changes when we switch from a
discrete-time chain to the continuized chain. In particular, for a discrete-
time chain with period ¢ we have d(t) — (¢—1)/q as t — oo (which incidently
implies, taking ¢ = 2, that the factor 2 in Lemma 2.20(b) cannot be reduced)
whereas for the continuized chain d(t) — 0.

One often sees slightly disguised corollaries of the submultiplicativity
property in the literature. The following is a typical one.

Corollary 2.21 Suppose there exists a probability measure u, a real § > 0
and a time t such that
¢ .
pl(j) > Ofij Vi, j.

Then
d(s) < (1—=0)l/t s >0.

Proof. The hypothesis implies d(t) < 1 — 6, by the third equality in Lemma
2.19, and then the conclusion follows by submultiplicativity.

2.4.2 [? distance

Another notion of distance, which is less intuitively natural but often more
mathematically tractable, is L? distance. This is defined with respect to
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some fixed reference probability distribution 7 on I, which for our purposes
will be the stationary distribution of some irreducible chain under consider-
ation (and so m; > 0 Vi). The L? norm of a function f: I — R is

112 = [ mif>(0). (2.18)

We define the L? norm of a signed measure v on I by

Ivlls = W (2.19)

This may look confusing, because a signed measure v and a function f are
in a sense “the same thing”, being determined by values (f(i);i € I) or
(vi;9 € I) which can be chosen arbitrarily. But the measure v can also be
determined by its density function f(i) = v;/m;, and so (2.18) and (2.19)
say that the L? norm of a signed measure is defined to be the L? norm of
its density function.

So [|6 — pu||2 is the “L?” measure of distance between probability dis-
tributions @, u. In particular, the distance between 6 and the reference
distribution 7 is

o 2
"HW'FJZW:JZZ Y

7

In Example 2.18 we find ||6 — 7||2 = 1/4.

Writing 6(t) for the distribution at time ¢ of a chain with stationary
distribution m, it is true (cf. Lemma 2.20(d) for variation distance) that
[|6(t) — 7||2 is decreasing with t. Since there is a more instructive proof in
the reversible case (Chapter 3 Lemma 23) (yyy 9/2/94 version) we won’t
prove the general case (see Notes).

Analogous to the L? norms are the L' norms

£l = > mil £(0)]

V]l = lwil.
%

The Cauchy-Schwarz inequality gives || - |[1 < || - ||]2. Note that in the
definition of ||v||; the reference measure 7w has “cancelled out”. Lemma 2.19
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shows that for probability measures 61,60y the L' distance is the same as
variation distance, up to a factor of 2:

161 — ba]| = 5161 — 62]]1-
As a trivial example in the Markov chain setting, consider

Example 2.22 Take [ = {0,1,...,n — 1}, fix a parameter 0 < a < 1 and
define a transition matriz

1—a

Pij = 0l(j=it1 mod n) + —

In this example the t-step transition probabilities are

t 1-— (lt
pgj) = atl(j:i—i-t mod n) +

n
and the stationary distribution 7 is uniform. We calculate (for arbitrary
j# i)

a(t) = |P.(X; € ) =l = (1 = n V)l

d(t) = [|P(X; € ) = P(Xp € )|l = d’

|1Pi(Xe € ) = mll2 = (n —1)"2a".

2.4.3 Exponential tails of hitting times

The submultiplicative property of d(t) is one instance of a general principle:

because our state space is finite, many quantities which converge
to zero as t — oo must converge exponentially fast, by iterating
over worst-case initial states.

Here’s another instance, tails of hitting time distributions.
Consider the first hitting time T4 on a subset A. Define t% := max; E;TA.
For any initial distribution u, any time s > 0 and any integer m > 1,

Py(Ta>ms|Ta>(m—1)s) = Py(Ta > s) for some dist. ¢
< maxP(T4 > s)
(2

< /s

So by induction on m '
Py(Ta > js) < (th/s)
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implying
Pu(Ta > t) < (¢4 /)] ¢ >0.

In continuous time, a good (asymptotically optimal) choice of s is s = et’,
giving the exponential tail bound

t
sup P, (T4 > t) < exp <— { -
o €tA

J) 0<t< oo (2.20)

A messier bound holds in discrete time, where we have to choose s to be an
integer.

2.5 Distributional identities

It is much harder to get useful information about distributions (rather than
mere expectations). Here are a few general results.

2.5.1 Stationarity consequences

A few useful facts about stationary Markov chains are, to experts, just spe-
cializations of facts about arbitrary (i.e. not-necessarily-Markov) stationary
processes. Here we give a bare-hands proof of one such fact, the relation
between the distribution of return time to a subset A and the distribution
of first hitting time to A from a stationary start. We start in discrete time.

Lemma 2.23 Fort=1,2,...,
Pe(Ta=t—1)=P(T{ =t) = n(A)Pr, (T§ > 1)
where w4 (i) == m;/m(A), i € A.
Proof. The first equality is obvious. Now let (X;) be the chain started with
its stationary distribution 7. Then
P.(T{=t = P
= P

(X1 €A,....X;1 ¢ A, X, € A)

(X1 €A,... . X; 1 ¢A)—PX1¢A,.... X, &A)
(X1 €A, ... X; 1 @A) —P(Xo & A,...,X;1 & A)
= P(Xoe A X\ ¢A,... . Xi_1&A)

(A)Pr,y (T4 > 1),

e

3

establishing the Lemma.
We’ll give two consequences of Lemma 2.23. Summing over t gives
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Corollary 2.24 (Kac’s formula) n(A)E,, T =1

which extends the familiar fact EZTZ-+ = 1/m;. Multiplying the identity of
Lemma 2.23 by t and summing gives

E:Ta+1 = Y tP,(Ta=t—1)
t>1

— (AP, (T > 1)
t>1

= 7(A) 2 gmlm + 1) P, (T = m)

m>1

= ”(QA) (Exs T4 + ey (T1)?) -

Appealing to Kac’s formula and rearranging,

28, T4+ 1

Eq,(TH)? TRlA] (2.21)
2. T 1 1

varg, (TH) = A+ L_ (2.22)

m(A) A (A)

More generally, there is a relation between Ey, (T4 )P and E.(T71)P~L.
In continuous time, the analog of Lemma 2.23 is

Pr(Ta € (t,t+dt) = Q(A, A°)P,, (T4 > t)dt, t >0 (2.23)
where

Q(Av AC) = Z Z qij, PA(]) = ZQU/Q(A7AC)7.] € A
i€A jEAC icA

Integrating over ¢ > 0 gives the analog of Kac’s formula

Q(A, A°)E,, Ta = w(A°). (2.24)

2.5.2 A generating function identity

Transform methods are useful in analyzing special examples, though that
is not the main focus of this book. We record below just the simplest
“transform fact”. We work in discrete time and use generating functions
— the corresponding result in continuous time can be stated using Laplace
transforms.
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Lemma 2.25 Define

=Y Pi(X: =)z = P(T;

t>0 t>0
Then Ej == Gij/ij'

Analysis proof. Conditioning on T} gives

pm ZP _lp]] )

and so

S =3 3 R =l

t>0 1>0t—-1>0

Thus Gj(z) = Fij(2)Gj;(z), and the lemma follows. O
Probability proof. Let ¢ have geometric(z) law P(¢ > t) = 2!, indepen-
dent of the chain. Then

Gij(z) = E;(number of visits to j before time ()
= P;(Tj < ¢) Ej(number of visits to j before time ()
= Fij(2)Gj5(2).

O
Note that, differentiating term by term,

EiTj = {Fy(z)

=1

This and Lemma 2.25 can be used to give an alternative derivation of the
mean hitting time formula, Lemma 2.12.

2.5.3 Distributions and continuization

The distribution at time ¢ of the continuization X of a discrete-time chain X
is most simply viewed as a Poisson mixture of the distributions (Xs). That

is, X, £ X ~, where N; has Poisson(t) distribution independent of X. At
greater length,

5 . = el .
Pi(Xi=j) =3 —P(Xs = ).
s=0 :

This holds because we can construct X from X by replacing the determin-
istic “time 1” holds by random, exponential(1), holds (£;) between jumps,
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and then the number N; of jumps before time ¢ has Poisson(¢) distribution.
Now write S, = > 7 &; for the time of the n’th jump. Then the hitting

time T4 for the continuized chain is related to the hitting time T4 of the
discrete-time chain by Ty = Sp .. Though these two hitting time distribu-
tions are different, their expectations are the same, and their variances are
related in a simple way. To see this, the conditional distribution of Ty given
T4 is the distribution of the sum of T4 independent &’s, so (using the notion
of conditional expectation given a random variable)

E(T4|Ty) = T4, var (T4|T4) = Th.
Thus (for any initial distribution)
ETy = EE(T4|T4) = ET4.
And the conditional variance formula ([133] p. 198)
var Z = E var (Z|Y) + var E(Z|Y)
tells us that
var Ty = Evar (Ta|Ta) + var E(Ta|Tx)
= FETj +var Ty. (2.25)
2.6 Matthews’ method for cover times

Theorem 2.26 below is the only non-classical result in this Chapter. We
make extensive use of this Matthews’ method in Chapter 6 to analyze cover
times for random walks on graphs.

Consider the cover time C' := max; T of the chain, i.e. the time required
to visit every state. How can we bound E;C in terms of the mean hitting
times E;T;7 To appreciate the cleverness of Theorem 2.26 let us first consider
a more routine argument. Write t* := max; ; E;T;. Since F;C is unaffected
by continuization, we may work in continuous time. By (2.20)

Pi(T; > ket*) <e® k=1,2,3,....
By Boole’s inequality, for an n-state chain

Pi(C > ket™) < ne ® k=1,2,3,....
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One can rewrite this successively as

(So)
et*

R(i—log(en)>x> < % 0<z<oo.
e

IN

ne-e’, 0<xz<o0

C
et*

smaller that the exponential(1) distribution, implying E; (g — log(en)) <

In words, this says that the distribution of — log(en) is stochastically

et*
1 and hence

max E;C < (24 logn)et”.
(2

This argument does lead to a bound, but one suspects the factors 2 and e
are artifacts of the proof; also, it seems hard to obtain a lower bound this
way. The following result both “cleans up” the upper bound and gives a
lower bound.

Theorem 2.26 (Matthews [256]) For any n-state Markov chain,

max F,C < hy,_1 max E;T;
v 17.]

min F,C > hy,_1 min E;T;
v i#]

n—1 1

where hyp—1 =31 =-.

Proof. We'll prove the lower bound — the upper bound proof is identi-
cal. Let Ji,Js,...,J, be a uniform random ordering of the states, inde-
pendent of the chain. Define C), := max;<,, T';, to be the time until all of
{J1,J2,...,Jm} have been visited, in some order. The key identity is

E(Cm - m,1|<]1, ey Jm; Xt,t < Cmfl) = t(mel, Jm)l(Lm:Jm) (226)
where (i, j) := E;T; and
L,, is the state amongst {J1, Ja, ..., JJ,} hit last.

To understand what this says, suppose we are told which are the states
{J1,J2,...,Jn} and told the path of the chain up through time C,,_;. Then
we know whether or not L,, = J,,: if not, then C,, = C},_1, and if so, then
the conditional distribution of C,,, — C},_1 is the distribution of the time to
hit J,, from the state at time C},_1, which we are told is state L;,,_1.
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Writing ¢, := min;; t(4, 7), the right side of (2.26) is > t.1(7,,—,.), and
so taking expectations

E(Cp — Cyn1) > tsP(Lun = Jin).

But obviously P(Ly, = J,,) = 1/m by symmetry. So
n n 1
E,C =FE,Ci + Z E,,(C’m — Cm—l) > BE,Cq +t, Z E
m=2 m=2

Allowing for the possibility J; = v we see E,C; > (1 — %)t*, and the lower
bound follows.

2.7 New chains from old

Consider a chain (X;) on state-space I, and fix A C I. There are many dif-
ferent constructions of new chains whose state space is (exactly or roughly)
just A, and it’s important not to confuse them. Three elementary con-
structions are described here. Anticipating the definition of reversible from
Chapter 3, it is easy to check that if the original chain is reversible then
each new chain is reversible.

2.7.1 The chain watched only on A
This is the chain (Y},) defined by

So=Ta=min{t >0: X, € A}

Sp =min{t > S,,_1 : X; € A}
Y, = Xs,.

The chain (Y;,) has state space A and transition matrix

Pa(i,j) = Pi(Xt, = j), i,j € A.

From the ergodic theorem (Theorem 2.1) it is clear that the stationary
distribution w4 of (Y}) is just 7w conditioned on A, that is

wa(i) = mi/m(A), i € A. (2.27)
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2.7.2 The chain restricted to A

This is the chain with state space A and transition matrix P4 defined by

Pa(i,j) = P(i,]), i,j € Ai#
Pa(ii) = 1— Y P(i,j), i€ A
JEAj#i

In general there is little connection between this chain and the original chain
(X:), and in general it is not true that the stationary distribution is given
by (2.27). However, when the original chain is reversible, it is easy to check
that the restricted chain does have the stationary distribution (2.27).

2.7.3 The collapsed chain

This chain has state space I* = AU{a} where a is a new state. We interpret
the new chain as “the original chain with states A€ collapsed to a single
state a”. Warning. In later applications we switch the roles of A and A€,
i.e. we collapse A to a single state a and use the collapsed chain on states
I* = A°U{a}. The collapsed chain has transition matrix

p;k] = DPij, Z7] cA
Pia = Y. Dk i€A
ke Ac
pri = L Z TkPki, 1 € A
- 19
“ W(Ac) ]{?EAC
1
Paa = Z Z TkDkl-
m(A) yAe ieae

The collapsed chain has stationary distribution 7* given by
o =m,i € Ay m, = mw(A°).

Obviously the P-chain started at ¢ and run until T4c is the same as the
P*-chain started at ¢ and run until 7,. This leads to the general collapsing
principle

To prove a result which involves the behavior of the chain only
up to time T'4c, we may assume A€ is a singleton.

For we may apply the singleton result to the P*-chain run until time Ty,
and the same result will hold for the P-chain run until time T 4e.
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It is important to realize that typically (even for reversible chains) all
three constructions give different processes. Loosely, the chain restricted to
A “rebounds off the boundary of A° where the boundary is hit”, the collapsed
chain “exits A¢ at a random place independent of the hitting place”, and
the chain watched only on A “rebounds at a random place dependent on the
hitting place”.

2.8 Miscellaneous methods

2.8.1 Martingale methods

Modern probabilists regard the martingale optional stopping theorem as one
of the most important results in their subject. As propaganda for martin-
gales we give below four quick applications of that theorem, and a few more
will appear later. All of these results could be proved in alternative, ele-
mentary ways. For the reader unfamiliar with martingales, Durrett [133]
Chapter 4 contains much more than you need to know: Karlin and Taylor
[208] Chapter 6 is a gentler introduction.

Lemma 2.27 Given a non-empty subset A C I and a function f(i) defined
for i € A, there exists a unique extension of f to all I satisfying

F@) = _pif(j), i ¢ A
j

Proof. If f satisfies the equations above then for any initial distribution the
process M; := f(Xin,r,)) I8 @ martingale. So by the optional stopping
theorem

f(@) = E;f(Xr,) for all . (2.28)

This establishes uniqueness. Conversely, if we define f by (2.28) then the
desired equations hold by conditioning on the first step.

Corollary 2.28 If h is harmonic, i.e. if

h(i) = 3" pigh(s) for alli
J

then h is constant.

Proof. Clearly a constant function is harmonic. So the Corollary follows
from the uniqueness assertion of Lemma 2.27, taking A to be some singleton.
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Lemma 2.29 (The random target lemma) The sum3_; E;Tjm; does not
depend on 1.

Proof. This repeats Corollary 2.14 with a different argument. The first-step
recurrence for g;(i) := E;T} is

95(1) = Ling) + Liizj) Y vingj (k).
k

By Corollary 2.28 it is enough to show that h(i) := 3=, 7;g;(i) is a harmonic
function. We calculate

h(l) = 1- 5 + Zﬂ'jpikgj(k)l(i;éj)

4.k
= 1-m+ szk(h(k) — m;gi(k)) by definition of h(k)
k
= Zpikh(k) +1—m (1 + Zplkgz(k:)> .
k k

But 1/m = E;T;" =1+ Y, pirgi(k), so h is indeed harmonic.
Lemma 2.30 For any stopping time S and any states i, j, k,
E;(number of transitions j — k starting before time S)
= pjrEi(number of wvisits to j before time S).

Proof. Recall that “before” means strictly before. The assertion of the
lemma is intuitively obvious, because each time the chain visits j it has
chance pj; to make a transition j — k, and one can formalize this as in the
proof of Proposition 2.4. A more sophisticated proof is to observe that M (t)
is a martingale, where

M(t) = Njk(t) — pjkNj(t)-
Nj;(t) :== number of visits to j before time ¢

Nji(t) := number of transitions j — k starting before time ¢ .

And the assertion of the lemma is just the optional stopping theorem applied
to the martingale M and the stopping time S.
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Lemma 2.31 Let A be a non-empty subset of I and let h : I — R satisfy
(i) h(i) >0, i€ A

(ii) (i) > 1+ ¥, pigh(j), i € A°.

Then E;T4 < h(i), i € I.

Proof. For arbitrary h, define g by
h(i) =14 pijh(5) + g(i)
J

and then define
t—1

My =t+h(Xe) + Y g(Xs)
s=0

Then My,in,1,) is @ martingale, so the optional sampling theorem says
E;Mr, = E;My = h(i).

But the hypotheses on h imply Mr, > T4.

2.8.2 A comparison argument

A theme running throughout the book is the idea of getting inequalities for
a “hard” chain by making a comparison with some “easier” chain for which
we can do exact calculations. Here is a simple example.

Lemma 2.32 Let X be a discrete-time chain on states {0,1,2,...,n} such
that p;j = 0 whenever j > i. Write m(i) = i — EXl, and suppose 0 <
m(1) <m(2) <...<m(n). Then E,To <3774 m(g
Proof. The proof implicitly compares the given chain to the continuous-time
chain with ¢; ;—1 = m(). Write h(i) = Z§:1 1/m(j), and extend h by linear
interpolation to real 0 < x < n. Then h is concave and for ¢ > 1

E;h(Xy)

IA
>

E;X,) by concavity

(
(i = m(q))
( )
(

IN
= =

i) —m(i)h'(i) by concavity

i) -1

where b’ is the left derivative. The result now follows from Lemma 2.31.
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2.8.3 Wald equations

As mentioned previously, the results above don’t really require martingales.
Next we record a genuine martingale result, not directly involving Markov
chains but ultimately useful in their analysis. Part (c) is Wald’s equation
and part (b) is Wald’s equation for martingales. The result is a standard
consequence of the optional sampling theorem: see [133] (3.1.6) for (c¢) and
[133] Theorem 4.7.5 for (a).

Lemma 2.33 (a) Let 0 =Yy <Y, <Ys... be such that
E(Yig1 — YilY;,j < i) < e, i >0
for a constant c. Then for any stopping time T,
EYr < cET.

(b) If in the hypothesis we replace “< ¢” by “=c¢”, then EYp = cET.
(c) In particular, if Y, = > 1 & for i.i.d. nonnegative (&) then EYp =
(EG)(ET).

2.9 Notes on Chapter 2.

Textbooks on Markov chains.

It is easy to write books on ... or finite Markov chains, or on any
of the other well-understood topics for which no further exposi-
tions are needed. G.-C. Rota

Your search for the Subject: MARKOV PROCESSES
retrieved 273 records. U.C. Berkeley Library book catalog,
September 1999.

Almost every introductory textbook on stochastic processes has a chapter
or two about Markov chains: among the best are Karlin-Taylor [208, 209],
Grimmett-Stirzaker [177] and, slightly more advanced, Asmussen [34]. In
addition to Norris [270] there are several other undergraduate-level text-
books entirely or mostly devoted to Markov chains: Adke-Manjanuth [1],
Hunter [186], Iosifescu [189], Isaacson-Madsen [191], Kemeny-Snell [214],
Romanovsky [297]. At the graduate level, Durrett [133] has a concise chap-
ter on the modern approach to the basic limit theory. Several more advanced
texts which overlap our material were mentioned in Chapter 1 section 2.3
(yyy 7/20/99 version); other texts are Freedman [154], Anderson [31], and
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the treatize of Syski [318] on hitting times. Most textbooks leave an exag-
gerated impression of the difference between discrete- and continuous-time
chains.

Section 2.1.2. Continuized is an ugly neologism, but no-one has collected
my $5 prize for suggesting a better name!

Section 2.2. Elementary matrix treatments of results like those in section
2.2.2 for finite state space can be found in [186, 214]. On more general spaces,
this is part of recurrent potential theory: see [96, 215] for the countable-state
setting and Revuz [289] for continuous space. Our treatment, somewhat
novel at the textbook level, Pitman [283] studied occupation measure iden-
tities more general than thos in section 2.2.1 and their applications to hitting
time formulas, and we follow his approach in sectionMHTF. We are being
slightly dishonest in treating Lemmas 2.5 and 2.6 this way, because these
facts figure in the “right” proof of the ergodic theorems we use. We made
a special effort not to abbreviate “number of visits to j before time S” as
N;(S), which forces the reader to decode formulas.

Kemeny and Snell [214] call Z + II the fundamental matrix, and use
(EZTj') rather than (E;T}) as the matrix of mean hitting times. Our set-up
seems a little smoother — cf. Meyer [202] who calls Z the group inverse of
I-P.

The name “random target lemma” for Corollary 2.14 was coined by
Lovész and Winkler [241]; the result itself is classical ([214] Theorem 4.4.10).

Open Problem 2.34 Portmanteau theorem for occupation times.

Can the results of section 2.2.2 be formulated as a single theorem? To
explain the goal by analogy, consider the use [194] of Feynman diagrams to
calculate quantities such as E(A3BC?) for dependent mean-zero Gaussian
(A, B,C). One rewrites the expectation as E[[S_; & for & = & = & =
A; &4 = B, & = & = C, and then applies the formula

6
El[&=> v(M)
i—1

M

where the sum is over matchings M = {{uy,v1}, {ug,v2}, {us,vs}} of {1,2,3,4,5,6}
and where

3
V(M) = H E(£Uj§Uj)'

J=1

By analogy, we seek a general rule which associates an expression like

E;(number of visits to j before time min(Ty,T;))
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with a combinatorial structure involving {4, j, k,1}; then associates with
the combinatorial structure some function of variables {py,,zpw, v,w €
{i,J,k,1}}; then shows that the value of the expression applied to a finite
Markov chain equals the function of {7y, Zyy, v,w € {i,j,k,[}}.

Section 2.4.1. Corollary 2.21 and variants are the basis for the theory
of positive-recurrent chains on continuous spaces: see [133] section 5.6 and
Meyn and Tweedie [263].

Section 2.4.2. The fact that ||6(t) — 7||2 is decreasing is a special case
(H(u) = u?) of the following result (e.g. [213] Theorem 1.6).

Lemma 2.35 Let H : [0,00) — [0,00) be concave [convex]. Let 6(t) be
the distribution of an irreducible chain with stationary distribution w. Then
Yo miH (0;(t)/m;) is increasing [decreasing].

Section 2.6. Matthews [256, 257] introduced his method (Theorem 2.26)
to study some highly symmetric walks (cf. Chapter 7) and to study some
continuous-space Brownian motion covering problems.

Section 2.7. A more sophisticated notion is “the chain conditioned never
to hit A”, which can be formalized using Perron-Frobenius theory.

Section 2.8.1. Applying the optional stopping theorem involves checking
side conditions (involving integrability of the martingale or the stopping
time), but these are trivially satisfied in our applications.

Numerical methods. In many applications of non-reversible chains, e.g.
to queueing-type processes, one must resort to numerical computations of
the stationary distribution: see Stewart [314]. We don’t discuss such issues
because in the reversible case we have conceptually simple expressions for
the stationary distribution,

Matriz methods. There is a curious dichotomy between textbooks on
Markov chains which use matrix theory almost everywhere and textbooks
which use matrix theory almost nowhere. Our style is close to the latter;
matrix formalism obscures more than it reveals. For our purposes, the one
piece of matrix theory which is really essential is the spectral decomposition
of reversible transition matrices in Chapter 3. Secondarily useful is the the-
ory surrounding the Perron-Frobenius theorem, quoted for reversible chains
in Chapter 3 section 6.5. (yyy 9/2/94 version)
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yyy move both subsections to Chapter 8 “A Second Look ...”.

2.10 Move to other chapters

2.10.1 Attaining distributions at stopping times

We quote a result, Theorem 2.36, which may look superficially like the
identities in section 2.2.1 but which in fact is deeper, in that it cannot be
proved by mere matrix manipulations or by Proposition 2.3. The result goes
back to Baxter and Chacon [44] (and is implicit in Rost [301]) in the more
general continuous-space setting: a proof tailored to the finite state space
case has recently been given by Lovédsz and Winkler [241].

Given distributions o, i, consider a stopping time 7" such that

Py(X7 € +) = u(-). (2.29)

Clearly, for any state j we have E,T; < E,T + E,Tj, which rearranges to
E,T > E;T; — E,/T;. So if we define

t(o,n) = inf{E,T : T a stopping time satisfying (2.29)}

then we have shown that ¢(o, u) > max;(E,T; — E, ;). Surprisingly, this
inequality turns out to be an equality.

Theorem 2.36 (o, 1) = max;(E,T; — E,Tj).

2.10.2 Differentiating stationary distributions

From the definition (2.6) of the fundamental matrix Z we can write, in
matrix notation,

I-P)Z=ZI-P)=1-TI (2.30)

where IT is the matrix with (7, j)-entry 7;. The matrix I—P is not invertible
but (2.30) expresses Z as a “generalized inverse” of I — P, and one can use
matrix methods to verify general identities in the spirit of section 2.2.1. See
e.g. [186, 214]. Here is a setting where such matrix methods work well.

Lemma 2.37 Suppose P (and hence m and Z) depend on a real parameter
a, and suppose R = %P exists. Then, at o such that P is irreducible,

d
%’/T = 1R7Z.
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Proof. Write n = %ﬂ'. Differentiating the balance equations 7 = 7P gives
17 =nP + 7R, in other words n(I — P) = 7R. Right-multiply by Z to get

TRZ=nI-P)Z=nI-1I)=n—nll

But nII = 0 because Y, 7; = -4 (3, m;) = 0.

da



Chapter 3

Reversible Markov Chains
(September 10, 2002)

Chapter 2 reviewed some aspects of the elementary theory of general fi- 9/10/99 version

nite irreducible Markov chains. In this chapter we specialize to reversible
chains, treating the discrete-time and continuous-time cases in parallel. Af-
ter Section 3.3 we shall assume that we are dealing with reversible chains
without continually repeating this assumption, and shall instead explicitly
say “general” to mean not necessarily reversible.

3.1 Introduction

Recall P denotes the transition matrix and 7 the stationary distribution of
a finite irreducible discrete-time chain (X;). Call the chain reversible if

TiPij = T35Pgi for all Z,j (31)

Equivalently, suppose (for given irreducible P) that 7 is a probability distri-
bution satisfying (3.1). Then 7 is the unique stationary distribution and the
chain is reversible. This is true because (3.1), sometimes called the detailed
balance equations, implies

Zﬂ'ipij = iji =m; for all j
i i

and therefore 7 satisfies the balance equations of (1) in Chapter 2.
The name reversible comes from the following fact. If (X;) is the sta-
tionary chain, that is, if Xy has distribution 7, then

d
(X0, X1,....Xy) = (X4, Xi—1, ..., X0).

o7

9/10/99 version
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The lemma has been copied
here from Section 1.2 of
Chapter 7 (1/31/94 version);
reminder: it still needs to be
deleted there!
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More vividly, given a movie of the chain run forwards and the same movie
run backwards, you cannot tell which is which.
It is elementary that the same symmetry property (3.1) holds for the
t-step transition matrix P?:
¢ ¢
Wipz(;' = ij(‘i)

,

and thence for the matrix Z of (6) in Chapter 2:
TFiZij == ’7Tiji. (32)

But beware that the symmetry property does not work for mean hitting
times: the assertion

WZEZJ} = WjEjfTi
is definitely false in general (see the Notes for one intuitive explanation).

See Chapter 7 for further discussion. The following general lemma will be
useful there.

Lemma 3.1 For an irreducible reversible chain, the following are equiva-
lent.

(a) P{(Xy =1)=Pj(Xy =j), i,jel, t>1

(b)) P,(Tj =t)=P;(T; =t), i,jel, t>1.

Proof. In either case the stationary distribution is uniform—under (a) by
letting ¢ — oo, and under (b) by taking ¢ = 1, implying p;; = pji- So by
reversibility P;(X; = j) = Pj(X; = i) for i # j and ¢t > 1. But recall from
Chapter 2 Lemma 25 that the generating functions

G”(z) = sz(Xt = j)Zj, FZJ<Z) = ZB(Tt = j)z]
t t
satisfy
Fij = Gij/Gjj. (3.3)
For i # j we have seen that G;; = G;;, and hence by (3.3)
Fij = Fji if ij = Gii7

which is the assertion of Lemma 3.1. =
The discussion above extends to continuous time with only notational
changes, e.g., the detailed balance equation (3.1) becomes

miqi; = mjqy; for all 4, . (3.4)



3.1. INTRODUCTION 29

3.1.1 Time-reversals and cat-and-mouse games

For a general chain we can define the time-reversed chain to have transition
matrix P* where
*
TiPij = T5Pj;

so that the chain is reversible iff P* = P. One can check [cf. (3.2)]

WiZij = 7TjZ (3.5)

*
i
The stationary P*-chain is just the stationary P-chain run backwards in
time. Consider Examples 16 and 22 from Chapter 2. In Example 16 (pat-
terns in coin tossing) the time-reversal P* just “shifts left” instead of shift-
ing right, i.e., from HTTTT the possible transitions are to HHTTT and
THTTT. In Example 22 the time-reversal just reverses the direction of
motion around the n-cycle:

pij = alg=i—1) + ! - ¢
Warning. These examples are simple because the stationary distributions
are uniform. If the stationary distribution has no simple form then typically
P* will have no simple form.

A few facts about reversible chains are really specializations of facts
about general chains which involve both P and P*. Here is a simple instance.

Lemma 3.2 (The cyclic tour property) For statesig,i1,...,in of a re-
versible chain,

Eioﬂ1 +E111_1L2++E Z_ZL

imTio = EZOTZm + E’im m—1 + T + E’L EO'

The explanation is that in a general chain we have

Ei Ty + By Ty, + - + B3, Tiy = E;OTim + Ez*mTZ +- Ez*lTL (3.6)

m—1
where E* refers to the time-reversed chain P*. Equality (3.6) is intu-
itively obvious when we visualize running a movie backwards. But a pre-
cise argument requires a little sophistication (see Notes). It is however
straightforward to verify (3.6) using (3.5) and the mean hitting time for-
mula EZ'TJ‘ = (Zj' — Zij)/ﬂ'j.

We shall encounter several results which have amusing interpretations as
cat-and-mouse games. The common feature of these games is that the cat
moves according to a transition matrix P and the mouse moves according
to the time-reversed transition matrix P*.

9/10/99 version
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Cat-and-mouse game 1. Both animals are placed at the same state,
chosen according to the stationary distribution. The mouse makes a jump
according to P*, and then stops. The cat starts moving according to P and
continues until it finds the mouse, after M steps.

The notable feature of this game is the simple formula for EM:

EM =n — 1, where n is the number of states. (3.7)

This is simple once you see the right picture. Consider the stationary P-
chain (Xg, X1, Xa,...). We can specify the game in terms of that chain by
taking the initial state to be X;, and the mouse’s jump to be to Xy, and
the cat’s moves to be to X, X3,.... So M =TT — 1 with

Tt :=min{t > 1: X; = Xo}.

And ETY = ¥, mET = ¥, mit = n.

Cat-and-mouse game 2. This game, and Proposition 3.3, are rephrasings
of results of Coppersmith et al [101]. Think of the cat and the mouse as
pieces in a solitaire board game. The player sees their positions and chooses
which one to move: if the cat is chosen, it makes a move according to P, and
if the mouse is chosen, it makes a move according to P*. Let M denote the
number of moves until the cat and mouse meet. Then one expects the mean
E(4)M to depend on the initial positions (z,y) of (cat, mouse) and on the
player’s strategy. But consider the example of asymmetric random walk on a
n-cycle, with (say) chance 2/3 of moving clockwise and chance 1/3 of moving
counterclockwise. A moment’s thought reveals that the distance (measured
clockwise from cat to mouse) between the animals does not depend on the
player’s strategy, and hence neither does E , M. In general EM does
depend on the strategy, but the following result implies that the size of the
effect of strategy changes can be bounded in terms of a measure of non-
symmetry of the chain.

Proposition 3.3 Regardless of strategy,

Inzin E:T, < Eg )M — (B, T, — E:T,) < m;xxEﬁTz

where hitting times T refer to the P-chain.

Symbol used here is “defined P?"OOf. Consider the functions
identically to be”.

f(z,y) := E,T, — E:T,

[y, x) = BT, — EXT,.
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The first-step recurrences for x — E;Ty and y — EJT, give

flxy) = 14> peaf(zy), y#=x (3.8)
Flyz) = 14 p.f (za), y#u (3.9)
By the mean hitting time formula
o) = 2 = 2
so we may rewrite (3.9) as
flay) =1+ pi.f(x,2), y#u= (3.10)

Now let (Xt, Yt) be the positions of (cat, mouse) after ¢ moves according to
some strategy. Consider

Wi =t + f(X1, V7).
Equalities (3.8) and (3.10) are exactly what is needed to verify
(Wy;0 <t < M) is a martingale.
So the optional stopping theorem says E(, ,\Wo = E(, , W, that is,
F(@,y) = EyyM + By f(Xar, Yar). (3.11)
But Xy, = Yy and —f(z,2) = E;T,, so
min B, T, < —f(Xar, Yar) < max B, T

and the result follows from (3.11). m
Remarks. Symmetry conditions in the reversible setting are discussed
in Chapter 7. Vertex-transitivity forces E;T, to be independent of z, and 1/31/94 version
hence in the present setting implies E(, ,)M = E,T, regardless of strategy.
For a reversible chain without this symmetry condition, consider (zg,yo)
attaining the min and max of E;T.. The Proposition then implies £, T, <
EpoyoyM < Ey,Ty, and the bounds are attained by keeping one animal
fixed. But for general initial states the bounds of the Proposition are not
attained. Indeed, the proof shows that to attain the bounds we need a
strategy which forces the animals to meet at states attaining the extrema
of E;T,. Finally, in the setting of random walk on a n-vertex graph we can
combine Proposition 3.3 with mean hitting time bounds from Chapter 6 to 10/31/94 version
show that EM is at worst O(n?).
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3.1.2 Entrywise ordered transition matrices

Recall from Chapter 2 Section 3 that for a function f : S = Rwith )}, m; f; =
0, the asymptotic variance rate is

t
o*(P, f) := lim t~lvar Y f(X,) = fTf (3.12)

s=1
where I'y; = m;Z;; + 7j Zj; + mym; — m;0;5. These individual-function variance
rates can be compared between chains with the same stationary distribu-
tion, under a very strong “(off-diagonal) entrywise ordering” of reversible
transition matrices.
Lemma 3.4 (Peskun’s Lemma [280]) Let P(Y) and P() be reversible with
the same stationary distribution . Suppose p( ) < p(2) for all j #i. Then

2P, ) > (PO, 1) for all f with 3%y mefi = 0.

Proof. Introduce a parameter 0 < o < 1 and write
P=Pa):=(1-a)PD +aP?®,
Write (+)’ for - (-). It is enough to show
(0*(P,f)) <0.

By (3.12)

( ( f) _frf—2ZZfz7TzZ

By Chapter MCMC Lemma 4, Z' = ZP'Z. By setting

9i =ifi Qij 1= Zij /Ty wig i= mp;

we find A’ = AW’A and can rewrite the equality above as

(0*(P, f)) =2 gAW'Ag.

Since A is symmetric, it is enough to show that W' is negative semidefinite.
By hypothesis W’ is symmetric with zero row-sums and w . >0 for j # i.
Ordering states arbitrarily, we may write

4,5:1<J
2 m(j,j) =
m(j,4) = 1. Plainly M¥ is negative semidefinite, hence so

where M% is the matrix whose only nonzero entries are m(i,) =
—1and m(i,j) =
is W. =
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3.2 Reversible chains and weighted graphs

Our convention is that a graph has finite vertex-set V = {v,z,y,...} and
edge-set & = {eq, eg, ...}, is connected and undirected, has no multiple edges,
and has no self-loops. In a weighted graph, each edge (v, w) also has a weight
0 < Wy z = Wz, < 00, and we allow a weighted graph to have self-loops.

Given a weighted graph, there is a natural definition of a Markov chain
on the vertices. This requires an arbitrary choice of convention: do we want
to regard an absent edge as having weight 0 or weight +00? In terms of
electrical networks (Section 3.3) the question is whether to regard weights
as conductances or as resistances of wires. Conceptually one can make good
arguments for either choice, but formulas look simpler with the conductance
convention (absent edges have weight 0), so we’ll adopt that convention.
Define discrete-time random walk on a weighted graph to be the Markov
chain with transition matrix

Doz = Wog /Wy, T FV (3.13)

where

Wy 1= E Wz, W= E Wy.
X v

Note that w is the total edge-weight, when each edge is counted twice, i.e.,
once in each direction. The fundamental fact is that this chain is automat-
ically reversible with stationary distribution

Ty = Wy /W (3.14)

because (3.1) is obviously satisfied by mypye = TPy = W /w. Our standing
convention that graphs be connected implies that the chain is irreducible.
Conversely, with our standing convention that chains be irreducible, any
reversible chain can be regarded as as random walk on the weighted graph
with edge-weights wy, := m,py.. Note also that the “aperiodic” condition for
a Markov chain (occurring in the convergence theorem Chapter 2 Theorem 2)
is just the condition that the graph be not bipartite.

An unweighted graph can be fitted into this setup by simply assigning
weight 1 to each edge. Since we’ll be talking a lot about this case, let’s write
out the specialization explicitly. The transition matrix becomes

_J 1/d, if (v,x) is an edge
Poz = 0  if not

9/10/99 version
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where d,, is the degree of vertex v. The stationary distribution becomes

dy
21€

Ty = (3.15)
where |€] is the number of edges of the graph. In particular, on an un-
weighted regular graph the stationary distribution is uniform.

In continuous time there are two different ways to associate a walk with
a weighted or unweighted graph. One way (and we use this way unless oth-
erwise mentioned) is just to use (3.13) as the definition of the transition

9/10/99 version rates qyz. In the language of Chapter 2 this is the continuization of the
discrete-time walk, and has the same stationary distribution and mean hit-
ting times as the discrete-time walk. The alternative definition, which we
call the fluid model, uses the weights directly as transition rates:

Quz ‘= Wyg, T 7"é v. (316)

In this model the stationary distribution is always uniform (cf. Section 3.2.1).
In the case of an unweighted regular graph the two models are identical up to
a deterministic time rescaling, but for non-regular graphs there are typically
no exact relations between numerical quantities for the two continuous-time
models. Note that, given an arbitrary continuous-time reversible chain, we
can define edge-weights (w;;) via

TiQij = Tjdji = Wij, Say

but the weights (w;;) do not completely determine the chain: we can specify
the m; independently and then solve for the ¢’s.
Though there’s no point in writing out all the specializations of the
9/10/99 version general theory of Chapter 2, let us emphasize the simple expressions for
9/10/99 version mean return times of discrete-time walk obtained from Chapter 2 Lemma 5
and the expressions (3.14)—(3.15) for the stationary distribution.

Lemma 3.5 For random walk on an n-vertex graph,

B, Tf = il (weighted)
Wy
2|E
= c’i | (unweighted)
= n (unweighted regular).

The example has been copied Example 3.6 Chess mowves.
here from the start of

Example 18 of Chapter 5

(4/22/96 version); reminder:

that example needs to be

modified accordingly!
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Here is a classic homework problem for an undergraduate Markov chains
course.

Start a knight at a corner square of an otherwise-empty chess-
board. Move the knight at random, by choosing uniformly from
the legal knight-moves at each step. What is the mean number
of moves until the knight returns to the starting square?

It’s a good question, because if you don’t know Markov chain theory it looks
too messy to do by hand, whereas using Markov chain theory it becomes very
simple. The knight is performing random walk on a graph (the 64 squares
are the vertices, and the possible knight-moves are the edges). It is not hard
to check that the graph is connected, so by the elementary Lemma 3.5, for
a corner square v the mean return time is

1 2/

BTy ==
v v

= ‘5|7
and by drawing a sketch in the margin the reader can count the number of

edges |£| to be 168.
The following cute variation of Lemma 3.5 is sometimes useful. Given
the discrete-time random walk (X;), consider the process

Zy = (X1, X3)

recording the present position at time ¢ and also the previous position.

iy
Clearly (Z;) is a Markov chain whose state-space is the set £ of directed
edges, and its stationary distribution (p, say) is

Wy
plo,z) =
in the general weighted case, and hence
1 —
pv,z) = ——, (x,v) EE

in the unweighted case. Now given an edge (z,v), we can apply Chapter 2 9/10/99 version
Lemma 5 to (Z;) and the state (z,v) to deduce the following.

Lemma 3.7 Given an edge (v, x) define

U:=min{t>1: Xy =v, X4 =z}
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Then

E,U = e (weighted)

w’U.’L’
= 2|&|] (unweighted).

Corollary 3.8 (The edge-commute inequality) For an edge (v,x),

L (weighted)
b1, + E,T, < W .
vle ol = 2|€|  (unweighted)

We shall soon see (Section 3.3.3) this inequality has a natural interpretation
in terms of electrical resistance, but it is worth remembering that the result
is more elementary than that.

Here is another variant of Lemma 3.5.

Lemma 3.9 For random walk on a weighted n-vertex graph,

> we(BT, + E.T,) = w(n—1)

e=(v,x)
where the sum is over undirected edges.

Proof. Writing Y, >, for the sum over directed edges (v, z), the left side
equals

1
5 Z Z Wyg (EvTx + ExTv)
v X
= ZZmexTv by symmetry
v X
= w Z Ty va:vE.tTv
v X
= w) m(BET; —1)
v
= me(W—lv -1)
v
= w(n-—1). ]

3.2.1 The fluid model

Imagine a finite number of identical buckets which can hold unit quantity of
fluid. Some pairs of buckets are connected by tubes through their bottoms.
If a tube connects buckets ¢ and j then, when the quantities of fluid in
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buckets ¢ and j are p; and p;, the flow rate through the tube should be
proportional to the pressure difference and hence should be w;;(p; — pj) in
the direction ¢ — j, where w;; = wj; is a parameter. Neglecting the fluid
in the tubes, the quantities of fluid (p;(¢)) at time ¢ will evolve according to
the differential equations

a ;ww (pi(t) — p;i(1)).

These of course are the same equations as the forward equations [(4) of
Chapter 2] for p;(t) (the probability of being in state ¢ at time ¢) for the
continuous-time chain with transition rates ¢;; = w;j, j # i. Hence we call
this particular way of defining a continuous-time chain in terms of a weighted
graph the fluid model. Our main purpose in mentioning this notion is to
distinguish it from the electrical network analogy in the next section. Our
intuition about fluids says that as ¢ — oo the fluid will distribute itself
uniformly amongst buckets, which corresponds to the elementary fact that
the stationary distribution of the “fluid model” chain is always uniform.
Our intuition also says that increasing a “specific flow rate” parameter w;;
will make the fluid settle faster, and this corresponds to a true fact about
the “fluid model” Markov chain (in terms of the eigenvalue interpretation
of asymptotic convergence rate—see Corollary 3.28). On the other hand
the same assertion for the usual discrete-time chain or its continuization is
simply false.

3.3 Electrical networks

3.3.1 Flows

This is a convenient place to record some definitions. A flow f = (f;;) on a
graph is required only to satisfy the conditions

fii = —fji if (4,7) is an edge
Y7 ) 0 if not.

So the net flow out of ¢ is f;y := >_;; fij, and by symmetry >_; f;) = 0. We
will be concerned with flows satisfying extra conditions. Given disjoint non-
empty subsets A, B of vertices, a unit flow from B to A is a flow satisfying

Z foy=1, Jgj)=0 forall j g AUB (3.17)
i€B

9/10/99 version
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which implies 37, 4 f(;) = —1. Given a Markov chain X (in particular, given
a weighted graph we can use the random walk) we can define a special flow
as follows. Given vy € A, define f*04 by

Ta

fij = By Z (1(Xt_1:i,Xt:j) - 1(Xt_1:j,Xt:i)) . (3.18)
=1

So fi; is the mean number of transitions ¢ — j minus the mean number
of transitions j — ¢, for the chain started at vy and run until hitting A.
Clearly f*o74 is a unit flow from vg to A. Note that the mean net transitions
definition of f;; works equally well in continuous time to provide a unit flow
fro=4 from vy to A.

In Section 3.7.2 we will define the notion of “a unit flow from vy to a
probability distribution p” and utilize a special unit flow from vy to the
stationary distribution.

3.3.2 The analogy

Given a weighted graph, consider the graph as an electrical network, where
a wire linking v and z has conductance w,,, i.e., resistance 1/w,,. Fix a
vertex vg and a subset A of vertices not containing vg. Apply voltage 1 at vg
and ground (i.e., set at voltage 0) the set A of vertices. As we shall see, this
determines the voltage g(v) at each vertex v; in particular,

g(vo) =1; ¢g(-)=0on A. (3.19)
Physically, according to Ohm’s law,

Potential difference

Current = -
Resistance

for each wire; that is, the current I, along each wire (v, x) satisfies

oz = (9(v) = 9(2))wya- (3.20)
Clearly, I is a flow, and according to Kirchoff’s node law

Iy =0, v¢{v}UA. (3.21)

Regarding the above as intuition arising from the study of physical elec-
trical networks, we can define an electrical network mathematically as a
weighted graph together with a function g and a flow I, called voltage and
current, respectively, satisfying (3.20)—(3.21) and the normalization (3.19).
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As it turns out, these three conditions specify g [and hence also I, by (3.20)]
uniquely since (3.20)—(3.21) imply

g(v) = prg(:z:), v {v}UA (3.22)

with p,, defined at (3.13), and Chapter 2 Lemma 27 shows that this equa-
tion, together with the boundary conditions (3.19), has a unique solution.
Conversely, if g is the unique function satisfying (3.22) and (3.19), then I de-
fined by (3.20) satisfies (3.21), as required. Thus a weighted graph uniquely
determines both a random walk and an electrical network.

The point of this subsection is that the voltage and current functions can
be identified in terms of the random walk. Recall the flow f0~4 defined
at (3.18).

Proposition 3.10 Consider a weighted graph as an electrical network, where
a wire linking v and x has conductance w,,. Suppose that the voltage func-
tion g satisfies (3.19). Then the voltage at any vertex v is given in terms of
the associated random walk by

9(v) = Py(Ty, < Ta) € [0,1] (3.23)
and the current I, along each wire (v, x) is fyy/r, where f = fro—=A gnd

1
r = € (0, 00). 3.24
Wy Py (Ta < Tify) ( ) (3.24)

Since f is a unit flow from vy to A and g(vo) = 1, we find I(,,y = g(vo)/7-
Since g = 0 on A, it is thus natural in light of Ohm’s law to regard the entire
network as effectively a single conductor from vg to A with resistance r; for
this reason r is called the effective resistance between vy and A. Since (3.19)
and (3.21) are clearly satisfied, to establish Proposition 3.10 it suffices by
our previous comments to prove (3.20), i.e.,

Jor

= (9(v) = g(2))wee. (3.25)

Proof of (3.25). Here is a “brute force” proof by writing everything in
terms of mean hitting times. First, there is no less of generality in assuming

9/10/99 version

that A is a singleton a, by the collapsing principle (Chapter 2 Section 7.3). 9/10/99 version

Now by the Markov property

foe = Ey,(number of visits to v before time T}) pys

— B, (number of visits to « before time T;,) pyy.
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Chapter 2 Lemma 9 gives a formula for the expectations above, and using 9/10/99 version
TyPvx = TgxPxv = wvx/w we get

w
Ffva: = EaTv - EvoTv - EaTa: + EvoTx‘ (326)

vr

9/10/99 version And Chapter 2 Corollaries 8 and 10 give a formula for g:
9(v) = (ByTo + EgTyy — EyTyg)Twy Pog(Ta < T,)
which leads to

g(v) — g()
Too Poo (T < Tih)

= BT, — E, Ty — E,Ty, + E, Ty, (3.27)

But the right sides of (3.27) and (3.26) are equal, by the cyclic tour property
(Lemma 3.2) applied to the tour vy, x, a, v, vy, and the result (3.25) follows
after rearrangement, using m,, = wy,/w. =

Remark. Note that, when identifying a reversible chain with an electrical
network, the procedure of collapsing the set A of states of the chain to a
singleton corresponds to the procedure of shorting together the vertices A
of the electrical network.

3.3.3 Mean commute times

The classical use of the electrical network analogy in the mathematical liter-
ature is in the study of the recurrence or transience of infinite-state reversible
6/23/01 version chains by comparison arguments (Chapter 13). As discussed in Doyle and
Snell [131], the comparisons involve “cutting or shorting”. Cutting an edge,
or more generally decreasing an edge’s conductance, can only increase an
effective resistance. Shorting two vertices together (i.e., linking them with
an edge of infinite conductance), or more generally increasing an edge’s con-
ductance, can only decrease an effective resistance. These ideas can be for-
malized via the extremal characterizations of Section 3.7 without explicitly
relying on the electrical analogy.
In our context of finite-state chains the key observation is the follow-
9/10/99 version ing. For not-necessarily-reversible discrete-time chains we have (Chapter 2
Corollary 8)
1
7o Py (T, < T)))

where we may call the right side the mean commute time between v and a.
[For continuous-time chains, 7, is replaced by ¢,m, in (3.28).] Comparing
with (3.24) and using m, = w,/w gives

= B, T, + E,Ty, v+#a, (3.28)
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Corollary 3.11 (commute interpretation of resistance) Given two ver-

tices v, a in a weighted graph, the effective resistance Ty, between v and a is
related to the mean commute time of the associated random walk by

E,T1,+ E, T, = wry,.
Note that the Corollary takes a simple form in the case of unweighted graphs:
E,T, + E,T, = 2|E|ryq. (3.29)

Note also that the Corollary does not hold so simply if @ and v are both
replaced by subsets—see Corollary 3.37.

Corollary 3.11 apparently was not stated explicitly or exploited until
a 1989 paper of Chandra et al [85], but then rapidly became popular in
the “randomized algorithms” community. The point is that “cutting or
shorting” arguments can be used to bound mean commute times. As the
simplest example, it is obvious that the effective resistance r,, across an edge
(v, x) is at most the resistance 1/w,, of the edge itself, and so Corollary 3.11
implies the edge-commute inequality (Corollary 3.8). Finally, we can use
Corollary 3.11 to get simple exact expressions for mean commute times in
some special cases, in particular for birth-and-death processes (i.e., weighted
linear graphs) discussed in Chapter 5.

As with the infinite-space results, the electrical analogy provides a vivid
language for comparison arguments, but the arguments themselves can be
justified via the extremal characterizations of Section 3.7 without explicit
use of the analogy.

3.3.4 Foster’s theorem

The commute interpretation of resistance allows us to rephrase Lemma 3.9
as the following result about electrical networks, due to Foster [153].

Corollary 3.12 (Foster’s Theorem) In a weighted n-vertex graph, let r.
be the effective resistance between the ends (a,b) of an edge e. Then

Zrewe =n—1.
e

k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok %k %k % x X% X 3k X%

CONVENTION.

add pointers to uses of cutting
and shorting later in book

4/22/96 version
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For the rest of the chapter we make the convention that we are dealing
with a finite-state, irreducible, reversible chain, and we will not repeat the
“reversible” hypothesis in each result. Instead we will say “general chain”
to mean not-necessarily-reversible chain.

¥ ko okook ok ok sk ok skok ok ok ok ok ok ok ok sk ok ko ok ko ok ok

3.4 The spectral representation

Use the transition matrix P to define

_1/2 —-1/2
Sij—ﬂ'i pijﬂ—j .

From definition (3.1), S is a symmetric matrix. So we can apply the ele-
mentary diagonalization theorem. The authors find it helpful to distinguish
between the state space I = {i,j,...}, of size n say, and the index set of
integers [n] = {1,2,...,n}, the point being that the state space may have a
lot of extra structure, whereas the index set has no obvious structure. The
spectral theorem ([183] Theorem 4.1.5) gives a representation

S = UAUT

where U = (Uim)iermen) is an orthonormal matrix, and A = (Apym )m,m/efn]
is a diagonal real matrix. We can write the diagonal entries of A as (An,),
and arrange them in decreasing order. Then

The classical fact that |A\;| < 1 follows easily from the fact that the entries
of S® are bounded as t — oo by (3.31) below. These \’s are the eigenvalues
of P, as well as of S. That is, the solutions (\;x) with x; #Z 0 of

Zmipij = Azx; for all j

are exactly the pairs
1/2 .
A=A s = cmwi/ Uim, 3 =1,...,m)
for m=1,...,n, where ¢, # 0 is arbitrary. And the solutions of

Zpijyj = )\yz for all 4
J
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are exactly the pairs

A=XAn; yi = cmﬂ';l/Zuim, i=1,...,n).
Note that an eigenvector (u;1) of S corresponding to the eigenvalue Ay = 1 is
1/2

U;1 = 7Ti

Uniqueness of the stationary distribution now implies Ay < 1.
Now consider matrix powers. We have

st —uAOUT

and
¢ _ —1/2_ () 1/2
piy =m s (3.31)
SO
Pz(Xt = j) = 7'(';1/271';/2 Z )\fnuzmujm (332)
m=1

This is the spectral representation formula. In continuous time, the analo-
gous formula is

Pi(Xe =) =m Pm? 3 exp(—Amt)uimtjm. (3.33)

i
m=1

As before, U is an orthonormal matrix and w;; = 7Ti1 / 2, and now the \’s
are the eigenvalues of —Q. In the continuous-time setting, the eigenvalues
satisfy

0:)\1<)\2§"‘§>\n- (3.34)

Rather than give the general proof, let us consider the effect of continuizing
the discrete-time chain (3.32). The continuized chain (Y;) can be represented
as Yy = X () where N(t) has Poisson(t) distribution, so by conditioning on
N(t) =v,

~1/2 1/2 < o=\, €Y
P(Yi=j) = m L Z UimWjm Z A ”
m=1 v=0 :

= 77;1/277]1-/2 Z UimWjm €Xp(—(1 — A )t).

m=1
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So when we compare the spectral representations (3.32),(3.33) for a discrete-
time chain and its continuization, the orthonormal matrices are identical,
and the eigenvalues are related by
A© =1 -\ (3.35)

superscripts (c) and (d) indicating continuous or discrete time. In particular,
this relation holds for the basic discrete and continuous time random walks
on a graph.

Let us point out some interesting simple consequences of the spectral
representation. For these purposes continuous time is simpler. First,

Pi(X; =) — 7 = cije 2 4 o(e™™?!) ast — o0 (3.36)

where ¢;; = 7r;1/27r31-/2 > i, =\y Wimtjm and where “typically” c;; # 0. (A
precise statement is this: there exists ¢ such that

PZ‘(Xt = Z) — T~ Ciiei)‘ﬁ, ci; > 0, (337)

by considering i such that u;s # 0.) Thus A2 has the interpretation of
“asymptotic rate of convergence to the stationary distribution”. The au-
thors find it simpler to interpret parameters measuring “time” rather than
“1/time”, and so prefer to work with the relazation time 7o defined by

7o := 1/Ag for a continuous-time chain (3.38)
7o = 1/(1 = Xg) for a discrete-time chain. (3.39)

Note that by (3.35) the value of 75 is unchanged by continuizing a discrete-

time chain.
Still in continuous time, the spectral representation gives

P(Xy=1i)=m+ Y Uy exp(—Amt) (3.40)
m>2

so the right side is decreasing with ¢, and in fact is completely monotone, a
9/10/99 version subject pursued in Section 3.5. Thus Z;; defined in Chapter 2 Section 2.3
satisfies

Zii = /Oo(Pi(Xt = i) —m) dt
0
= S wl A by (3.40). (3.41)

im”\m
m>2
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Using the orthonormal property of U,

S Zi= YN

m>2

99 version Applying Corollary 13 of Chapter 2, we obtain a fundamental result relating
average hitting times to eigenvalues.

Proposition 3.13 (The eigentime identity) For each i,

ZWjEiTj = Z A (continuous time)
j m>2

ZﬂjEiTj = Z (1= Xm)" Y (discrete time).

J m>2

[The discrete-time version follows from (3.35).] Proposition 3.13 expands
upon the random target lemma, which said that (even for non-reversible
chains) »°; 7; E;T; does not depend on i.

3.4.1 Mean hitting times and reversible chains

In Chapter 2 Section 2.2 we listed identities for general chains such as the 9/10/99 version
mean hitting time formulas

EiTy = (Zjj — Zij) |55 ExTy = Zjj /7.

There are a number of more complicated identities for general chains in
which one side becomes zero for any reversible chain (by the symmetry
property m;Z;; = m;Zj;) and which therefore simplify to give identities for
reversible chains. We have already seen one example, the cyclic tour lemma,
and the following result may be considered an extension of that lemma.
[Indeed, sum the following equation over successive pairs (i, j) along a cycle
to recapture the cyclic tour lemma.]

Corollary 3.14 E;T; — E;T;, = E;T; — E;T;.

This identity follows immediately from the mean hitting time formulas and
the symmetry property. Note the following interpretation of the corollary.
Define an ordering ¢ < j on the states by

i=j iff BT, < E,T).
Then Corollary 3.14 implies

ET; > E;T; iff i< j.
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Warning. Corollary 3.14 does not imply

max E;T} is attained by some pair (i, j.) such that
Zh]

ix attains min E;T; and j, attains max E.Tj.
7 J

I haven’t tried to find Here is a counterexample. Choose 0 < € < 1/2 arbitrarily and let
counterexamples with more
than three states.

2¢ 1—-2¢ 0
P .= e 1—2 ¢
0 1-—2¢ 2¢

We invite the reader to perform the computations necessary to verify that P
is reversible with 7 = [¢,1 — 2¢,¢] and

0 € 1
(ET)=c'(1-2) | 1-¢ 0 1—¢ |,
1 € 0

so that (E;T;) = e (1 — 2)71[1 — 2e + 262,262, 1 — 2¢ + 2¢2]. Thus E,T;
is minimized uniquely by * = 2, while max; ; F;T} is attained only by the
pairs (1,3) and (3,1).

As a second instance of what reversibility implies, note, from (3.33) and
the definition of Z;;, that

__—1/2 1/2 -1
Zij =T, 7Tj Z )‘m UimUjm-
m>2

This implies
—-1/2

the symmetrized matrix 7rl-1 / QZZ-jo is positive semidefinite.  (3.42)

Note that a symmetric positive semidefinite matrix (M;;) has the property
M7 < M;;Mj;. This gives

735 < ZiZjjm; [, (3.43)

which enables us to upper-bound mean hitting times from arbitrary starts
in terms of mean hitting times from stationary starts.

Lemma 3.15 max;; F;T; < 2maxy E;T}.
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Proof. Using (3.43),
(Zij/mj)? < (Zufmi) (Z5/m5)

and so
—Zij/ﬂ'j < HlkaXZkk/ﬂ'k.

So the mean hitting time formula gives the two equalities in

AT 7
EZ-Tj:—”—iSQmaxﬁ:QmaxEnTk. n
T uvi k Tk k

3.5 Complete monotonicity

One advantage of working in continuous time is to exploit complete mono-
tonicity properties. Abstractly, call f : [0,00) — [0, 00) completely monotone
(CM) if there is a nonnegative measure p on [0, 00) such that

£t) = /[0 Oo)e_etu(de), 0<t< oo (3.44)

Our applications will use only the special case of a finite sum

) =" ame ", for some am >0, O, >0, (3.45)
m

but finiteness plays no essential role. If f is CM then (provided they exist)
so are

—f'(t),
F(t) = /t f(s)ds (3.46)

A probability distribution v on [0,00) is called CM if its tail distribution
function F(t) := v(t,00) is CM; equivalently, if its density function f is
CM (except that here we must in the general case allow the possibility
f(0) = 00). In more probabilistic language, v is CM iff it can be expressed
as the distribution of /A, where £ and A are independent random variables
such that

¢ has Exponential(1) distribution; A > 0. (3.47)

Given a CM function or distribution, the spectral gap A > 0 can be
defined consistently by
A = inf{t > 0: u0,t] > 0} in setting (3.44)
A = min{f,} in setting (3.45)
A = essinfA in setting (3.47).
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This A controls the behavior of f(t) as ¢t — o0o. A key property of CM
functions is that their value at a general time ¢ can be bounded in terms of
their behavior at 0 and at oo, as follows.

Lemma 3.16 Let f be CM with 0 < f(0) < co. Then

PO _ S0 F)
(7)< fi0) < 7oy <P 05 <o

where \ is the spectral gap.

We might have F(0) = oo, but then F(t) = co and A = 0 so the convention
00/o00 = 1 works.
Proof. By scaling we may suppose f(0) = 1. So we can rewrite (3.44) as

f(t) = Ee®! (3.48)

where © has distribution . Then f'(t) = —E(©e~®?). Because 0 — e~ is
decreasing, the random variables © and e~ are negatively correlated (this
fact is sometimes called “Chebyshev’s other inequality”, and makes a nice
exercise [HINT: Symmetrize!]) and so E(Qe~®!) < (EQ)(Ee®*). This says
—f'(t) < —f'(0) f(t), or in other words 4 log f(t) > f'(0). Integrating gives
log f(t) > tf'(0), which is the leftmost inequality. (Recall we scaled to make
f(0) = 1.) For the second inequality,

F(t) = E(© e ®") by integrating (3.48)
> (EO 1Y) (Ee ®Y) by positive correlation
= F(0) f(®).

Finally, from the definition of the spectral gap A it is clear that f(¢)/f(0) <
e~ M. But F has the same spectral gap as f. =

Returning to the study of continuous-time reversible chains, the spectral
representation (3.40) says that P;(X; = i) is a CM function. It is often
convenient to subtract the limit and say

Pi(X; =1) — m is a CM function. (3.49)

More generally, given any function g : I — R the function

p(t) := Elg(X)g(Xo)] (3.50)
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is CM for the stationary chain, because by (3.33)

oo = > (Z w}”g(z‘)uim> (Zw;/zgo)ujm) exp(~Amt)

m=1 %

n

= Z (Zwil/zg(z‘)uim> exp(—Amt). (3.51)

m=1

Specializing to the case g = 14 and conditioning,
P(X; € A| Xy € A) is a CM function (3.52)

again assuming the stationary chain. When A is a singleton, this is (3.49).
Remark. To study directly discrete-time reversible chains, one would
replace CM functions by sequences (f,,) of the form

1
fo = / 0" ().

But analogs of Lemma 3.16 and subsequent results (e.g., Proposition 3.22)
become messier—so we prefer to derive discrete-time results by continuiza-
tion.

3.5.1 Lower bounds on mean hitting times

As a quick application, we give bounds on mean hitting times to a single
state from a stationary start. Recall ¢; = >_;; ¢;; is the exit rate from 4,
and 79 is the relaxation time of the chain.

Lemma 3.17 For any state i in a continuous-time chain,

_ ~.)2 .
(1 —m) < BT < To(1 7r1)'
qiT; Uy

By continuization, the Lemma holds in discrete time, replacing ¢; by 1 — p;;.
Proof. The mean hitting time formula is

[e]
7TZ'E71—TZ‘ = Zzz = /0 (PZ(Xt = Z) — 7TZ‘) dt.

Write f(t) for the integrand. We know f is CM, and here A > A9 by (3.40),
and f’(0) = —¢;, so the extreme bounds of Lemma 3.16 become, after mul-

tiplying by f(0) =1 — m,

(1= m) exp(—qit/(1— 7)) < f(t) < (1 —m)e .
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Integrating these bounds gives the result. =
We can now give general lower bounds on some basic parameters we will
study in Chapter 4.

Proposition 3.18 For a discrete-time chain on n states,

—1)?
SwEr > (3.53)
- n
J
max(E;T; + E;T;) > 2(n—1) (3.54)
1/7c]
max E;T; > n—1 (3.55)
Zh]
1
o> O (3.56)
n

Remark. These inequalities become equalities for random walk on the com-

4/22/96 version plete graph (Chapter 5 Example 9). By examining the proof, it can be
shown that this is the only chain where an equality holds.

Proof. We go to the continuized chain, which has ¢; = 1 — p;; < 1. Then

> mELT; > Y (1—m;)* by Lemma 3.17
J J

= TL—2—{—Z7TJQ~
J

> n—2++

= (n—=1)*/n,

giving (3.53). By the eigentime identity,

ZT[']‘EWT]‘ = Z )\,;1 < (n— 1)7’2
J

m>2

and so (3.56) follows from (3.53).
Now fix ¢ and write 70 = >, m;ET};, which (by the random target
lemma) doesn’t depend on k. Then

TO"’Eﬂ’T’i
1*7‘('1' '

.
§jlj (EiTj + E;T;) =
L

(3.57)

If the right side were strictly less than 2(n — 1) for all ¢, then

Domilm + BxTi) < 2(n—1) 3 mi(l —m),
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which implies

270 < 2(n — 1) (1—27r><2n—1)(1—1):2(n_1)2,

n

contradicting (3.53). Therefore there exists an ¢ such that

— (BT + ByT) > 2(n = 1)
T

and so there exists j # i such that E;T; + E;T; > 2(n — 1). This is (3.54),
and (3.55) follows immediately. m

There are several other results in the spirit of Lemma 3.17 and Propo-
sition 3.18. For instance, (22) in Chapter 2 says that for a general discrete- 9/10/99 version
time chain,
2E:Ti +1

var; TZ-+ =
m

1
- .

(3
Appealing to Lemma 3.17 gives, after a little algebra,

Corollary 3.19 For any state i in a discrete-time chain,

’/Tz)(l — 27Tz'>
2 .

;

1—
VeuriTi+ > (
Again, equality holds for random walk on the complete graph.

3.5.2 Smoothness of convergence

We're going to build some vague discussion around the following simple
result.

Lemma 3.20
Z p?j(t) _ pii(2t) (358)
pik(t + s) pii(2t) Prk(25)
™ 1’ : \/< o 1> ( ™ 1> (3:59)

pik(t + s) < i (2t) prr(2s)

Tk Uy Tk

< max; 212 (3.60)

(2t
and so max; p“;r(k )
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Proof.

pk (t+s) p k( pk
- pr ]7_(_ szj 7j_‘_ (5)

by reversibility. Putting k = i, s = t gives (3.58). Rewriting the above
equality as

pik(t+s) 1— Zﬂjpij(t) — 7 pij(s) —
) 7 j T

and applying the Cauchy—Schwarz inequality, we get the bound +/a;(t)ag(s),
where

2
Z ng )2 Z pij(t) 1 Pu(2t) 1.
J i J
This proves (3.59). The cruder bound (3.60) is sometimes easier to use
than (3.59) and is proved similarly. m

9/10/99 version Discussion. Recalling from Chapter 2 Section 4.2 the definition of L?
distance between distributions, (3.58) says

pii (2t)

T

IP(Xs € ) — 7l = -1 (3.61)

In continuous time, we may regard the assertion “||P;(X; € -) — 7|2 is de-
creasing in ¢” as a consequence of the equality in (3.61) and the CM property
of p;i(t). This assertion in fact holds for general chains, as pointed out in
9/10/99 version Chapter 2 Lemma 35. Loosely, the general result of Chapter 2 Lemma 35
9/10/99 version says that in a general chain the ratios (P,(X; = j)/mj, j € I) considered
as an unordered set tend to smooth out as ¢ increases. For a reversible
chain, much more seems to be true. There is some “intrinsic geometry” on
the state space such that, for the chain started at ¢, the probability dis-
tribution as time increases from 0 “spreads out smoothly” with respect to
the geometry. It’s hard to formalize that idea convincingly. On the other
hand, (3.61) does say convincingly that the rate of convergence of the single
probability p;;(t) to 7(7) is connected to a rate of convergence of the entire
distribution P;(X; € ) to m(-). This intimate connection between the local
and the global behavior of reversible chains underlies many of the technical
10/11/94 version inequalities concerning mixing times in Chapter 4 and subsequent chapters.
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3.5.3 Inequalities for hitting time distributions on subsets

We mentioned in Chapter 2 Section 2.2 that most of the simple identities
there for mean hitting times E;7T; on singletons have no simple analogs for
hitting times T4 on subsets. One exception is Kac’s formula (Chapter 2
Corollary 24), which says that for a general discrete-time chain

E., Tt =1/m(A). (3.62)

It turns out that for reversible chains there are useful inequalities relating the
distributions of T'4 under different initial distributions. These are simplest in
continuous time as consequences of CM: as always, interesting consequences
may be applied to discrete-time chains via continuization.

Recall 74 is the stationary distribution conditioned to A:

wa(i) =7(i)/m(A), i € A.
Trivially

Pr(Ta>1) = m(A)Py,.(Ta >1) (3.63)
E.Ty = n(AYE, . Ta. (3.64)

Define the ergodic exit distribution p4 from A by

N 2ieATidi c

where Q(A, A°) is the ergodic flow rate out of A:
Q(A, AC) = Z Z ik (3.66)

1€A ke A¢

By stationarity, Q(A, A°) = QA% A).

Proposition 3.21 Fiz a subset A in a continuous-time chain.

(i) T4 has CM distribution when the initial distribution of the chain is
any of the three distributions ™ or wae or pa.

(ii) The three hitting time distributions determine each other via (3.63)

and
PpA (TA > t)

EPATA
(iii) Write Ag for the spectral gap associated with Ty (which is the same
for each of the three initial distributions). Then
Pr(Ty > t)
m(A°)

Proo(Ta € (t,t+dt)) = dt. (3.67)

Poy(Ta>1t) < Pr,e(Ta>1t) = <exp(—Aat), t>0 (3.68)

9/10/99 version
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and in particular

Qm = EpaTa < BryeTa = f&ﬂ; <1/Aa. (3.69)
(iv)
E Ty < 72:((?;). (3.70)
Concerning (b): The results Remarks. (a) In discrete time we can define p4 and Q(A, A®) by replacing

E;lt:‘i}f;‘i’fritgczsgu;éjﬁfe ¢ij by pij in (3.65)-(3.66), and then (3.69) holds in discrete time. The left

irreducible, but T think that ~ equality of (3.69) is then a reformulation of Kac’s formula (3.62), because
requirement can be dropped

using a limiting argument. EWATX = 14+ P7rA (Xl c AC)EWA (TAF _ 1|X1 c AC)

Q(A, A

1+ (A)

E, Ta.
(b) Equation (3.83) and Corollary 3.34 [together with remark (b) following
Theorem 3.33] later show that 1/A4 < 719/m(A). So (3.70) can be regarded
as a consequence of (3.69). Reverse inequalities will be studied in Chapter 4.
10/11/94 version
Proof of Proposition 3.21. First consider the case where A is a single-
ton {a}. Then (3.70) is an immediate consequence of Lemma 3.17. The
equalities in (3.69) and in (3.67) are general identities for stationary pro-
9/10/99 version cesses [(24) and (23) in Chapter 2]. We shall prove below that T4 is CM
under Pr .. Then by (3.63), (3.67), and (3.46), T4 is also CM under the
other two initial distributions. Then the second inequality of (3.68) is the
upper bound in Lemma 3.16, and the first is a consequence of (3.67) and
Lemma 3.16. And (3.69) follows from (3.68) by integrating over ¢.
To prove that T4 is CM under Pm\{a}, introduce a parameter 0 < e < 1
and consider the modified chain (X7 ) with transition rates

4G; = j, i Fa
qgj = €qqj-

The modified chain remains reversible, and its stationary distribution is of
the form
w5 =bim, 1 # a; e = by

where the weights b1, b2 depend only on € and 7,. Now as ¢ — 0 with ¢
fixed,

P,

TI\{a} (th € I\ {a}) — Pﬂ'[\{a} (Ta > t) (371)
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because the chain gets “stuck” upon hitting a. But the left side is CM
by (3.52), so the right side (which does not depend on ¢) is CM, because the
class of CM distributions is closed under pointwise limits. (The last asser-
tion is in general the continuity theorem for Laplace transforms [133] p. 83,
though for our purposes we need only the simpler fact that the set of func-
tions of the form (3.45) with at most n summands is closed.)

This completes the proof when A is a singleton. We now claim that the
case of general A follows from the collapsing principle (Chapter 2 Section 7.3), 9/10/99 version
i.e., by applying the special case to the chain in which the subset A is col-
lapsed into a single state. This is clear for all the assertions of Proposi-
tion 3.21 except for (3.70), for which we need the fact that the relaxation
time 741 of the collapsed chain is at most 7. This fact is proved as Corol-
lary 3.27 below. =

Remark. Note that the CM property implies a supermultiplicitivity
property for hitting times from stationarity in a continuous-time reversible
chain:

PW(TA > s+ t) > P7r<TA > S)PW<TA > t).

Contrast with the general submultiplicitivity property (Chapter 2 Section 4.3) 9/10/99 version
which holds when Py is replaced by max; P;.

3.5.4 Approximate exponentiality of hitting times

In many circumstances, the distribution of the first hitting time 74 on a
subset A of states with w(A) small (equivalently, with ET4 large) can be
approximated by the exponential distribution with the same mean. As with
the issue of convergence to the stationary distribution, such approximations
can be proved for general chains (see Notes), but it is easier to get ex-

plicit bounds in the reversible setting. If 7" has a CM distribution, then [as

at (3.47), but replacing 1/A by O] we may suppose T' 4 O¢. We calculate

ET = (EO)(E¢) = E©; ET? = (EO?)(EE?) = 2E0?

and so
ET® _ E®* _
2(ET)?2  (E©)2 —

with equality iff © is constant, ;.e., iff T' has exponential distribution. This
suggests that the difference % —1 can be used as a measure of “deviation
from exponentiality”. Let us quote a result of Mark Brown ([72] Theorem

4.1(iii)) which quantifies this idea in a very simple way.
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Proposition 3.22 Let T have CM distribution. Then

ET?
2(ET)?
So we can use this bound for hitting times T4 in a stationary reversible
chain. At first sight the bound seems useful only if we can estimate E,T%
and E,;T4 accurately. But the following remarkable variation shows that for
the hitting time distribution to be approximately exponential it is sufficient
that the mean hitting time be large compared to the relaxation time 7.

sup |P(T > t) — e VT <
t

Proposition 3.23 For a subset A of a continuous-time chain,

sgp |Pr(Tg >t) —exp(—t/E:Ta)| < 12/ ET4.

Proof. By the collapsing principle (Chapter 2 Section 7.3) we may suppose A
is a singleton {j}, because (Corollary 3.27 below) collapsing cannot increase
the relaxation time. Combining the mean hitting time formula with the
expression (3.41) for Zj; in terms of the spectral representation (3.33),

BTy =7 Zyg=7;" > ul A (3.72)
m>2
A similar calculation, exhibited below, shows
ET} — 2(E;T))?
2

=70 ui, A (3.73)
m>2
But A2 < A\ 'ACL = mAs! for m > 2, so the right side of (3.73) is bounded
by 7rj_172 > m>2 Ui Ay, which by (3.72) equals 7o E,T;. Applying Proposi-
tion 3.22 gives Proposition 3.23.
We give a straightforward but tedious verification of (3.73) (see also
Notes). The identity 22/2 = [;°(x — )T dt, = > 0 starts the calculation

o0
BT = /0 En(T) — t)* dt

(o]
- / N Po(Xi =i, Tj > t) BT dt
0

= Z E;T; E(time spent at ¢ before Tj)

]

3 Zjj = Zij Zjimi — Zjim;
P 4 4

by Chapter 2 Lemmas 12 and 15 (continuous-time version)
== ZW;27TZ‘(ij — ZZ)Q
i
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Expanding the square, the cross-term vanishes and the first term becomes
(Zjj/m5)* = (ExTj)?, so

SET; — (ET))* =m;° Z Tz
To finish the calculation,
7rj_1 Z WiZZQJ
= 71271'1 </Pm ‘)d5> (/(Pw( ) — )dt)
- ¥ /<pﬁ<s> —m)ds) ([0 - 7 )
= //(pjj(3+t) —mj) dsdt
= [t =)
= /Z u2 te=Amt dt

m>2

= Eujmm. "

m>2

See the Notes for a related result, Theorem 3.43.

3.6 Extremal characterizations of eigenvalues

3.6.1 The Dirichlet formalism

A reversible chain has an associated Dirichlet form &, defined as follows.
For functions g : I — R write

=35> > mpi(9() — (i) (3.74)

i 7L

in discrete time, and substitute ¢;; for p;; in continuous time. One can
immediately check the following equivalent definitions. In discrete time

E(9,9) = $Ex(9(X1) — 9(X0))* = Ex[g(Xo)(9(Xo) — g(X1))].  (3.75)



9/10/99 version
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In continuous time

Elg.9) = 3 fimt™ Ex(g(X) — 9(X0))"
= lim ™" Ex[g(Xo)(9(Xo) — 9(X1))]
= - ZZMQ(’L’)%Q(]’) (3.76)

where the sum includes j = i. Note also that for random walk on a weighted
graph, (3.74) becomes

ZZ i3 (4(5) — g(3))2. (3.77)

i jF#L

Recall from Chapter 2 Section 6.2 the discussion of L? norms for functions
and measures. In particular

lgllz = D mig®(i) = Brg*(Xo)
i
©?
| —n|3 = Z —~ — 1 for a probability distribution .
— Ty

The relevance of £ can be seen in the following lemma.

Lemma 3.24 Write p(t) = (p;(t)) for the distribution at timet of a continuous-
time chain, with arbitrary initial distribution. Write f;(t) = p;(t)/mj. Then

Sllo(t) 713 = 267 1), £(1)).
Proof. ||p(t) — 7|3 = 3T _1 2( ) — 1, so using the forward equations
t) = Zpi(t)%'j
we get
U CRLWCAPTRICTE
= QZZfJ t)migij

and the result follows from (3.76). m



3.6. EXTREMAL CHARACTERIZATIONS OF EIGENVALUES 89

3.6.2 Summary of extremal characterizations

For ease of comparison we state below three results which will be proved
in subsequent sections. These results are commonly presented “the other
way up” using infs rather than sups, but our presentation is forced by our
convention of consistently defining parameters to have dimensions of “time”
rather than “1/time”. The sups are over functions g : I — R satisfying
specified constraints, and excluding g = 0. The results below are the same
in continuous and discrete time—that is, continuization doesn’t change the
numerical values of the quantities we consider. We shall give the proofs in
discrete time.

Extremal characterization of relaxation time. The relaxation time T
satisfies

2 = sup{|lg[I3/€(g. 9) : > mig(i) = 0}.

Extremal characterization of quasistationary mean hitting time.
Given a subset A, let auq be the quasistationary distribution on A€ defined
at (3.82). Then the quasistationary mean exit time is

Eo,Ta = sup{||g||3/£(g,9) : g >0, g=0on A}.

Extremal characterization of mean commute times. For distinct
states i,j the mean commute time satisfies

ET; + E;T; =sup{1/E(g,9) : 0< g <1, g(i) =1, g(j) =0}

Because the state space is finite, the sups are attained, and there are the-
oretical descriptions of the ¢ attaining the extrema in all three cases. An
immediate practical use of these characterizations in concrete examples is
to obtain lower bounds on the parameters by inspired guesswork, that is by
choosing some simple explicit “test function” ¢ which seems qualitatively
right and computing the right-hand quantity. See Chapter 14 Example 32
for a typical example. Of course we cannot obtain upper bounds this way,
but extremal characterizations can be used as a starting point for further
theoretical work (see in particular the bounds on 7 in Chapter 4 Section 4).

3.6.3 The extremal characterization of relaxation time

The first two extremal characterizations are in fact just reformulations of
the classical Rayleigh—Ritz extremal characterization of eigenvalues, which

3/10/94 version

10/11/94 version
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goes as follows ([183] Theorem 4.2.2 and eq. 4.2.7). Let S be a symmetric

matrix with eigenvalues p1 > po > ---. Then
B
iy = sup i U5 (3.78)
x i i

and an x attaining the sup is an eigenvalue corresponding to p1 (of course
sups are over x #Z 0). And

20 2o YiSijYj
po = sup T

= (3.79)
y:ZZ, y; ;=0 Zz y'?

and a y attaining the sup is an eigenvalue corresponding to .
As observed in Section 3.4, given a discrete-time chain with transition
matrix P, the symmetric matrix (s;; = 7rz-1 / Qpiﬂrj_l/ 2) has maximal eigen-

value 1 with corresponding eigenvector (7rz1 / 2). So applying (3.79) and writ-

ing y; = 771-1 / 2g(i), the second-largest eigenvalue (of S and hence of P) is

\ > 22 mig(1)pijg(d)
2= sup 5 :
g3, migli)=0 > mig?(1)

given by

In probabilistic notation the fraction is

Exlg(Xo)g(X1)] _ | _ Exlg(Xo)(g(X1) —g(Xo))] _; €(9,9)
Erg*(Xo) Erg*(Xo) lgll3

Since 75 = 1/(1—A2) in discrete time we have proved the first of our extremal

characterizations.

Theorem 3.25 (Extremal characterization of relaxation time) The re-
lazation time o satisfies

m = sup{|lg|I3/€(g, 9) : > mig(i) = 0}.

A function g, say, attaining the sup in the extremal characterization is,
by examining the argument above, a right eigenvector associated with As:

> pijg0(d) = Aago(i).-
J

(From this point on in the discussion, we assume gy is normalized so that
llgoll2 = 1.) The corresponding left eigenvector 6 :

Zeipij = /\29j for allj
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is the signed measure 6 such that 6; = m;go(i). To continue a somewhat
informal discussion of the interpretation of g, it is convenient to switch to
continuous time (to avoid issues of negative eigenvalues) and to assume Ao
has multiplicity 1. The equation which relates distribution at time ¢ to
initial distribution,

pj(t) = Z pi(0)pi;(t),

can also be used to define signed measures evolving from an initial signed
measure. For the initial measure 6 we have

0(t) = e7t/20.
For any signed measure v = v(0) with Y, ;(0) = 0 we have

v(t) ~ce 0 e = v;(0)0;/m = > vi(0)go(i).
i i
So 0 can be regarded as “the signed measure which relaxes to 0 most slowly”.
For a probability measure p(0), considering p(0) — 7 gives

p(t) =~ ce 0, c="(pi(0) — mi)go(i) = Zpi(o)go(i)- (3.80)

)

So 0 has the interpretation of “the asymptotic normalized difference between
the true distribution at time ¢ and the stationary distribution”. Finally,
from (3.80) with p(0) concentrated at ¢ (or from the spectral representation)

Pi(X, €) —m ~ go(i)e /0.

So go has the interpretation of “the asymptotic normalized size of deviation
from stationarity, as a function of the starting state”. When the state space
has some geometric structure — jumps go to nearby states — one expects gg
to be a “smooth” function, exemplified by the cosine function arising in the
n-cycle (Chapter 5 Example 7).

3.6.4 Simple applications

Here is a fundamental “finite-time” result.

Lemma 3.26 (L? contraction lemma) Write p(t) = (p;(t)) for the dis-
tribution at time t of a continuous-time chain, with arbitrary initial distri-
bution. Then

lo(8) = mll2 < e™*/™p(0) — 2.

4/22/96 version

Good name for Lemma 3.26 —
looks good to DA !
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Proof. Write f;(t) = p;(t)/m;. Then

d
o) —7llz = —26(f(1), f(t)) by Lemma 3.24
= —28(f(H) =1, f(t) = 1)
< Hf(t) ”2 by the extremal characterization of 19
T2

) )
= Zp@t) — 7|2
o)) - I3
Integrating, ||p(t) — 7|3 < e2/72||p(0) — 7|3, and the result follows. m
Alternatively, Lemma 3.26 follows by observing that
|p(t) — =||3 is CM with spectral gap at least 2\y = 2/7» (3.81)

and applying Lemma 3.16. The fact (3.81) can be established directly from
the spectral representation, but we will instead apply the observation at
(3.50)—(3.51). Indeed, with g(7) := p;(0)/m;, we have

Er[9(Xa2)9(Xo)] = sz Z pij 2t)PJ(0)

Ty

1(0)

_ Zpi(O)ZZPik(t)ij(t)pj
i i k

T

= Zk;ﬂlk[;m(o)%k 1[2/% )P ]

S Trlﬁ“) — [lo(t) — 73+ 1.

k
Thus by (3.51)

2
lo(t) — 3 = Z (Z”” m) exp(~Amt).

Our main use of the extremal characterization is to compare relaxation
times of different chains on the same (or essentially the same) state space.
Here are three instances. The first is a result we have already exploited in
Section 3.5.

Corollary 3.27 Given a chain with relaxation time T3, let T4\ be the relaz-
ation time of the cham with subset A collapsed to a singleton {a} (Chapter 2
9/10/99 version Section 7.3). Then 72 < 7.
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Proof. Any function g on the states of the collapsed chain can be extended to
the original state space by setting g = g(a) on A, and £(g,¢9) and >, mig(7)
and ||g||3 are unchanged. So consider a g attaining the sup in the extremal
characterization of 75! and use this as a test function in the extremal char-
acterization of 5. m
Remark. An extension of Corollary 3.27 will be provided by the contrac-
tion principle (Chapter 4 Proposition 44). 10/11/94 version

Corollary 3.28 Let o be the relaxation time for a “fluid model” continuous-
time chain associated with a graph with weights (w.) [recall (3.16)] and let 5
be the relaxation time when the weights are (w}). If wi > we for all edges e
then 75 < 7.

Proof. Each stationary distribution is uniform, so ||g||3 = | g3 while
E*(g,9) > E(g,9). So the result is immediate from the extremal charac-
terization. =
The next result is a prototype for more complicated “indirect compari-
son” arguments later. It is convenient to state it in terms of random walk refer to not-net-written
on a weighted graph. Recall (Section 3.2) that a reversible chain specifies a Foincare chapter
weighted graph with edge-weights w;; = m;p;;, vertex-weights w; = m;, and
total weight w = 1.

Lemma 3.29 (the direct comparison lemma) Let (w.) and (w}) be edge-
weights on a graph, let (w;) and (w}) be the vertex-weights, and let 7o and 75
be the relaxation times for the associated random walks. Then

mine (we/wy) _ T - max;(w;/w})
max;(w;/wf) — 75 ~ ming(we/w})

where in mine we don’t count loops e = (v,v).
Proof. For any g, by (3.77)
w*E(g,9) = wE(g, g) min(we /we).
And since wl|g||3 = >, wig?(i),
wlgll* < wlgll3 max(w; /w:).
So if g has m*-mean 0 and 7-mean b then

lgll3* lg — bl%> lg — bl3 max; (wy /wi)
g*(g7g) o 5*(9 - bvg - b) N g(g - bvg - b) mine(w:/we)
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By considering the g attaining the extremal characterization of 73,

b < gy (0] 03)

— 7 mine(w¥/we)
This is the lower bound in the lemma, and the upper bound follows by
reversing the roles of w, and w}. =

Remarks. Sometimes 7o is very sensitive to apparently-small changes in
the chain. Consider random walk on an unweighted graph. If we add extra
edges, but keeping the total number of added edges small relative to the
number of original edges, then we might guess that 79 could not increase or
decrease much. But the examples outlined below show that 7 may in fact
change substantially in either direction.

Example 3.30 Take two complete graphs on n vertices and join with a
single edge. Then w = 2n(n — 1) + 2 and 75 ~ n?/2. But if we extend the
single join-edge to an n-edge matching of the vertices in the original two
complete graphs, then w* = 2n(n — 1) + 2n ~ w but 75 ~ n/2.

Example 3.31 Take a complete graph on n vertices. Take k = o(nl/ ) new
vertices and attach each to distinct vertices of the original complete graph.
Then w = n(n — 1) + 2k and 7 is bounded. But if we now add all edges
within the new k vertices, w* =n(n — 1)+ 2k + k(k — 1) ~ w but 75 ~ k
provided k — oo.

As these examples suggest, comparison arguments are most effective
when the stationary distributions coincide. Specializing Lemma 3.29 to this
case, and rephrasing in terms of (reversible) chains, gives

Lemma 3.32 (the direct comparison lemma) For transition matrices P
and P* with the same stationary distribution w, if

pij = 0p;; for all j #i
then 1 < 6‘172*.

Remarks. The hypothesis can be rephrased as P = dP* + (1 —6)Q, where Q
is a (maybe not irreducible) reversible transition matrix with stationary
distribution 7. When Q = I we have 75 = § 173, so an interpretation of the
lemma is that “combining transitions of P* with noise can’t increase mixing
time any more than combining transitions with holds”.
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3.6.5 Quasistationarity

Given a subset A of states in a discrete-time chain, let P4 be P restricted
to A°. Then P4 will be a substochastic matrix, i.e., the row-sums are
at most 1, and some row-sum is strictly less than 1. Suppose P4 is ir-
reducible. As a consequence of the Perron-Frobenius theorem (e.g., [183]
Theorem 8.4.4) for the nonnegative matrix P4, there is a unique 0 < A < 1
(specifically, the largest eigenvalue of P4) such that there is a probability
distribution « satisfying

a=0on A, Zaipij = \aj, j € A° (3.82)
i

Writing avq and A4 to emphasize dependence on A, (3.82) implies that un-
der P, , the hitting time 74 has geometric distribution
Po,(Ta=m) =X}, m=>0,

whence

1
1—Xa
Call oy the quasistationary distribution and E,,Ta the quasistationary
mean exit time.

Similarly, for a continuous-time chain let Q4 be Q restricted to A€.
Assuming irreducibility of the substochastic chain with generator Q*, there
is a unique A = A4 > 0 such that there is a probability distribution a = a4
(called the quasistationary distribution) satisfying

a=0on A, Zai(b’j =—Aaj, j€ A
i

Ey,Ta =

This implies that under P, , the hitting time T’y has exponential distribution
P,,(T4 >1t) =exp(—Aat), t>0,
whence the quasistationary mean exit time is
Ey, Ty =1/\4. (3.83)

Note that both vy and E, , T4 are unaffected by continuization of a discrete-
time chain.

The facts above do not depend on reversibility, but invoking now our
standing assumption that chains are reversible we will show in remark (c)
following Theorem 3.33 that, for continuous-time chains, A4 here agrees
with the spectral gap A4 discussed in Proposition 3.21, and we can also now
prove our second extremal characterization.
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Theorem 3.33 (Extremal characterization of quasistationary mean
hitting time) The quasistationary mean exit time satisfies

Eo,Ta = sup{||g|3/£(g,9) : >0, g=0on A}. (3.84)

Proof. As usual, we give the proof in discrete time. The matrix (s# =

tj
Wil/zpf}ﬂj_lm) is symmetric with largest eigenvalue A 4. Putting x; = 7r2-1/2g(i)

in the characterization (3.78) gives
- > > mig(D)pisg(4)
g i mig? (i) '

Clearly the sup is attained by nonnegative g, and though the sums above
are technically over A° we can sum over all I by setting g = 0 on A. So

> > mig(i)piig(j)
> 7Tz‘92(i)

AA =S

/\A:sup{ :gzo,g:OonA}.

As in the proof of Theorem 3.25 this rearranges to

= sup{|9l[3/€(9,9) : g >0, g =0 on A},

1—X4

establishing Theorem 3.33. =

Remarks. (a) These remarks closely parallel the remarks at the end of
Section 3.6.3. The sup in Theorem 3.33 is attained by the function gg which
is the right eigenvector associated with A4, and by reversibility this is

go(i) = aa(i)/m;. (3.85)
It easily follows from (3.82) that
Py, (Xt =j|Ta>1t)=caa(j) for all j and ¢,

which explains the name quasistationary distribution for as. A related
interpretation of a4 is as the distribution of the Markov chain conditioned
on having been in A° for the infinite past. More precisely, one can use
Perron—Frobenius theory to prove that

P(X;=j|Ta>1t) — aa(j) ast — (3.86)

provided P4 is aperiodic as well as irreducible.
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(b) Relation (3.86) holds in continuous time as well (assuming irreducibil-
ity of the chain restricted to A¢), yielding

exp(—Aat) = Po,(T >1)

= sligoPﬂ(TA >t+s|Ta>s) :slgrolom
Since by Proposition 3.21 the distribution of Ty for the stationary chain is
CM with spectral gap (say) o4, the limit here is exp(—o4t). Thus Ay = 04,
that is, our two uses of A4 refer to the same quantity.
(c) We conclude from remark (b), (3.83), and the final inequality in (3.69)
that, in either continuous or discrete time,

ETy

E m(A°)

aATA >

> BT (3.87)

Our fundamental use of quasistationarity is the following.

Corollary 3.34 For any subset A, the quasistationary mean hitting time
satisfies
Ey,Ta <1/m(A).

Proof. As at (3.85) set g(i) = aa(i)/m;, so

Ea,Ta = |9113/€(9, 9). (3.88)

Now Erg(Xp) = 1, so applying the extremal characterization of relaxation
time to g — 1,
lg—113 _ lgll3 -1

1
mZ g Tg- 1) Elgg | FeaTd) (1‘W5)’ (8.89)

the last equality using (3.88). Since a4 is a probability distribution on A¢
we have

1 = Er [14¢(Xo0)g(Xo)]
and so by Cauchy—Schwarz

12 < (Brlac(Xo)) x [lg]3 = (1 — m(A4))[|g][3-

Rearranging,

— g = 7(A)
lgllz
and substituting into (3.89) gives the desired bound. =

Combining Corollary 3.34 with (3.68) and (3.83) gives the result below.

This is needed at the bottom
of page 27 (9/22/96 version) in
Chapter 5.

DA has deleted discrete-time
claim in previous version. It
seems true but not worth
sweating over.
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Lemma 3.35

(continuous time) Pr(Ta >t) < exp(—tn(A)/m2), t>0

3.7 Extremal characterizations and mean hitting
times

Theorem 3.36 (Extremal characterization of mean commute times)
For distinct states i and a, the mean commute time satisfies

ET, + E,T; =sup{1/€(g,9) : 0< g <1, g(i) =1, gla) =0}  (3.90)

and the sup is attained by g(j) = P;(T; < T,). In discrete time, for a
subset A and a state i & A,

mP(Ta < T;t) =inf{€(g,9): 0< g <1, gi) =1, g(-) =0 on A} (3.91)

and the inf is attained by g(j) = P;(T; < Ta). Equation (3.91) remains true
in continuous time, with m; replaced by q;m; on the left.

Proof. As noted at (3.28), form (3.90) follows (in either discrete or con-
tinuous time) from form (3.91) with A = {a}. To prove (3.91), consider g
satisfying the specified boundary conditions. Inspecting (3.74), the contri-
bution to £(g, g) involving a fixed state j is

> mipiklg(k) = 9(5)*. (3.92)
ke

As a function of g(j) this is minimized by
9(i) =>_pjrg(k). (3.93)
k

Thus the g which minimizes £ subject to the prescribed boundary conditions

9/10/99 version on AU{i} must satisfy (3.93) for all j ¢ AU{i}, and by Chapter 2 Lemma 27
the unique solution of these equations is g(j) = Pj(T; < Ta). Now apply to
this g the general expression (3.75):

£(g,9) =Y mig(j) (g(j) - me(@) -
j k
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For j ¢ AU {i} the factor (g(j) — > pjrg(k)) equals zero, and for j € A we
have g(7) = 0, so only the j =i term contributes. Thus

E(g,9) = m (1—Zpikg(k)>
k

= m(l - B(T;" <Ta))
= mP(Ta <T}), (3.94)

giving (3.91). =
The analogous result for two disjoint subsets A and B is a little compli-
cated to state. The argument above shows that

inf{€(g,9) : g(-) =0 on A, g(-) =1 on B}
is attained by go(j) = Pj(Ts < Ta) and that this go satisfies

E(go.g0) = Y _miPi(Ta < T5). (3.95)
i€B

We want to interpret the reciprocal of this quantity as a mean time for the
chain to commute from A to B and back. Consider the stationary chain
(Xt;—o0 < t < 00). We can define what is technically called a “marked
point process” which records the times at which A is first visited after a
visit to B and vice versa. Precisely, define Z; taking values in {«, 3,0} by

B ifds<tsuchthat X, e A, X, € B, Xy AUBVs<u<t
Zy: =4 «a ifds<tsuchthat X;e B, X; € A, Xy d BUAVs<u<t
60 otherwise.

So the times ¢ when Z; = 3 are the times of first return to B after visiting A,
and the times t when Z; = « are the times of first return to A after visiting B.
Now (Z;) is a stationary process. By considering the time-reversal of X, we
see that for ¢ € B

P(Xo=1i,Zy=B)=P(Xo=1i,Ta <Tg)=mPi(Ta <T4).

So (3.95) shows P(Zy = ) = £(90, 90)- If we define Tpap, “the typical time

to go from B to A and back to B”, to have the conditional distribution of

min{t > 1: Z; = f} given Zy = 3, then Kac’s formula for the (non-Markov) (discrete time chain)
stationary process Z (see e.g. [133] Theorem 6.3.3) says that ETpap =

1/P(Zy = B). So we have proved
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Corollary 3.37
ETpap =sup{1/€(g,9):0<g <1, g()=0o0n 4, g(-)=1on B}
and the sup is attained by g(i) = P;(Tp < Ta).

As another interpretation of this quantity, define
p() = P(Xo € -|Zo = B), pa(-) =P(Xo € -|Zy=a).

Interpret pp and p4 as the distribution of hitting places on B and on A in
the commute process. It is intuitively clear, and not hard to verify, that

PPA(X(TB) €:)=p5(), PPB(X(TA) €-)=pa()

ETpap = EpBTA + EPATB‘

In particular

min ;T4 + min B;Tg < ETgap < max F;T4 + max E;Tg.
i€B €A i€B €A

3.7.1 Thompson’s principle and leveling networks

Theorem 3.36 was stated in terms of (reversible) Markov chains. Rephrasing
in terms of discrete-time random walk on a weighted graph gives the usual
“electrical network” formulation of the Dirichlet principle stated below, us-
ing (3.77),(3.91) and (3.94). Recall from Proposition 3.10 that the effective
resistance r between vy and A is, in terms of the random walk,

1
Wyo Poo (Ta < Tify)’

r =

(3.96)

Proposition 3.38 (The Dirichlet principle) Take a weighted graph and
fix a vertex vy and a subset A of vertices not containing vo. Then the quantity
3 > wij(g(d) — g(i))? is minimized, over all functions g : I — [0,1] with
g(vo) =1 and g(-) = 0 on A, by the function g(i) := P;y(Ty, < Ta) (where
probabilities refer to random walk on the weighted graph), and the minimum
value equals 1/r, where r is the effective resistance (3.96).

There is a dual form of the Dirichlet principle, which following Doyle and
Snell [131] we call
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Proposition 3.39 (Thompson’s principle) Take a weighted graph and
fix a vertex vg and a subset A of vertices not containing vo. Let £ = f;; de-
note a unit flow from vy to A. Then %Zl Z](ff]/ww) is minimized, over all
such flows, by the flow £Y074 [defined at (3.18)] associated with the random
walk from vy to A, and the minimum value equals the effective resistance r
appearing in (3.96).

Recall that a flow is required to have f;; = 0 whenever w;; = 0, and interpret
sums »_; >, as sums over ordered pairs (4,7) with w;; > 0.

Proof. Write 9(f) :== 33, >5( %/wij). By formula (3.25) relating the
random walk notions of “flow” and “potential”, the fact that v (fro—4)
is immediate from the corresponding equality in the Dirichlet principle. So
the issue is to prove that for a unit flow f*, say, attaining the minimum
of ¥(f), we have ¢(f*) = o (f*0~4). To prove this, consider two arbitrary
paths (y;) and (z;) from vy to A, and let f* denote the flow f* modified by
adding flow rates +¢ along the edges (yi, yi+1) and by adding flow rates —¢
along the edges (z;, z;+1). Then f¢ is still a unit flow from vy to A. So the
function ¢ — 1 (f°) must have derivative zero at ¢ = 0, and this becomes
the condition that

Z(f;i,yi+1/wyi7yi+1) = Z(f;i,zi_‘_l/wziyzi«kl)’

K3 3

=r

So the sum is the same for all paths from vy to A. Fixing z, the sum must
be the same for all paths from = to A, because two paths from x to A could
be extended to paths from vy to A by appending a common path from vg
to . It follows that we can define g*(x) as the sum »>;(f7, .., /We,2:11)
over some path (x;) from z to A, and the sum does not depend on the path
chosen. So

*

g (x) — g*(z) = =*= for each edge (z, z) not contained within A. (3.97)
Wrz

The fact that £* is a flow means that, for = € AU {vp},

ZWgz >0

So ¢g* is a harmonic function outside A U {vp}, and g* = 0 on A. So by
the uniqueness result (Chapter 2 Lemma 27) we have that ¢g* must be pro-
portional to g, the minimizing function in Proposition 3.38. So f* is pro-
portional to fP0~4, because the relationship (3.97) holds for both, and then
f* = fro=4 bhecause both are unit flows. m

(This is essentially the same
argument used in
Section 3.3.2.)

9/10/99 version



102CHAPTER 3. REVERSIBLE MARKOV CHAINS (SEPTEMBER 10, 2002)

A remarkable statistical interpretation was discussed in a monograph of
Borre and Meissl [57]. Imagine a finite set of locations such as hilltops. For
each pair of locations (i,7) with a clear line-of-sight, measure the elevation
difference D;; = (height of j minus height of i). Consider the associated
graph [whose edges are such pairs (4, )], and suppose it is connected. Take
one location vy as a benchmark “height 0”. If our measurements were exact
we could determine the height of location x by adding the D’s along a path
from vy to z, and the sum would not depend on the path chosen. But
suppose our measurements contain random errors. Precisely, suppose D; ;
equals the true height difference h(j) — h(i) plus an error Y;; which has
mean 0 and variance 1/w;; and is independent for different measurements.
Then it seems natural to estimate the height of x by taking some average
ﬁ(:p) over paths from vy to x, and it turns out that the “best” way to average
is to use the random walk from vy to x and average (over realizations of the
walk) the net height climbed by the walk.

In mathematical terms, the problem is to choose weights f;;, not de-
pending on the function A, such that

1
=522 fuDi
i

has Eh(z) = h(z) and minimal variance. It is not hard to see that the
former “unbiased” property holds iff f is a unit flow from vy to . Then

var h ZZ fzjvar ij) Z Z ”

Wi
and Proposition 3.39 says this is minimized when we use the flow from vg
to x obtained from the random walk on the weighted graph. But then

Ty

iL(.Z‘) = By, ZDXt—IXH
t=1

the expectation referring to the random walk.

3.7.2 Hitting times and Thompson’s principle

Using the commute interpretation of resistance (Corollary 3.11) to translate
Thompson’s principle into an assertion about mean commute times gives
the following.
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Corollary 3.40 For random walk on a weighted graph and distinct ver-
tices v and a,

. 1 . .
E,T,+ E,T, = w inf {2 XZ:ZJ:( %/wij) : f is a unit flow from a to v}

and the min is attained by the flow £~V associated with the random walk.

Comparing with Theorem 3.36 we have two different extremal characteriza-
tions of mean commute times, as a sup over potential functions and as an
inf over flows. In practice this “flow” form is less easy to use than the “po-
tential” form, because writing down a flow f is harder than writing down a
function g. But, when we can write down and calculate with some plausible
flow, it gives upper bounds on mean commute times.

One-sided mean hitting times E;T; don’t have simple extremal char-
acterizations of the same kind, with the exception of hitting times from
stationarity. To state the result, we need two definitions. First, given a
probability distribution p on vertices, a unit flow from a to p is a flow f
satisfying

f(z) = 1(i:a) — Pi for all i; (398)

more generally, a unit flow from a set A to p is defined to satisfy

Z fiy=1—p(A) and [ = —p; for all i € A
i€A

Now fix a state a and define the special flow £ by

to
fig = i Fe 2 (Lt rmiximn = Lotsmixmn)  (399)
with the usual convention in the periodic case. So f;; is the mean excess
of transitions ¢ — j compared to transitions j — ¢, for the chain started
at @ and run forever. This is a unit flow from a to m, in the above sense.
Equation (6) (the definition of Z) in Chapter 2 and reversibility give the
first equality, and Chapter 2 Lemma 12 gives the last equality, in

fij = Zaibij — Zajpji
_ ZiaTipij _ Zja™iDji
Ta Ta,
_ G Zidmipg (3.100)
T, '
_ (EjTa — EiTa)wij (3 101)

w

9/10/99 version
9/10/99 version



104CHAPTER 3. REVERSIBLE MARKOV CHAINS (SEPTEMBER 10, 2002)

switching to “weighted graphs” notation. Note also that the first-step re-
currence for the function ¢ — Z;, is

T = (1 (ima) — ) + Z pii Zia. (3.102)

Proposition 3.41 For random walk on a weighted graph and a subset A of
vertices,

ETy, = w inf{ ZZ /ww : f is a unit flow from A to 71}

= sup{l/é'(g,g) c—00< g< oo, g(-)=1on A, Zﬂzg(z) = 0}.

When A is a singleton {a}, the minimizing flow is the flow £~ defined

above, and the mazimizing function g is g(i) = Ziq/Zaa- For general A the

mazximizing function g is g(i) =1 — Tgﬁ

Added the final observation . L
about general A Proof. Suppose first that A = {a}. We start by showing that the extremizing

flow, f* say, is the asserted 7. By considering adding to f* a flow of size
along a directed cycle, and copying the argument for (3.97) in the proof of
Proposition 3.39, there must exist a function g* such that

*

g (x) — g% (2) = % for each edge (z, 2). (3.103)

The fact that £* is a unit flow from a to 7 says that
(x=a) — Z foe =Y was(9"(2) — g°(2))
z

which implies
1(33 a) — * * *
- - = prz - (Z)) =g (-73) - przg (Z)
Since w, = wn, and 1/7, = E,T,;", this becomes
= meg*(z) —w! (1 — (EaT;')l(z:a)) .

Now these equations have a unique solution ¢*, up to an additive constant,
because the difference between two solutions is a harmonic function. (Recall
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99 version Chapter 2 Corollary 28.) On the other hand, a solution is g*(z) = EIT“
by considering the first-step recurrence for E,T;". So by (3.103) =
(E. T, — E,T,)w,,/w, and so f* = f*7™ by (3.101).
Now consider the function g which minimizes £(g,¢g) under the con-
straints ), m;g(i) = 0 and g(a) = 1. By introducing a Lagrange multiplier -y
we may consider g as minimizing £(g,g) + v >_; mig(7) subject to g(a) = 1.
Repeating the argument at (3.92), the minimizing g satisfies

-2 mipir(g(k) — g(j)) +ym; =0, j#a.
k#j

Rearranging, and introducing a term 81(;—q) to cover the case j = a, we
have

Zp]kg — (7/2) + B1(j=q) for all j,
for some 7, 8. Because _; m;g(j) = 0 we have

0=0—(v/2) + Bmg,

allowing us to rewrite the equation as

ijkg +5 1(] =a) _ﬂa)‘

By the familiar “harmonic function” argument this has a unique solution,
and (3.102) shows the solution is ¢g(j) = 8Zj,. Then the constraint g(a) =1

gives 9(J) = Zja/Zaa-
Next consider the relationship between the flow f = f*~™ and the func-

tion g(Z) = Zia/Zaa‘ We have Chapter 2 reference in
following display is to 9/10/99
2 version.
2 Wi s
= (BT, - ET,)*—2 by (3.101)
Wi j w

wii (BT, — E;Ty\?
— E T 2 1] < Ja (A a)
(ExTa) w E.T,
o Wij (Zia — Zja
Zaa
Wi 4 . .
= (EﬂTa)Q% (9(3) — g(j))*.

2
= (E;T,) ) by Chapter 2 Lemmas 11, 12

Thus it is enough to prove

wi ZZ 15 _ (3.104)

’w”
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and it will then follow that

1/€(g,9) = ExTy.

To prove (3.104), introduce a parameter € (which will later go to 0) and a
new vertex z and edge-weights w;, = ew;. Writing superscripts € to refer
to this new graph and its random walk, the equation becomes wj, := cw;
and Corollary 3.40 says

EST, + ST, = w' s > (i)’ (3.105)
av® a9 we, ’

i€le jele (]

where f¢ is the special unit flow from a to z associated with the new graph
(which has vertex set I¢ := I U {z}). We want to interpret the ingredients
to (3.105) in terms of the original graph. Clearly w® = w(1 + 2¢). The
new walk has chance /(1 4+ €) to jump to z from each other vertex, so
E:T, = (1 + ¢)/e. Starting from z, after one step the new walk has the
stationary distribution 7 on the original graph, and it follows easily that
ET, =1+ E;T,(1+ O(e)). We can regard the new walk up to time 7,
as the old walk sent to z at a random time U® with Geometric(e/(1 + ¢))
distribution, so for ¢ # z and j # z the flow f; is the expected net number
of transitions ¢ — j by the old walk up to time U¢. From the spectral
representation it follows easily that f7; = fi; + O(e). Similarly, for i # 2 we
have —f5; = fi, = Po(X(U® —1) = i) = m; + O(e); noting that >, f7, = 1,
the total contribution of such terms to the double sum in (3.105) is

7TZ‘+Z-EZ—7F,'2 2 T + fz—ﬂ'iz
S LS R BN URY D

icl EWwi We ter Ti
2 (f5, —m)? 2
— . 1 1z - O
we ( + % e we +0(e)
So (3.105) becomes
1+e 1 oo
+14+ET,4+0() =wl+2) [ ) > L +— | +0()
€ 2 icl je1 Wi we

Subtracting (1 4+ 2¢)/e from both sides and letting ¢ — 0 gives the de-
sired (3.104). This concludes the proof for the case A = {a}, once we use
the mean hitting time formula to verify
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Finally, the extension to general A is an exercise in use of the chain,
say X*, in which the set A is collapsed to a single state a. Recall Chapter 2
Section 7.3. In particular,

wi; = wij, i,j € A% wm—Zwik,zeAc, waa—ZZwkl, w' = w.

keA keAleA

We now sketch the extension. First, E;T4 = E}.T,. Then the natural
one-to-one correspondence between functions g on I with g(-) = 1 on A and
> icr mig(i) = 0 and functions g* on I* with g*(a) = 0 and }_;c - 7/ g* (i) =0
gives a trivial proof of

E Ty = sup{l/é'(g,g) -0 < g<oo, g(-)=1on A, ng(i) = O}.

It remains to show that

inf {U(f) : f is a unit flow from A to = (for X)}
= inf {¥*(f*) : £* is a unit flow from a to 7* (for X*)} (3.106)

where

OEES 9 NI N AU EED S W (UnLnt

iel jel i€l* jeI*

Indeed, given a unit flow f from A to 7, define f; as fi; if 1, j € A® and as
> kea fir if i € A° and j = a. One can check that f* is a unit flow from a
to 7 (the key observation being that 37,4 > jc4 fij = 0) and, using the
Cauchy—Schwarz inequality, that U*(f*) < W¥(f). Conversely, given a unit
flow f* from a to 7, define f;; as [ if i,j € A% as flwij/ > pea wir if
1€ A°and j € A, and as 0 if i,j € A. One can check that f is a unit
flow from A to 7 and that W(f) = ¥(f*). We have thus established (3.106),
completing the proof. =

Corollary 3.42 For chains with transition matrices P, P and the same sta-
tionary distribution T,

Proof. Plug the minimizing flow 7™ for the P-chain into Proposition 3.41
for the P-chain to get the second inequality. The first follows by reversing
the roles of P and P. =

9/10/99 version
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3.8 Notes on Chapter 3

Textbooks. Almost all the results have long been known to (different groups
of) experts, but it has not been easy to find accessible textbook treatments.
Of the three books on reversible chains at roughly the same level of sophisti-
cation as ours, Kelly [213] emphasizes stationary distributions of stochastic
networks; Keilson [212] emphasizes mathematical properties such as com-
plete monotonicity; and Chen [88] discusses those aspects useful in the study
of interacting particle systems.

Section 3.1. In abstract settings reversible chains are called symmetriz-
able, but that’s a much less evocative term. Elementary textbooks often
give Kolmogorov’s criterion ([213] Thm 1.7) for reversibility, but we have
never found it to be useful.

I put a pointer from the first The following figure may be helpful in seeing why m; E;T; # m; E;T; for

section to here - DA a general reversible chain, even if 7 is uniform. Run such a chain (X;) for
—00 < t < 0o and record only the times when the chain is in state ¢ or state j.
Then FE;T; is the long-run empirical average of the passage times from i
to j, indicated by arrows —; and E;T; is the long-run empirical average
of the passage times from j to ¢ in the reverse time direction, indicated by
arrows <—. One might think these two quantities were averaging the same
empirical intervals, but a glance at the figure shows they are not.

11 i1 ] i 11 j

Section 3.1.1. Though probabilists would regard the “cyclic tour” Lemma 3.2
as obvious, Léaszlé Lovasz pointed out a complication, that with a careful
definition of starts and ends of tours these times are not invariant under time-
reversal. The sophisticated fix is to use doubly-infinite stationary chains and
observe that tours in reversed time just interleave tours in forward time, so
by ergodicity their asymptotic rates are equal. Tetali [326] shows that the
cyclic tour property implies reversibility. Tanushev and Arratia [321] show
that the distributions of forward and reverse tour times are equal.

Cat-and-mouse game 1 is treated more opaquely in Coppersmith et al

9/1/99 version [99], whose deeper results are discussed in Chapter 9 Section 4.4. Underlying
the use of the optional sampling theorem in game 2 is a general result about
optimal stopping, but it’s much easier to prove what we want here than to
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appeal to general theory. Several algorithmic variations on Proposition 3.3
are discussed in Coppersmith et al [101] and Tetali and Winkler [327].
Section 3.2. Many textbooks on Markov chains note the simple explicit
form of the stationary distribution for random walks on graphs. An histor-
ical note (taken from [107]) is that the first explicit treatment of random
walk on a general finite graph was apparently given in 1935 by Bottema [58],
who proved the convergence theorem. Amongst subsequent papers special-
izing Markov theory to random walks on graphs let us mention Gobel and
Jagers [168], which contains a variety of the more elementary facts given
in this book, for instance the unweighted version of Lemma 3.9. Another
observation from [168] is that for a reversible chain the quantity

Biji1 = w;lEi(number of visits to j before time T;)
satisfies 3;5; = Bji. Indeed, by Chapter 2 Lemma 9 we have
Biji = (BT + BTy + E;T;) — (E;T; + E;Tj)

and so the result follows from the cyclic tour property.

Just as random walks on undirected graphs are as general as reversible
Markov chains, so random walks on directed graphs are as general as general
Markov chains. In particular, one usually has no simple expression like (3.15)
for the stationary distribution. The one tractable case is a balanced directed
graph, where the in-degree d, of each vertex v equals its out-degree.

Section 3.2.1. Yet another way to associate a continuous-time reversible
chain with a weighted graph is to set ¢;; = w;;/ VWilj. This construction
was used by Chung and Yau [95] as the simplest way to set up discrete
analogs of certain results from differential geometry.

Another interpretation of continuous-time random walk on a weighted
graph is to write w;; = 1/L;; and interpret L;; as edge-length. Then run
Brownian motion on the edges of the graph. Starting from vertex i, the
chance that j is the first vertex other than ¢ visited is w;j/ > wix, so the
embedded discrete chain is the usual discrete random walk. This construc-
tion could be used as an intermediate step in the context of approximating
Brownian motion on a manifold by random walk on a graph embedded in
the manifold.

Section 3.3. Doyle and Snell [131] gave a detailed elementary textbook
exposition of Proposition 3.10 and the whole random walk / electrical net-
work connection. Previous brief textbook accounts were given by Kemeny et
al [215] and Kelly [213]. Our development follows closely that of Chapter 2
in Lyons and Peres [250]. As mentioned in the text, the first explicit use

9/10/99 version
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(known to us) of the mean commute interpretation was given by Chandra et
al [85]. One can combine the commute formula with the general identities
9/10/99 version of Chapter 2 to obtain numerous identities relating mean hitting times and
resistances, some of which are given (using bare-hands proofs instead) in
Tetali [324]. The connection between Foster’s theorem and Lemma 3.9 was
noted in [99].
Section 3.4. The spectral theory is of course classical. In devising a
. . 1. 1/2 -1/2
symmetric matrix one could use m;p;; or PijT; instead of =, T
there doesn’t seem any systematic advantage to a particular choice. We
learned the eigentime identity from Andrei Broder who used it in [66],
and Lemma 3.15 from David Zuckerman who used it in [341]. Apparently
no-one has studied whether Lemma 3.15 holds for general chains. Mark
Brown (personal communication) has noted several variations on the theme
of Lemma 3.15, for example that the unweighted average of (E;Tj;1,j € A)
is bounded by the unweighted average of (E;Tj;j € A). The name eigen-
time identity is our own coinage: once we call 1/ the relaxation time it is
natural to start thinking of the other 1/\,, as “eigentimes”.

Section 3.5. We regard complete monotonicity as a name for “mixtures
of exponentials”, and have not used the analytic characterization via deriva-
tives of alternating signs. Of course the CM property is implicit in much
analysis of reversible Markov processes, but we find it helpful to exhibit
explicitly its use in obtaining inequalities. This idea in general, and in par-
ticular the “stochastic ordering of exit times” result (Proposition 3.21), were
first emphasized by Keilson [212] in the context of reliability and queueing
models. Brown [73] gives other interesting consequences of monotonicity.

Section 3.5.1. Parts of Proposition 3.18 have been given by several au-
thors, e.g., Broder and Karlin [66] Corollary 18 give (3.53). One can invent
many variations. Consider for instance min; max; F;T;. On the complete
graph this equals n — 1, but this is not the minimum value, as observed
by Erik Ordentlich in a homework exercise. If we take the complete graph,
distinguish a vertex ig, let the edges involving i¢ have weight ¢ and the other
edges have weight 1, then as € — 0 we have (for j # i)

ETj— 2 4+2=2(1+(n—-2))=n—2+ 2.
By the random target lemma and (3.53), the quantity under consideration
is at least 79 > n — 2+ %, so the example is close to optimal.

Section 8.5.4. The simple result quoted as Proposition 3.22 is actually
weaker than the result proved in Brown [72]. The ideas in the proof of
Proposition 3.23 are in Aldous [12] and in Brown [73], the latter containing
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a shorter Laplace transform argument for (3.73). Aldous and Brown [20]
give a more detailed account of the exponential approximation, including
the following result which is useful in precisely the situation where Proposi-
tion 3.23 is applicable, that is, when E T, is large compared to 7o.

Theorem 3.43 Let oy be the quasistationary distribution on A° defined
at (3.82). Then

Ty —t

P.(Tqg>t) > (1— )ex ( ), t>0

( ) BanTa) “P\E,,Ta
ETI'TA Z

EaATA — T92.

Using this requires only a lower bound on E,T 4, which can often be obtained
using the extremal characterization (3.84). Connections with “interleaving
of eigenvalues” results are discussed in Brown [74].

For general chains, explicit bounds on exponential approximation are
much messier: see Aldous [5] for a bound based upon total variation mixing
and Iscoe and McDonald [192] for a bound involving spectral gaps.

Section 3.6.1. Dirichlet forms were developed for use with continuous-
space continuous-time Markov processes, where existence and uniqueness
questions can be technically difficult—see, e.g., Fukushima [159]. Their
use subsequently trickled down to the discrete world, influenced, e.g., by
the paper of Diaconis and Stroock [124]. Chen [88] is the most accessible
introduction.

Section 3.6.2. Since mean commute times have two dual extremal char-
acterizations, as sups over potential functions and as infs over flows, it is
natural to ask

Open Problem 3.44 Does there exist a characterization of the relaxation
time as exactly an inf over flows?

We will see in Chapter 4 Theorem 32 an inequality giving an upper bound
on the relaxation time in terms of an inf over flows, but it would be more
elegant to derive such inequalities from some exact characterization.

Section 3.6.4. Lemma 3.32 is sometimes used to show, by comparison
with the i.i.d. chain,

if m'in‘(pij/ﬂ'j) =6 >0 then » < oL

INEE]

But this is inefficient: direct use of submultiplicitivity of variation distance
gives a stronger conclusion.

10/11/94 version
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Section 3.6.5. Quasistationary distributions for general chains have long
been studied in applied probability, but the topic lacks a good survey article.
Corollary 3.34 is a good example of a repeatedly-rediscovered simple-yet-
useful result which defies attempts at attribution.

Kahale [203] Corollary 6.1 gives a discrete time variant of Lemma 3.35,
that is to say an upper bound on P, (T4 > t), and Alon et al [27] Proposi-
tion 2.4 give a lower bound in terms of the smallest eigenvalue (both results

details in previous version now are phrased in the context of random walk on an undirected graph). In

deleted studying bounds on 74 such as Lemma 3.35 we usually have in mind that
m(A) is small. One is sometimes interested in exit times from a set A with
m(A) small, i.e., hitting times on A° where 7(A€) is near 1. In this setting
one can replace inequalities using 79 or 7. (parameters which involve the
whole chain) by inequalities involving analogous parameters for the chain
restricted to A and its boundary. See Babai [36] for uses of such bounds.

Section 3.7.1. Use of Thompson’s principle and the Dirichlet principle
to study transience / recurrence of countably infinite state space chains is
given an elementary treatment in Doyle and Snell [131] and more technical
treatments in papers of Nash-Williams [266], Griffeath and Liggett [173] and
Lyons [251]. Some reformulations of Thompson’s principle are discussed by
Berman and Konsowa [45].

We learned about the work of Borre and Meissl [57] on leveling networks
from Persi Diaconis. Here is another characterization of effective resistance
that is of a similar spirit. Given a weighted graph, assign independent
Normal(0, w;;) random variables X;; to the edges (4,7), with X;; = —Xj;.
Then condition on the event that the sum around any cycle vanishes. The
conditional process (Yj;) is still Gaussian. Fix a reference vertex v, and
for each vertex v let S, be the sum of the Y-values along a path from v,
to v. (The choice of path doesn’t matter, because of the conditioning event.)
Then (obviously) S, is mean-zero Normal but (not obviously) its variance
is the effective resistance between v, and v. This is discussed and proved in
Janson [194] Section 9.4.

Section 3.7.2. We have never seen in the literature an explicit statement
of the extremal characterizations for mean hitting times from a stationary
start (Proposition 3.41), but these are undoubtedly folklore, at least in the
“potential” form. Iscoe et al [193] implicitly contains the analogous charac-

Initial distribution is indeed =  terization of Erexp(—60Ty4). Steve Evans once showed us an argument for
—yes (DA) Corollary 3.42 based on the usual Dirichlet principle, and that motivated us
to present the “natural explanation” given by Proposition 3.41.



Chapter 4

Hitting and Convergence
Time, and Flow Rate,
Parameters for Reversible

Markov Chains (October 11,
1994)

The elementary theory of general finite Markov chains (cf. Chapter 2) fo-
cuses on exact formulas and limit theorems. My view is that, to the extent
there is any intermediate-level mathematical theory of reversible chains, it is
a theory of inequalities. Some of these were already seen in Chapter 3. This
chapter is my attempt to impose some order on the subject of inequalities.
We will study the following five parameters of a chain. Recall our standing
assumption that chains are finite, irreducible and reversible, with stationary
distribution 7.
(i) The maximal mean commute time

7" = max(E;Tj + EjT;)
ij
(ii) The average hitting time

T0 — Zzﬂjﬂ—iEiTj'
g

(iii) The variation threshold time

7 =inf{t >0:d(t) <e '}

113
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where as in Chapter 2 section yyy

d(t) = max||Pi(X, € ) = Pj(X; € )]

(iv) The relaxation time 7, i.e. the time constant in the asymptotic rate
of convergence to the stationary distribution.
(v) A “flow” parameter
m(A)m(A°) m(A°)

Te = SUp = sup
CTA YieaXjeacmpiy A Pr(X1 € A°Xg € A)

in discrete time, and

m(A)m(A°) m(A€) dt
Te = SUp = sup
A YicA jeacTidij A Pr(Xa € A% Xo € A)

in continuous time.
The following table may be helpful. “Average-case” is intended to indi-
cate essential use of the stationary distribution.
worst-case average-case

hitting times T* 70
mixing times 1 Ty
flow Te

The table suggests there should be a sixth parameter, but I don’t have a
candidate.
The ultimate point of this study, as will seen in following chapters, is

e For many questions about reversible Markov chains, the way in which
the answer depends on the chain is related to one of these parameters

e so it is useful to have methods for estimating these parameters for
particular chains.

This Chapter deals with relationships between these parameters, simple il-
lustrations of properties of chains which are closely connected to the pa-
rameters, and methods of bounding the parameters. To give a preview,
it turns out that these parameters are essentially decreasing in the order
(1%, 70,71, T2, Tc): precisely,

]'*
57 >T) > To 2 Te

6679 > 11 > T2
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and perhaps the constant 66 can be reduced to 1. There are no general
reverse inequalities, but reverse bounds involving extra quantities provide a
rich and sometimes challenging source of problems.

The reader may find it helpful to read this chapter in parallel with the list
of examples of random walks on unweighted graphs in Chapter 5. As another
preview, we point out that on regular n-vertex graphs each parameter may
be as large as ©(n?) but no larger; and 7%, 79 may be as small as ©(n) and
the other parameters as small as ©(1), but no smaller. The property (for a
sequence of chains) “r9p = O(n)” is an analog of the property “transience”
for a single infinite-state chain, and the property “mp = O(poly(logn))” is
an analog of the “non-trivial boundary” property for a single infinite-state
chain. These analogies are pursued in Chapter yyy.

The next five sections discuss the parameters in turn, the relationship
between two different parameters being discussed in the latter’s section.
Except for 7, the numerical values of the parameters are unchanged by
continuizing a discrete-time chain. And the results of this Chapter not
involving 71 hold for either discrete or continuous-time chains.

4.1 The maximal mean commute time 7*
We start by repeating the definition

" = max(E;T; + E;T;) (4.1)
ij

and recalling what we already know. Obviously

max F;T; < 7 < 2max E;T)
) 1]

and by Chapter 3 Lemma yyy
max E;T; < 7 < 4max E,Tj. (4.2)
J J
Arguably we could have used max;; F;T; as the “named” parameter, but
the virtue of 7* is the resistance interpretation of Chapter 3 Corollary yyy.

Lemma 4.1 For random walk on a weighted graph,

7' = wmaxri;
v

where r;; is the effective resistance between i and j.
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In Chapter 3 Proposition yyy we proved lower bounds for any n-state
discrete-time reversible chain:

T >2(n-1)
max F;Tj >n—1
ij

which are attained by random walk on the complete graph. Upper bounds
will be discussed extensively in Chapter 6, but let’s mention two simple
ideas here. Consider a path i = ig,41,...,%n = j, and let’s call this path
7vij (because we've run out of symbols whose names begin with “p”!) This
path, considered in isolation, has “resistance”

r(vig) = > 1/we
€<Yij
which by the Monotonicity Law is at least the effective resistance r;;. Thus
trivially
" <wmax min (7). (4.3)
. paths v,
A more interesting idea is to combine the max-flow min-cut theorem (see
e.g. [86] sec. 5.4) with Thompson’s principle (Chapter 3 Corollary yyy).
Given a weighted graph, define
c= Hﬁnz Z wij (4.4)
€A jEAC
the min over proper subsets A. The max-flow min-cut theorem implies that
for any pair a, b there exists a flow f from a to b of size ¢ such that | f;;| < w;;
for all edges (i,;). So there is a unit flow from a to b such that | f.| < ¢ 1w,
for all edges e. It is clear that by deleting any flows around cycles we may
assume that the flow through any vertex ¢ is at most unity, and so

Z |fij| <2 for all i, and =1 for i = a,b. (4.5)
J

So

2
EJ,+ EyI, < w Z Z}—e by Thompson’s principle
e

w
; Ze: ‘fe‘

% (n —1) by (4.5).

IN

IN

and we have proved
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Proposition 4.2 For random walk on an n-vertex weighted graph,

7_*

w(n —1)

for ¢ defined at (4.4).

Lemma 4.1 and the Monotonicity Law also make clear a one-sided bound
on the effect of changing edge-weights monotonically.

Corollary 4.3 Let W, > we be edge-weights and let 7% and 7 be the corre-
sponding parameters for the random walks. Then

ET, + E;T,
ET; + E;T;

and so
)" < w/w.

In the case of unweighted graphs the bound in Corollary 4.3 is |€|/|€]. Ex-
ample yyy of Chapter 3 shows there can be no lower bound of this type, since
in that example w/w = 1+ O(1/n) but (by straightforward calculations)
/7" = O0(1/n).

4.2 The average hitting time 7

As usual we start by repeating the definition

T0 = ZZ?TJ'TFZ'EZ'E (46)

L

and recalling what we already know. We know (a result not using reversibil-
ity: Chapter 2 Corollary yyy) the random target lemma

Z i BT = 19 for all i (4.7)
J

and we know the eigentime identity (Chapter 3 yyy)

T = Z (1 — Apm) ! in discrete time (4.8)
m>2
T = Z A-1in continuous time (4.9)

m>2
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In Chapter 3 yyy we proved a lower bound for n-state discrete-time chains:
_(n—1p?

n
which is attained by random walk on the complete graph.
We can give a flow characterization by averaging over the characteriza-
tion in Chapter 3 yyy. For each vertex a let f*77 = (f77) be a flow from
a to m of volume 7, that is a unit flow scaled by m,. Then

m=wmind LYY (S
0 2 TqWij
2 7 a
the min being over families of flows £f77 described above.
By writing
1 1
0= = Z Z i (BT + E;T;) < 5 max(E;T; + E;T;)
- - i

2
i

we see that 79 < %7’*. It may happen that 7* is substantially larger than 7.

A fundamental example is the M/M/1/n queue (xxx) where 7y is linear in

n but 7* grows exponentially. A simple example is the two-state chain with
por=¢&po=1—¢ m=1—¢gm=c¢

for which 79 =1 but 7* = é + 1—; This example shows that (without extra

assumptions) we can’t improve much on the bound

270

"< —
mlnj 7Tj

(4.10)

which follows from the observation E;T; < 79/m;.

One can invent examples of random walks on regular graphs in which
also 7" is substantially larger than 75. Under symmetry conditions (vertex-
transitivity, Chapter 7) we know a priori that E;T; is the same for all i and
hence by (4.2) 7" < 47y. In practice we find that 79 and 7* have the same
order of magnitude in most “naturally-arising” graphs, but I don’t know
any satisfactory formalization of this idea.

The analog of Corollary 4.3 clearly holds, by averaging over ¢ and j.

Corollary 4.4 Let w. > we be edge-weights and let Ty and 1y be the corre-
sponding parameters for the random walks. Then
7:0/7'0 < ﬁ)/w.

In one sense this is mysterious, because in the eigentime identity the largest
term in the sum is the first term, the relaxation time 79, and Example yyy
of Chapter 3 shows that there is no such upper bound for 7».
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4.3 The variation threshold 7.

4.3.1 Definitions

Recall from Chapter 2 yyy that || || denotes variation distance and
d(t) = max||P(X¢ € ) — 7(-)]|
d(t) = max||Pi(X; € ) = Pi(Xe € )

(t) < d(t)
(s +1) <

S8

2t
s)d(t)

A

We define the parameter
71 = min{t: d(t) < e '} (4.11)

The choice of constant e~!, and of using d(t) instead of d(t), are rather
arbitrary, but this choice makes the numerical constants work out nicely (in
particular, makes 79 < 71 — see section 4.4). Submultiplicativity gives

Lemma 4.5 d(t) < d(t) < exp(—|t/mn1]) <exp(l—t/m), t > 0.

The point of parameter 71 is to formalize the idea of “time to approach
stationarity, from worst starting-place”. The fact that variation distance is
just one of several distances one could use may make 71 seem a very arbitrary
choice, but Theorem 4.6 below says that three other possible quantifications
of this idea are equivalent. Here equivalent has a technical meaning: param-
eters 7, and 7, are equivalent if their ratio is bounded above and below by
numerical constants not depending on the chain. (Thus (4.2) says 7" and
max; E.T}; are equivalent parameters). More surprisingly, 71 is also equiva-
lent to two more parameters involving mean hitting times. We now define
all these parameters.

3) _(4)

1(4), 71(5) in this draft were parameters 7™, 7;

xxx Warning. Parameters 7
in the previous draft.

The first idea is to measure distance from stationarity by using ratios of
probabilities. Define separation from stationarity to be

s(t) = min{s : p;;(t) > (1 — s)m; for all 7, j}.

Then s(-) is submultiplicative, so we naturally define the separation thresh-
old time to be
71(1) = min{t:s(t) <e '}
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The second idea is to consider minimal random times at which the chain has
exactly the stationary distribution. Let
7‘1(2) = maxmin E;U;
i U
where the min is over stopping times U; such that P;(X(U;) € -) = 7(-). Asa
variation on this idea, let us temporarily write, for a probability distribution
v on the state space,
7(p) = max min F;U;
i U
where the min is over stopping times U; such that P;(X(U;) € -) = pu(+).
Then define
(3)

T =minT(u).
1 m (1)
Turning to the parameters involving mean hitting times, we define

4
Tl( ) EH;E]);XZW]’EZE—E]CE‘ :II;%XZ‘ZZ]—Z]W‘ (412)
’ i ) j

where the equality involves the fundamental matrix Z and holds by the mean

(4)

hitting time formula. Parameter 7,/ measures variability of mean hitting
times as the starting place varies. The final parameter is

7'1(5) =max7w(A)E;Tx.

i,A
Here we can regard the right side as the ratio of E;T4, the Markov chain
mean hitting time on A, to 1/m(A), the mean hitting time under independent
sampling from the stationary distribution.
The definitions above make sense in either discrete or continuous time,
but the following notational convention turns out to be convenient. For
a discrete-time chain we define 7 to be the value obtained by applying

the definition (4.11) to the continuized chain, and write Tldisc for the value

obtained for the discrete-time chain itself. Define similarly 7'1(1) and 7'11 disc

(2) (5)

But the other parameters 7;"" — 7;°/ are defined directly in terms of the
discrete-time chain. We now state the equivalence theorem, from Aldous

[6].

Theorem 4.6 (a) In either discrete or continuous time, the parameters
1 2 3 7_1(4) (5)

T, Ty 5T 5 T1 and 1" are equivalent.

(b) In discrete time, Tldisc and Tll,dZSC are equivalent, and 7'1(2) <57
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This will be (partially) proved in section 4.3.2, but let us first give a few

remarks and examples. The parameter 71 and total variation distance are

closely related to the notion of coupling of Markov chains, discussed in Chap-

ter 14. Analogously (see the Notes), the separation s(¢) and the parameter
(1

7, are closely related to the notion of strong stationary times V; for which
P(X(V;) e |Vi=t)=m() for all t. (4.13)

Under our standing assumption of reversibility there is a close connection
between separation and variation distance, indicated by the next lemma.

Lemma 4.7 (a) d(t) < s(t).
(b) s(2t) <1— (1 —d(t))%

Proof. Part (a) is immediate from the definitions. For (b),

pir(2t) Zpij(t)ij:(t)

i’ - T
k j k

::Zﬂ@@@@

by reversibility

2
J T
1/2,,\ 1/2 2
LBV (¢
> (Zﬂjpw()pk]“) by EZ > (EZ'/?)?
- 4
J

> (Zmin(pij(t),pkj(t)))

= (1= |IP(Xs € ) — Pe(X, € )]])°
> (1—d(t)* ©

Note also that the definition of s(¢) involves lower bounds in the convergence

pl%(,t) — 1. One can make a definition involving upper bounds
J

. (t (¢
d(t)EmaX]L()—lzmasz()—lzo (4.14)
%,] Uy 4 T

where the equality (Chapter 3 Lemma yyy) requires in discrete time that ¢
be even. This yields the following one-sided inequalities, but Example 4.9
shows there can be no such reverse inequality.

Lemma 4.8 (a) 4/|P(X; € ) —n(-)|[2 < 220 1 ¢ >0.
(b) d(t) < i\/d(2t), t >0
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Proof. Part (b) follows from part (a) and the definitions. Part (a) is essen-
tially just the “|| ||1 <|| ||2” inequality, but let’s write it out bare-hands.

2
4|P(Xp €)= m()II* = (leu‘(t)—ﬂjl)

2
_ 1/ 2|Pij(t) — m;
= 1/2
plj )
< Z by Cauchy-Schwarz
J
pij (t)
= —1 _—
4P s
J
B pii(2t)
= -1+ by Chapter 3 Lemma yyy.
[
Example 4.9 Consider a continuous-time 3-state chain with transition rates
1 1
[a] [b]
5 1

Here 7, = QL-I-&:’ Ty = Te = 57 + -. It is easy to check that 71 is bounded as
g — 0. But pu(t) = et as ¢ — 0, and so by considering state a we have
d(t) = oo as e — 0 for any fixed ¢.

Remark. In the nice examples discussed in Chapter 5 we can usually
find a pair of states (ig, jo) such that

J(t) = H-on(Xt € ) — Pjo(Xt S )|| for all ¢.
The next example shows this is false in general.

Example 4.10 Consider random walk on the weighted graph
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for suitably small . As t — 0 we have 1 — d(t) ~ c.t?, the maz attained by
pairs (0,2) or (1,3). But as t — oo we have d(t) ~ a. exp(—t/m2(¢)) where
T2(e) = O(1/¢e) and where the maz is attained by pairs (i,). O

As a final comment, one might wonder whether the minimizing distribu-
tion p in the definition of 7'1(3) were always 7, i.e. whether 7'1(3) = 1(2) always.
But a counter-example is provided by random walk on the n-star (Chapter

5 yyy) where 7'1(3) = 1 (by taking u to be concentrated on the center vertex)
(2)
but 7" — 3/2.

4.3.2 Proof of Theorem 6

We will prove

Lemma 4.11 7 < 7'1(1) <4r

Lemma 4.12 7'1(3) < 71(2) < ﬁﬁ(l)'

Lemma 4.13 71(4) < 47'1(3)

Lemma 4.14 7'1(5) < 71(4)

(1)

These lemmas hold in discrete and continuous time, interpreting taui, 7

as Tldisc’ 7'11 Adise i Jiscrete time. Incidentally, Lemmas 4.12, 4.13 and 4.14
do not depend on reversibility. To complete the proof of Theorem 4.6 in
continuous time we would need to show

7 < K71(5) in continuous time (4.15)

for some absolute constant K. The proof I know is too lengthy to repeat

here — see [6]. Note that (from its definition) 71(2) < 79, so that (4.15) and
the lemmas above imply 7 < 2K in continuous time. We shall instead
give a direct proof of a result weaker than (4.15):

Lemma 4.15 7 < 6679.

Turning to the assertions of Theorem 4.6 is discrete time, (b) is given by

the discrete-time versions of Lemmas 4.11 and 4.12. To prove (a), it is

enough to show that the numerical values of the parameters 7‘1(2) — —7‘1(5) are

unchanged by continuizing the discrete-time chain. For 7'1(5) and 71(4) this is

3)

clear, because continuization doesn’t affect mean hitting times. For 7;° and

71(2) it reduces to the following lemma.
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Lemma 4.16 Let X; be a discrete-time chain and Y; be its continuization,
both started with the same distribution. Let T be a randomized stopping
time for Y. Then there exists a randomized stopping time T for X such

A

that P(X(T) € -) = P(Y(T) € -) and ET = ET.

Proof of Lemma 4.11. The left inequality is immediate from Lemma
4.7(a), and the right inequality holds because

s(47) 1 — (1 —d(2m))? by Lemma 4.7(b)

<
< 1-(1—e?)? by Lemma 4.5
<

e L.

Proof of Lemma 4.12. The left inequality is immediate from the defini-
tions. For the right inequality, fix ¢. Write u = Tl(l), so that

pjk(u) > (1 — e Y)my, for all j, k.
We can construct a stopping time U; € {u, 2u, 3u, ...} such that
Pi(Xy, € Ui =u) = (1-¢ ()
and then by induction on m such that
Pi(Xy, € Ui =mu) =e ™ V(1 —e (), m > 1.
Then P;(Xy, € -) = n(-) and E;U; = u(1—e )71 So 71(2) < (1—6_1)_17'1(1).

Remark. What the argument shows is that we can construct a strong
stationary time V; (in the sense of (4.13)) such that

EVi=(1—eY 7, (4.16)

Proof of Lemma 4.13. Consider the probability distribution p attaining

the min in the definition of 7'1(3), and the associated stopping times U;. Fix

i. Since P;(X(U;) € -) = u(+),
ET; < EU; + E,T; <79 + B, T;.
The random target lemma (4.7) says 3>°; E;Tjm; = 3°; B, Tjm; and so

SN mIET; - BJT =2 mi(ET; — B Ty)* < 2n”.
j j
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Writing b(i) for the left sum, the definition of 7'1(4) and the triangle inequality

give 71(4) < max; (b(i) + b(k)), and the Lemma follows.

Proof of Lemma 4.14. Fix a subset A and a starting state i ¢ A. Then
for any j € A,
ET; = ETA + E,T

where p is the hitting place distribution P;(X7, € -). So
T(A)ETs =Y mETa=Y m(ET; — E,Tj)
JjEA JjEA
< max Z (BT — EyTy) < 71(4).
k JjEA
Proof of Lemma 4.15. For small § > 0 to be specified later, define

A={j: E;T; <19/6}.

Note that Markov’s inequality and the definition of 7y give

2 miER Ty 7

eyl Tl (4.17)

w(A°) =n{j: E;T; > 19/0} <
Next, for any j

< (p4j(s)
E.T;, = / —=—~ — 1| ds by Chapter 2 Lemma yyy
0

T

t <pj](t) — 1) for any ¢

v

Ty
by monotonicity of p;;(t). Thus for j € A we have

mj -t Tt

and applying Chapter 3 Lemma yyy (b)

ik (T
T ot

Now let i be arbitrary and let k € A. For any 0 < s < u,

Tk T~ jeA Tk - d(u+t—s) ot
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and so ( ) N
pik(u + 1 ( 7'0>
>(1—— ) P(Ta<u). 4.18

22 (1-3) R(Ta<u) (418)

Now )
E;Ty T
< <
Pi(Ta > u) < u  — un(A)

using Markov’s inequality and the definition of 71(5). And 71(5) < 71(4) < 27y,
the first inequality being Lemma 4.14 and the second being an easy conse-
quence of the definitions. Combining (4.18) and the subsequent inequalities
shows that, for k € A and arbitrary 4

pik(u+1) < TO)+< 279 >+
Lelt > (1-2) (1- =, say.
Tk - ot ur(A) 1 say

Applying this to arbitrary ¢ and j we get

dlu+t) <1—nr(A) <1- (l_gz)Jr(ﬂ(A)—?)Jr

+ +
) 270
<1-(1-D1) (1-5-%00 4.17).
< ( &)( 5 u) by (4.17)

Putting ¢ = 4979, u = 1779,0 = 1/7 makes the bound = % <e L.

Remark. The ingredients of the proof above are complete monotonicity
and conditioning on carefully chosen hitting times. The proof of (4.15) in
[6] uses these ingredients, plus the minimal hitting time construction in the
recurrent balayage theorem (Chapter 2 yyy).

Outline proof of Lemma 4.16. The observant reader will have noticed
(Chapter 2 yyy) that we avoided writing down a careful definition of stopping
times in the continuous setting. The definition involves measure-theoretic is-
sues which I don’t intend to engage, and giving a rigorous proof of the lemma
is a challenging exercise in the measure-theoretic formulation of continuous-
time chains. However, the underlying idea is very simple. Regard the
chain Y; as constructed from the chain (Xo, X1, Xo,...) and exponential(1)
holds (¢;). Define T = N(T'), where N(t) is the Poisson counting process
N(t) = max{m : & +...+&y, < t}. Then X(T') = Y (T') by construction and
ET = ET by the optional sampling theorem for the martingale N(¢) —t. O

4.3.3 7 in discrete time, and algorithmic issues

Of course for period-2 chains we don’t have convergence to stationarity in

. . is 1,disc .
discrete time, so we regard Tfhbc =7 = 00. Such chains — random
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walks on bipartite weighted graphs — include several simple examples of
unweighted graphs we will discuss in Chapter 5 (e.g. the n-path and n-cycle
for even n, and the d-cube) and Chapter 7 (e.g. card-shuffling by random
transpositions, if we insist on transposing distinct cards).

As mentioned in Chapter 1 xxx, a topic of much recent interest has
been “Markov Chain Monte Carlo”, where one constructs a discrete-time
reversible chain with specified stationary distribution 7 and we wish to use
the chain to sample from 7. We defer systematic discussion to xxx, but a few
comments are appropriate here. We have to start a simulation somewhere.
In practice one might use as initial distribution some distribution which is
feasible to simulate and which looks intuitively “close” to 7, but this idea
is hard to formalize and so in theoretical analysis we seek results which
hold regardless of the initial distribution, i.e. “worst-case start” results. In

2

this setting is, by definition, the minimum expected time to generate a

sample with distribution 7. But the definition of 71(2) merely says a stopping
time exists, and doesn’t tell us how to implement it algorithmically. For
algorithmic purposes we want rules which don’t involve detailed structure
of the chain. The most natural idea — stopping at a deterministic time —
requires one to worry unnecessarily about near-periodicity. One way to avoid
this worry is to introduce holds into the discrete-time chain, i.e. simulate
(P+1)/2 instead of P. As an alternative, the distribution of the continuized
chain at time ¢ can be obtained by simply running the discrete-time chain
for a Poisson(f) number of steps. “In practice” there is little difference
between these alternatives. But the continuization method, as well as being
mathematically less artificial, allows us to avoid the occasional messiness
of discrete-time theory (see e.g. Proposition 4.29 below). In this sense our
use of 7 for discrete-time chains as the value for continuous-time chains is
indeed sensible: it measures the accuracy of a natural algorithmic procedure
applied to a discrete-time chain.

Returning to technical matters, the fact that a periodic (reversible, by
our standing assumption) chain can only have period 2 suggests that the
discrete-time periodicity effect could be eliminated by averaging over times
t and t + 1 only, as follows.

Open Problem 4.17 Show there exist ¥(xz) L 0 as x | 0 and ¢(t) ~ ¢t as

t — oo such that, for any discrete-time chain,

PZ(Xt S ) + -Pi(Xt+1 S )
2

— ()| < v, t=01.2...

7

where d(-) refers to the continuized chain.
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See the Notes for some comments on this problem.
If one does wish to study distributions of discrete-time chains at deter-
ministic times, then in place of 7 one needs to use

B =max(|An] : 2 <m < n)=max(A2, —\p). (4.19)
The spectral representation then implies

|Pi(X; =1i) —m| < B, t=0,1,2,.... (4.20)

4.3.4 7, and mean hitting times

In general 7, may be much smaller than 7* or 9. For instance, random walk
on the complete graph has 79 ~ n while 77 — 1. So we cannot (without
extra assumptions) hope to improve much on the following result.

Lemma 4.18 For an n-state chain, in discrete or continuous time,

(2)

To < N7y
2
< 727—1( ) .
T oming 7y
Lemmas 4.24 and 4.25 later are essentially stronger, giving corresponding
upper bounds in terms of 7y instead of 7. But a proof of Lemma 4.18 is
interesting for comparison with the cat-and-mouse game below.

Proof of Lemma 4.18. By definition of 71(2), for the chain started at ig
we can find stopping times Uy, Us, . .. such that

E(Uss1 — U Xu,u < Uy) < 72

(X (Us); s > 1) are independent with distribution 7.
So S; = min{s : X(Us) = j} has E;,S; = 1/7;, and so
(2)

EiT; < EjUs, < -
Ty
where the second inequality is justified below. The second assertion of the
lemma is now clear, and the first holds by averaging over j.
The second inequality is justified by the following martingale result,
which is a simple application of the optional sampling theorem. The “equal-

ity” assertion is sometimes called Wald’s equation for martingales.
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Lemma 4.19 Let 0 =Yy <Y; <Y5... be such that
E(Yiy1 —YilY;,j<i)<e i20
for a constant c. Then for any stopping time T,
EYr < cET.
If in the hypothesis we replace “< c¢” by ‘= c”, then EYp = cET.

Cat-and-Mouse Game. Here is another variation on the type of game
described in Chapter 3 section yyy. Fix a graph. The cat starts at some
vertex v, and follows a continuous-time simple random walk. The mouse
starts at some vertex v, and is allowed an arbitrary strategy. Recall the
mouse can’t see the cat, so it must use a deterministic strategy, or a random
strategy independent of the cat’s moves. The mouse seeks to maximize
E M, the time until meeting. Write m* for the sup of EM over all starting
positions v., vy, and all strategies for the mouse. So m* just depends on the
graph. Clearly m* > max; ; F;T}, since the mouse can just stand still.

Open Problem 4.20 Does m* = max; ; E;T;? In other words, is it never
better to run than to hide?

Here’s a much weaker upper bound on m*. Consider for simplicity a regular
n-vertex graph. Then
(1)

enT-
P 1

<= (4.21)

Because as remarked at (4.16), we can construct a strong stationary time V'

(1)
such that EV = % = ¢, say. So we can construct 0 = Vp < Vi < Va...
such that

E(Viqn = VilVj,j <i)<ec, 120
(X (Vi),i > 1) are independent with the uniform distribution 7
(X(Vi),i > 1) are independent of (V;,i > 1).

So regardless of the mouse’s strategy, the cat has chance 1/n to meet the
mouse at time V;, independently as ¢ varies, so the meeting time M satisfies
M < Vp where T is a stopping time with mean n, and (4.21) follows from
Lemma 4.19. This topic will be pursued in Chapter 6 yyy.
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4.3.5 7, and flows

Since discrete-time chains can be identified with random walks on weighted
graphs, relating properties of the chain to properties of “flows” on the graph
is a recurring theme. Thompson’s principle (Chapter 3 yyy) identified mean
commute times and mean hitting times from stationarity as infs over flows
of certain quantities. Sinclair [308] noticed that 71 could be related to “mul-
ticommodity flow” issues, and we give a streamlined version of his result
(essentially Corollary 4.22) here. Recall from Chapter 3 section yyy the
general notation of a unit flow from a to m, and the special flow f*~7 in-
duced by the Markov chain.

Lemma 4.21 Consider a family f = (f(“)), where, for each state a, £(9) is

a unit flow from a to the stationary distribution w. Define

(F)=  max IfUI
edges (i,j) g szzg

in discrete time, and substitute g;; for p;j in continuous time. Let £ be
the special flow induced by the chain. Then

b(ET) <Y < AG(ETT)
where A is the diameter of the transition graph.

Proof. We work in discrete time (the continuous case is similar). By Chapter

3 yyy
73_>ﬂ- _ Zia - Zja

TiPij Ta

\Zia — Zjal.
Z j

and so |f“%“

DT

a TiPij
Thus

w(fa—ﬂr = edrélea)’(J) Z ‘Zm - ]a‘-

The result now follows because by (4.12)
4
7'1( ) = H}%XZ |Zia — Zka|
’ a

where ¢ and k are not required to be neighbors. O
Using Lemmas 4.11 - 4.13 to relate 71(4) to 71, we can deduce a lower
bound on 7 in terms of flows.
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Corollary 4.22 1 > <21 infg(f).

Unfortunately it seems hard to get analogous upper bounds. In particular,
it is not true that

" =0 (A nflfzp(f)> .

To see why, consider first random walk on the n-cycle (Chapter 5 Example
yyy). Here 71 = ©(n?) and ¥ (f*~™) = ©(n), so the upper bound in Lemma
4.21 is the right order of magnitude, since A = O(n). Now modify the
chain by allowing transitions between arbitrary pairs (4, j) with equal chance
o(n™3). The new chain will still have 71 = ©(n?), and by considering the
special flow in the original chain we have inff ¢ (f) = O(n), but now the
diameter A = 1.

4.4 The relaxation time 7

The parameter 7 is the relaxation time, defined in terms of the eigenvalue
A2 (Chapter 3 section yyy) as
7 = (1— X)) !in discrete time
= ;! in continuous time.
In Chapter 3 yyy we proved a lower bound for an n-state discrete-time chain:

1
7'22175

which is attained by random walk on the complete graph. We saw in Chapter
3 Theorem yyy the extremal characterization

7o = sup{||gl[3/€(g,9) : Y _ mig(i) = 0}. (4.22)
i
The next three lemmas give inequalities between 79 and the parameters

studied earlier in this chapter. Write 7, = min; ;.

Lemma 4.23 In continuous time,

1 1
T <T1 <7 <1+210g7r)-

*

In discrete time,

(2) o _4e < 1 1)
T = 172 1+210g .

- *
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Lemma 4.24 7 <79 < (n —1)79.
Lemma 4.25 7* < 27%

Proof of Lemma 4.23. Consider first the continuous time case. By the
spectral representation, as t — oo we have p;;(t) — m; ~ ¢; exp(—t/72) with
some ¢; # 0. But by Lemma 4.5 we have |p;;(t) — ;| = O(exp(—t/71)). This
shows 79 < 71. For the right inequality, the spectral representation gives

pislt) — m < e7'/™ (4.23)

Recalling the definition (4.14) of d,

d(t) < 2d(t)
< /d(2t) by Lemma 4.8(b)
e—Qt/TQ
< {/max by (4.14) and (4.23)
7 Uy
7_[_;1/26715/7—2

and the result follows. The upper bound on 7'1(2) holds in continuous time

by Lemmas 4.11 and 4.12, and so holds in discrete time because 7'1(2) and 7o
are unaffected by continuization.

Proof of Lemma 4.24. 19 < 19 because 79 is the first term in the eigen-
time identity for 7y. For the other bound, Chapter 3 Lemma yyy gives the

inequality in
T0 — Zﬂ'jEﬂ-Tj S Z(l — 7Tj)7’2 = (TL — 1)7’2.
J J
Proof of Lemma 4.25. Fix states a, b such that E Ty + EpT, = 7" and

fix a function 0 < g < 1 attaining the sup in the extremal characterization
(Chapter 3 Theorem yyy), so that

Write ¢ = Y, mg(i). Applying the extremal characterization of 7o to the
centered function g — ¢,

llg—c,g—cll3  var rg(Xo)
T2>

= = 7" var »g(Xp).
~E&(g—cg—c) £(9,9) 9(Xo)
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But

Tac® + mp(1 — ¢)?

. 2 N2
odnf (may” +m(1—y)7)
TaTb

Tq + T

var ~g(Xo)

AV

Y

B min (g, )

/2

v

establishing the lemma. O

Simple examples show that the bounds in these Lemmas cannot be much
improved in general. Specifically
(a) on the complete graph (Chapter 5 Example yyy) 72 = (n — 1)1 and
TS = 27%2
(b) On the barbell (Chapter 5 Example yyy), 12,7 and 79 are asymptotic
to each other.
(c) In the M/M/1/n queue, 71/m2 = ©O(log1/m,) as n — co. O

In the context of Lemma 4.23, if we want to relate T{iisc itself to eigen-
values in discrete time we need to take almost-periodicity into account and
use 8 = max(A2, —\,) in place of 5. Rephrasing the proof of Lemma 4.23

gives
Lemma 4.26 In discrete time,

1 1+ 3logl/m,
log1/p log1/p

Regarding a discrete-time chain as random walk on a weighted graph, let A
be the diameter of the graph. By considering the definition of the variation

~| S Tld’iSC S I’

[

|

distance d(t) and initial vertices i, j at distance A, it is obvious that d(t) = 1
for t < A/2, and hence Tldisc > [A/2]. Combining with the upper bound in
Lemma 4.26 leads to a relationship between the diameter and the eigenvalues
of a weighted graph.

Corollary 4.27

log; < 2+ logA(l/m)

This topic will be discussed further in Chapter yyy.
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4.4.1 Correlations and variances for the stationary chain

Perhaps the most natural probabilistic interpretation of 75 is as follows.
Recall that the correlation between random variables Y, 7 is

E(YZ)— (EY)(EZ)
Vvar Y var Z

For a stationary Markov chain define the maximal correlation function

cor(Y,Z) =

p(t) = maxcor(h(Xo), 9(X0))

This makes sense for general chains (see Notes for further comments), but
under our standing assumption of reversibility we have

Lemma 4.28 In continuous time,
p(t) = exp(—t/72), t > 0.

In discrete time,
p(t) = 5t7 t=>0

where f = max(Aa, —Ay).

This is a translation of the Rayleigh-Ritz characterization of eigenvalues
(Chapter 3 yyy) — we leave the details to the reader.

Now consider a function g with E,g(Xy) = 0 and ||g|3 = E¢*(Xo) > 0.
Write

S = f(f g(Xs)ds  in continuous time

S;= YiZlg(X,) in discrete time.

Recall from Chapter 2 yyy that for general chains there is a limit variance
0% = limy oo t~tvar S;. Reversibility gives extra qualitative and quantita-
tive information. The first result refers to the stationary chain.

Proposition 4.29 In continuous time, t~'var »S; T o2, where
0 < 0% < 2ml|g]l3.

And A(t/o)to? < var Sy < to?, where

A(u)E/Ou(l—S>esds:1—ul(l—eu)Tl as u T 00.

u
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In discrete time,
t~var .S, = 0% < 27’2”9”%

2T
ot (1= 22) < var 150 < ot + g
and so in particular

1
var »S; < t||g|[3(2m + Z) (4.24)

Proof. Consider first the continuous time case. A brief calculation using the
spectral representation (Chapter 3 yyy) gives

Erg(X0)g(Xe) = Y gme (4.25)
m>2
1/2

where g, = >, ™" “uimg(i). So

t ot
t~var .S, = til/ / Erg(Xyu)g(Xs) dsdu
0 Jo
¢
_ ! / (t — $)Exg(Xo)g(X.)ds
0
_ o (1= S gle Mt d
= i€ s (4.26)
0 ¢ m>2

2

Im

2 I A(Apt 4.2

> S A (4.27)
m>2

by change of variables in the integral defining A(u). The right side increases

with ¢ to

=2 go/Am, (4.28)
m>2
and the sum here is at most 3,59 92,/A2 = ||g/[372. On the other hand,

A() is increasing, so

t~tvar -(S;) > 2 Z %A()\gt) = g2 A(t/).

m>2 M

>

In discrete time the arguments are messier, and we will omit details of
calculations. The analog of (4.26) becomes

t—1

t~tvar S = Z ( - |Zt‘) Z G2

5:—(t—1) m22
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In place of the change of variables argument for (4.27), one needs an ele-
mentary calculation to get

2
—1 _ Im
t7 var ;S = 2m2>2 T B(Am,t) (4.29)

L+XA A=Y
2 t(1-X)"

where B(\,t) =

This shows
9 14+ A

™1 = Am

t~var S, — o? = Z g
m>2

and the sum is bounded above by

14+ A 14\
2N = 2

1—)\2m22 1— A

1913 < 272|lgll3-

Next, rewrite (4.29) as

2 /\m(l — )‘fn)

e 1ot = 2 3 gt Sl )
m

m>2

Then the upper bound for var S; follows by checking

A1 = XY S 1
inf ———~>>——.
—1<a<1 (1=X)2 = 2
For the lower bound, one has to verify

2A(1 — X!
sup AL =)

—————— is attained at A2 (and equals C, sa
—1a<x, (=21 +A) 2 (and eq y)

where in the sequel we may assume Ao > 0. Then

1 m
B(Am, 1) > +2A (1-C/t), m>2
and so
t~var .S, > o (1-CJ/t).
But C 2Xo(1 — A4 2
— = 2( _ 2) < :2T2/t

1= A)(1+A2) ~ t(1—A2)

giving the lower bound. O
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Note that even in discrete time it is 75 that matters in Proposition 4.29.
Eigenvalues near —1 are irrelevant, except that for a periodic chain we have
o = 0 for one particular function g (which?).

Continuing the study of S; = [J g(Xs)ds or its discrete analog for a sta-
tionary chain, standardize to the case where E,g(Xo) = 0, Exg*(Xo) = 1.
Proposition 4.29 provides finite-time bounds for the asymptotic approxima-
tion of variance. One would like a similar finite-time bound for the asymp-
totic Normal approximation of the distribution of S;.

Open Problem 4.30 Is there some explicit function (b, s) — 0 as s — oo,
not depending on the chain, such that for standardized g and continuous-
time chains,

S

< P(llglloos t/72)

sup
x

where ||g||coc = max;|g(i)| and Z has Normal(0, 1) distribution?

See the Notes for further comments. For the analogous result about large
deviations see Chapter yyy.

4.4.2 Algorithmic issues

Suppose we want to estimate the average g = >, mig(i) of a function g
defined on state space. If we could sample i.i.d. from 7m we would need order
£72 samples to get an estimator with error about gy/var rg. Now consider
the setting where we cannot directly sample from 7 but instead use the
“Markov Chain Monte Carlo” method of setting up a reversible chain with
stationary distribution 7. How many steps of the chain do we need to get
the same accuracy? As in section 4.3.3, because we typically can’t quantify
the closeness to 7 of a feasible initial distribution, we consider bounds which
hold for arbitrary initial states. In assessing the number of steps required,
there are two opposite traps to avoid. The first is to say (cf. Proposition
4.29) that e 27 steps suffice. This is wrong because the relaxation time
bounds apply to the stationary chain and cannot be directly applied to a
non-stationary chain. The second trap is to say that because it take ©(7y)
steps to obtain one sample from the stationary distribution, we therefore
need order e727| steps in order to get ¢~2 independent samples. This is
wrong because we don’t need independent samples. The correct answer is
order (11 + £ 2m) steps. The conceptual idea (cf. the definition of 7'1(2))
is to find a stopping time achieving distribution 7 and use it as an initial
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state for simulating the stationary chain. More feasible to implement is the
following algorithm.

Algorithm. For a specified real number ¢; > 0 and an integer ms > 1,
generate M (t1) with Poisson(¢;) distribution. Simulate the chain X; from
arbitrary initial distribution for M (t1) + mq — 1 steps and calculate

1 M(t1)+m2—1
A(g, t1,mo) = — 9(Xy).
M2 ()
Corollary 4.31
= 27'2 +1 mo
P(|A(g7t17m2> —g\ > 5“9”2) < S(tl) + €2m£

where s(t) is separation (recall section 4.3.1) for the continuized chain.

To make the right side approximately § we may take

47y

t =" [log(2/8)]: ma =[],

Since the mean number of steps is 1 +mg — 1, this formalizes the idea that
we can estimate g to within ¢||g||2 in order (71 + e~27y) steps.

xxx if don’t know tau‘s

Proof. We may suppose g = 0. Since Xj(;,) has the distribution of the
continuized chain at time ¢;, we may use the definition of s(¢;) to write

P(Xpi) €)= (L= s(t))m +s(ta)p
for some probability distribution p. It follows that
mo—1

Z 9(Xt)

P (|A(g,t1,m2)| > ¢llgll2) < s(t1) + Pr (
t=0

> €|9H2>

1
ma2

1 mo—1
<s(t1)+ ———5 var ( g(Xt)> )
e " &

Apply (4.24).
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4.4.3 7, and distinguished paths

The extremal characterization (4.22) can be used to get lower bounds on 75
by considering a tractable test function g. (xxx list examples). As mentioned
in Chapter 3, it is an open problem to give an extremal characterization of 7
as exactly an inf over flows or similar constructs. As an alternative, Theorem
4.32 gives a non-exact upper bound on 7 involving quantities derived from
arbitrary choices of paths between states. An elegant exposition of this idea,
expressed by the first inequality in Theorem 4.32, was given by Diaconis and
Stroock [124], and Sinclair [308] noted the second inequality. We copy their
proofs.

We first state the result in the setting of random walk on a weighted
graph. As in section 4.1, consider a path x = g, 41, ..., = ¥y, and call this
path 7z,. This path has length |y,,| = m and has “resistance”

T('Ya:y) = Z 1/we
ee'chy

where here and below e denotes a directed edge.

Theorem 4.32 For each ordered pair (z,y) of vertices in a weighted graph,
let vzy be a path from x to y. Then for discrete-time random walk,

Ty < wmeaxz Zﬁxﬂyr(%y)l(ee%y)
z oy

1
Ty < W meaX wf Z Z Wx”y’%cy‘l(ee%y)'
ez gy

Note that the two inequalities coincide on an unweighted graph.

Proof. For an edge e = (i,j) write Ag(e) = g(j) — g(i). The first
equality below is the fact 2 var (Y1) = E(Y; — Y3)? for i.i.d. Y’s, and the
first inequality is Cauchy-Schwarz.

219l = YD mamy(9(y) — g(2))?

- zzwy(z Ag<e>)

x eCYxy

ot

2
= Ty (Yay) VweAg(e) (4.30)
R )

T
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< Zzﬂxﬂyr(%&y) Z we(Ag(e))Q (4.31)
Ty e€Vay

= Z Z 7r:v7ry7ﬂ(")/svy) Z we(Ag<e))21(e€%y)
Ty e

< ,%Zwe(Ag(e))2 =k 2w€ (g, 9) (4.32)

where k is the maz in the first inequality in the statement of the Theorem.
The first inequality now follows from the extremal characterization (4.22).
The second inequality makes a simpler use of the Cauchy-Schwarz inequality,
in which we replace (4.30,4.31,4.32) by

= ;Zﬂxwy ( Z 1'Ag(e)>

eEYxy
< DY Tl Yo (Agle))? (4.33)
z Yy eCYzy
<

K'Y we(Ag(e))? = &' 2wE (g, 9)

where x’ is the maz in the second inequality in the statement of the Theorem.

Remarks. (a) Theorem 4.32 applies to continuous-time (reversible) chains
by setting w;; = m;q;;.

(b) One can replace the deterministic choice of paths 7., by random
paths I'yy of the form x = Vj, Vi,..., Vi = y of random length M = |T'y,|.
The second inequality extends in the natural way, by taking expectations in
(4.33) to give

<> memy E ( Cayllieers,) . (Ag(e))2> ,
r Yy e
and the conclusion is
Corollary 4.33

1
T < wmeaxwfzzﬂ'xﬂ'y E |me|1(e€ny)‘
ez Ty

(c) Inequalities in the style of Theorem 4.32 are often called Poincaré
inequalities because, to quote [124], they are “the discrete analog of the

classical method of Poincaré for estimating the spectral gap of the Laplacian
on a domain (see e.g. Bandle [39])”. I prefer the descriptive name the



4.4. THE RELAXATION TIME 19 141

distinguished path method. This method has the same spirit as the coupling
method for bounding 71 (see Chapter yyy), in that we get to use our skill
and judgement in making wise choices of paths in specific examples. xxx
list examples. Though its main utility is in studying hard examples, we give
some simple illustrations of its use below.

Write the conclusion of Corollary 4.33 as 72 < w max, w% F(e). Consider
a regular unweighted graph, and let I'; , be chosen uniformly from the set
of minimum-length paths from x to y. Suppose that F'(e) takes the same
value F for every directed edge e. A sufficient condition for this is that the
graph be arc-transitive (see Chapter 8 yyy). Then, summing over edges in
Corollary 4.33,

To| E | < WZZZWnyE|ny|1(e€ny) = wZZTrmwaH’xyF
e x Yy x Yy

— —
where | £ | is the number of directed edges. Now w = | £ |, so we may
reinterpret this inequality as follows.

Corollary 4.34 For random walk on an arc-transitive graph, ™ < ED?,
where D = d(&1,&2) is the distance between independent uniform random
vertices £1,&o.

In the context of the d-dimensional torus Zj‘(,, the upper bound is asymptotic

(as N — o0) to NQE( 4, Ui)2 where the U; are independent uniform
[0,1/2], This bound is asymptotic to d(d + 1/3)N?/16. Here (Chapter 5
Example yyy) in fact 75 ~ dN?/(272), so for fixed d the bound is off by only
a constant. On the d-cube (Chapter 5 Example yyy), D has Binomial(d, 1/2)
distribution and so the bound is ED? = (d? + d)/4, while in fact 7, = d/2.
Intuitively one feels that the bound in Corollary 4.34 should hold for
more general graphs, but the following example illustrates a difficulty.

Example 4.35 Consider the graph on n = 2m vertices obtained from two
complete graphs on m vertices by adding m edges comprising a matching of
the two vertex-sets.

Here a straightforward implementation of Theorem 4.32 gives an upper
bound of 2m, while in fact 79 = m/2. On the other hand the conclusion
of Corollary 4.34 would give an O(1) bound. Thus even though this exam-
ple has a strong symmetry property (vertez-transitivity: Chapter 8 yyy) no
bound like Corollary 4.34 can hold.
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4.5 The flow parameter 7,

In this section it’s convenient to work in continuous time, but the numerical
quantities involved here are unchanged by continuization.

4.5.1 Definition and easy inequalities

Define
m(A)m(A°)

OTA A (4.34)

Te = Sup
A

where

Q(A, A%) = Z Z Tiqij

i€A jEAC

and where such sups are always over proper subsets A of states. This param-
eter can be calculated exactly in only very special cases, where the following
lemma is helpful.

Lemma 4.36 The sup in (4.84) is attained by some split { A, A} in which
both A and A€ are connected (as subsets of the graph of permissible transi-
tions).

Proof. Consider a split {A, A°} in which A is the union of m > 2 connected

components (B;). Write v = min; %. Then

Q4,49 = QB BY)
> Y w(Bi)n(B)
= Y (B) - 7(B)

= v (W(A) - ZWQ(Bi)>

i

and so

QUAAY) | nl(A) = (B
m(A)m(Ac) — w(A) — m2(A)

But for m > 2 we have Y, 72(B;) < (32, 7(B;))? = n2(A), which implies

Q(A,A° ‘
77r(/(§)7r(142) >7. O
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To see how 7, arises, note that the extremal characterization of 7o (4.22)
applied to g = 14 implies
m(A)m(A°)
QA A°) —

for any subset A. But much more is true: Chapter 3 yyy may be rephrased
as follows. For any subset A,

T2

m(A)m(A°)
Q(A, A°)

where a4 is the quasistationary distribution on A¢ defined at Chapter 3 yyy.
So taking sups gives

m(A)E,Tx
m(A°)

< <m(A)Ey,Ta <1

Corollary 4.37

AE,. T
7 < sup A BT

< AVE, Tx < 7.
Py =T @Ea s

In a two-state chain these inequalities all become equalities. This seems a
good justification for our choice of definition of 7., instead of the alternative

A:m(A)<1/2 Q(A7 AC)

which has been used in the literature but which would introduce a spurious
factor of 2 into the inequality 7. < 7o.

Lemma 4.39 below shows that the final inequality of Corollary 4.37 can
be reversed. In contrast, on the n-cycle 7, = ©(n) whereas the other quan-
tities in Corollary 4.37 are ©(n?). This shows that the “square” in Theorem
4.40 below cannot be omitted in general. It also suggests the following
question (cf. 7 and 7'1(5) )

Open Problem 4.38 Does there exist a constant K such that

m(A)E,Tx
<K _—
e ()
for every reversible chain?

A positive answer would provide, via Chapter 3 yyy, a correct order-of-
magnitude extremal characterization of 7o in terms of flows.
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Lemma 4.39

T < sup Eo,Ta
Am(A)>1/2

and so in particular
T2 < 2supm(A)Eq,Ta.
A
Proof. 7 = ||h||3/&(h, h) for the eigenvector h associated with \. Put
A={x:h(x) <0}

and assume w(A) > 1/2, by replacing h by —h if necessary. Write hy =
max(h,0). We shall show

7o < |[h+[[3/€ (hy, hy) (4.35)
and then the extremal characterization Chapter 3 yyy
Eo,Ta = sup{||gl3/€(9,9) : g > 0,9 = 0 on A} (4.36)
implies 7 < E, ,T4 for this specific A.
The proof of (4.35) requires us to delve slightly further into the calculus

of Dirichlet forms. Write Py f for the function (P.f)(i) = F; f(X;) and write
(f,g) for the inner product >, m; f(i)g(i). Write 9(-) for %(-)tzo. Then

O(f,Prg) = —E(f,9)

where
E(F.9) =5 Y 2(G) — F@)0) — o)y
i g
Now consider d(h,P:h). On the one hand
hy,Pih) = =E(hy, h) < —=E(hy, hy)

where the inequality follows from the inequality (a*—b7)? < (at—b")(a—0b)
for real a,b. On the other hand, (hi,h) < (hy,hy) = ||h4]|3, and the
eigenvector h satisfies 9(Pth) = —Aah, so

Ay, Pih) > =Xo| |h ][5,

Combining these inequalities leads to (4.35).
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4.5.2 Cheeger-type inequalities

A lot of attention has been paid to reverse inequalities which upper bound
T in terms of 7. or related “flow rate” parameters. Motivation for such
results will be touched upon in Chapter yyy. The prototype for such results
is

Theorem 4.40 (Cheeger’s inequality) 7 < 8¢*72, where ¢* = max; ¢;.
This result follows by combining Lemma 4.39 above with Lemma 4.41 below.
In discrete time these inequalities hold with ¢* deleted (i.e. replaced by 1),

by continuization. Our treatment of Cheeger’s inequality closely follows
Diaconis and Stroock [124] — see Notes for more history.

Lemma 4.41 For any subset A,

2(]*7’02

EaATAS 7T2(A .

~—

Proof. Fix A and g with ¢ > 0 and g =0 on A.

(Z PRVAE: \%qu>

TFy

Z Z(Q(SU) - g(y))27rzqgcy X Z Z(g(x) + g(y))277:1:q$y

zFy TFY
by the Cauchy-Schwarz inequality

= 28(9,9) > > (9(x) + 9(y))*Tatay

T#Y

< 4E(9,9) Y > (9°(@) + 97 () Taday

TFY
= 8&(yg,9) Z 773&‘]:092 (z)

84*E(g,9) Il9l[3-

On the other hand

Z Z ’g ’T"mqgcy

T#yY

= 23 Y (0@~ ) metey

g(z)>g(y)

IN

IN
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= 4) Y ( /g(x)tdt> Talay

g(@)>g(y) \7IW)

= / ( ﬂzqw) dt
<t<g(x)

_ 4/ t Q(By, BY) dt where By = {x : g(z) > t}

o0 (B B¢
> 4 / % dt by definition of 7,
0
o0 (By)
> 4/ m(Bt) )dtbecauseg:OOHA
_ >r|g||2
Tc

Rearranging,
lgll3 _ 2¢°72
E(g.9) — m(A)
and the first assertion of the Theorem follows from the extremal character-
ization (4.36) of E,,Ta

4.5.3 7. and hitting times

Lemma 4.25 and Theorem 4.40 imply a bound on 7* in terms of 7.. But a
direct argument, using ideas similar to those in the proof of Lemma 4.41,
does better.

Proposition 4.42

< 4(1 —‘l—logn) .
min; 7;
Example 4.43 below will show that the log term cannot be omitted. Compare
with graph-theoretic bounds in Chapter 6 section yyy.
Proof. Fix states a,b. We want to use the extremal characterization
(Chapter 3 yyy). So fix a function 0 < g <1 with g(a) =0, ¢(b) = 1. Order

the states as a = 1,2,3,...,n = b so that g(-) is increasing.
Eg.9) = D> miaqin(g(k) — g(i))*
i<k
> Y >0 > manl(e(G+ 1) - g(h)?

1<j<k
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= 290 +1) — 9(1)*Q4;, A7), where A; =[1, ]

. (2 T(Aj)m(AS)
> D (9G+1) —g()? =" (4.37)
j (&
But
. . , L T2 (ATt 2 (AS) /2
1= (9(i+1)—g(i)) = Y _(9(i+1)—g(5)) T V24 A2 (AT)
7 7 Te n )T 7
So by Cauchy-Schwarz and (4.37)
1
1< 7€(9,9 —— 4.38
(9:9) 2 A 39
But m(A;) > jm, where m, = min; m;, so

2

J T

1 2
) (Aj)w(Ag)S%: < = (1+1logn)

jm(A<t/2 "

The same bound holds for the sum over {j : m(A;) > 1/2}, so applying

(4.38) we get

& 1 10 n
(97 g) *

and the Proposition follows from the extremal characterization.

Example 4.43 Consider the weighted linear graph with loops on vertices
{0,1,2,...,n — 1}, with edge-weights

wi—1; =1, 1 <i<n—1;  wy=2n—1ilgze) — (1 + 1)1 zn—1)-

This gives vertex-weights w; = 2n, and so the stationary distribution is
uniform. By the commute interpretation of resistance,

n—1

7" = EoTh—1+ En1Ty = wrop—1 = on? Z 1/i~ 2n2log n.

i=1
Using Lemma 4.36, the value of 7, is attained by a split of the form {[0, j], [j
1,n — 1]}, and a brief calculation shows that the maximizing value is j = 0
and gives

7. =2(n—1).

So in this example, the bound in Proposition 4.42 is sharp up to the numer-
ical constant.
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4.6 Induced and product chains

Here we record the behavior of our parameters under two natural operations
on chains.

4.6.1 Induced chains

Given a Markov chain X; on state space I and a function f : I — I, the
process f(X;) is typically not a Markov chain. But we can invent a chain
which substitutes. In discrete time (the continuous case is similar) define
the induced chain Xt to have transition matrix

NP Zivjif(i):g,f(j):j TiPi,j .

D;j = Pr(F(X1) = j|f(Xo) = 1) = (4.39)
" " i f(iy=i T
More informatively, we are matching the stationary flow rates:
Pi(Xo =1, X1 = j) = Pr(f(Xo) = i, f(X1) = ). (4.40)

The reader may check that (4.39) and (4.40) are equivalent. Under our
standing assumption that X; is reversible, the induced chain is also reversible
(though the construction works for general chains as well). In the electrical
network interpretation, we are shorting together vertices with the same f-
values. It seems intuitively plausible that this “shorting” can only decrease
our parameters describing convergence and mean hitting time behavior.

Proposition 4.44 (The contraction principle) The values of T, 19, T2
and 7. in an induced chain are less than or equal to the corresponding values
i the original chain.

Proof. A function § : I — R pulls back to a function g = §(f(-)) : I — R.
So the Dirichlet principle (Chapter 3 yyy) shows that mean commute times
can only decrease when passing to an induced chain:

Ero Ty) + EpiyTry < BTy + BT,

This establishes the assertion for 7* and 7, and the extremal characteri-
zation of relaxation time works similarly for 7. The assertion about 7. is
immediate from the definition, since a partition of I pulls back to a partition
of I. O

On the other hand, it is easy to see that shorting may increase a one-
sided mean hitting time. For example, random walk on the unweighted
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graph on the left has E,T;, = 1, but when we short {a,d} together to form
vertex a in the graph on the right, F;T, = 2.

[a]—{b]—e]—1d] @/

Finally, the behavior of the 7i-family under shorting is unclear.

Open Problem 4.45 Is the value of 7'1(2) i an induced chain bounded by
)

K times the value of 7‘1(2 in the original chain, for some absolute constant

K? For K =17

4.6.2 Product chains

Given Markov chains on state spaces I(!) and I?), there is a natural concept
of a “product chain” on state space IV xI? | Tt is worth writing this concept
out in detail for two reasons. First, to prevent confusion between several
different possible definitions in discrete time. Second, because the behavior
of relaxation times of product chains is relevant to simple examples and has
a surprising application (section 4.6.3).

As usual, things are simplest in continuous time. Define the product
chain to be

X, = (X", %)

where the components Xt(l) and Xt(2) are independent versions of the given

chains. So
. 1 1 . 2 2 .
Piyio (X0 = (j1,32)) = B (Y = i) P (07 = o). (4.41)
Using the interpretation of relaxation time as asymptotic rate of conver-
gence of transition probabilities, (Chapter 3 yyy) it is immediate that X

has relaxation time
Ty = max(72(1), 7'2(2)). (4.42)

In discrete time there are two different general notions of “product
chain”. One could consider the chain (Xt(l), t(2)) whose coordinates are

the independent chains. This is the chain with transition probabilities

(i1,42) — (j1,52) : probability P (iy, 1) PP (iz, j2)
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and has relaxation time

Ty = max(7'2(1), 7'2(2)).
But it is more natural to define the product chain X; to be the chain with
transition probabilities

(i1,i2) = (j1,72) : probability §P(1)(21,31)

(i1,i2) — (i1,J2) : probability §P(2)(12,j2).

This is the jump chain derived from the product of the continuized chains,
and has relaxation time

Ty = 2maX(72(1), 7'2(2)). (4.43)

Again, this can be seen without need for calculation: the continuized chain
is just the continuous-time product chain run at half speed.

This definition and (4.43) extend to d-fold products in the obvious way.
Random walk on Z% is the product of d copies of random walk on Z!, and
random walk on the d-cube (Chapter 5 yyy) is the product of d copies of
random walk on {0, 1}.

Just to make things more confusing, given graphs G() and G® the
Cartesian product graph is defined to have edges

(v1,w1) > (vg,wy) for vy <> vy

(v1,w1) > (v1,we) for wy <> wo.

If both G and G® are r-regular then random walk on the product graph
is the product of the random walks on the individual graphs. But in general,
discrete-time random walk on the product graph is the jump chain of the
product of the fluid model (Chapter 3 yyy) continuous-time random walks.
So if the graphs are r1- and ro-regular then the discrete-time random walk on
the product graph has the product distribution as its stationary distribution
and has relaxation time

Ty = (r1 + 12) max(v'Q(l)/rl,TQ(Q)/rg).

But for non-regular graphs, neither assertion is true.
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Let us briefly discuss the behavior of some other parameters under prod-
ucts. For the continuous-time product (4.41), the total variation distance d
of section 4.3 satisfies

d(t) =1—(1—dV ()1 —d? (1))
and we deduce the crude bound
< 2max(7'1(1), 71(2))

where superscripts refer to the graphs GV, G and not to the parameters
in section 4.3.1. For the discrete-time chain, there is an extra factor of 2
from “slowing down” (cf. (4.42,4.43)), leading to

<4 HlaX(Tl(l) , 71(2)).

Here our conventions are a bit confusing: this inequality refers to the discrete-
time product chain, but as in section 4.3 we define 71 via the continuized
chain — we leave the reader to figure out the analogous result for T{ilsc
discussed in section 4.3.3.

To state a result for 7, consider the continuous-time product (Xt(l), Xt(Z))
of independent copies of the same n-state chain. If the underlying chain
has eigenvalues (A;;1 < i < n) then the product chain has eigenvalues

(A + ;1 <14,5 <n) and so by the eigentime identity

product 1
0 - Z Ai + A
1,52 15(4,5)#(1,1)
1
= 219+ Z
52 i + )\j
n n 1
= 2 2
oF Z Z_: Ai + A
1=2 j=1
i 2
< 219+ n—i1+1)—
< om+ 3 +
< 2194 (n—1)219 = 2n79.

Thus in discrete time
qproduct (4.44)
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4.6.3 Efron-Stein inequalities

The results above concerning relaxation times of product chains are essen-
tially obvious using the interpretation of relaxation time as asymptotic rate
of convergence of transition probabilities, but they are much less obvious
using the extremal interpretation. Indeed, consider the n-fold product of a
single chain X with itself. Write (Xo, X;) for the distribution at times 0
and 1 of X, and 7 for the relaxation time of X. Combining (4.43) with
the extremal characterization (4.22) of the relaxation time for the product
chain, a brief calculation gives the following result.

Corollary 4.46 Let f : I"™ — R be arbitrary. Let (X, Y@) =1 n
be independent copies of (Xo, X1). Let Z = f(XM, ..., X)) and let Z) =
fXO X0 y@ x D X ™M) Then

var (Z)

5 21 B(Z — Z0))2

Sn’i’g.

To appreciate this, consider the “trivial” case where the underlying Markov
chain is just an i.i.d. sequence with distribution = on I. Then » = 1 and
the 2n random variables (X, Y(#):1 < i < n) are i.i.d. with distribution
7. And this special case of Corollary 4.46 becomes (4.45) below, because for
each 7 the distribution of Z — Z(® is unchanged by substituting Xy for Y ®.

Corollary 4.47 Let f: I" —> R be arbitrary. Let (Xo, X1,...,X,) be i.i.d.
with distribution w. Let Z® = f(X1,...,Xi_1, X0, Xi41,---,Xn) and let
Z = f(X1,...,Xy). Then

M\H

n
var Z (Z — ZW) (4.45)
If f is symmetric then

var (2) <N E(ZW — Z)? (4.46)

a zms

where Z©) = 7 andZ—nHZ

Note that in the symmetric case we may rewrite
ZW = f(Xo, X1, Xio1, Xit1, -+, Xn)-

This reveals (4.46) to be the celebrated Efron-Stein inequality in statistics,
and in fact (4.45) is a known variant (see Notes).
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Proof. As observed above, (4.45) is a special case of Corollary 4.46. So
it is enough to show that for symmetric f the right sides of (4.45) and (4.46)
are equal. Note that by symmetry a = E(Z ("))2 does not depend on ¢, and
b= EZ% 7 does not depend on (i, j), for j # i. So the right side of (4.45)
is

1
in(a —2b+a) =n(a—b).

But it is easy to calculate
a nb

EZWZ = EZ? = +
n+1 n+1

and then the right side of (4.46) equals
(n+1)(a—2EZ9Z + EZ?) = na — nb.

4.6.4 Why these parameters?

The choice of parameters studied in this chapter is partly arbitrary, but our
choice has been guided by two criteria, one philosophical and one technical.
The philosophical criterion is

when formalizing a vague idea, choose a definition which has
several equivalent formulations.

This is why we used the maximal mean hitting time parameter max; ;(£;7T;+
E;T;) instead of max; ; F;T}, because the former permits the equivalent “re-
sistance” interpretation.

Here is the technical criterion. Given a continuous-time chain X; and a
state ¢, create a new chain X; by splitting ¢ into two states 1, i2 and setting

q:lj = q;;';j =qij; JF1

.
ﬁh:@hzi%J#z

qgkl’iz = qz;il =p
with ¢* = g elsewhere. Then 7*(i1) = 7*(i2) = 37(i), with 7* = 7 else-
where. As p — oo, we may regard the new chain as converging to the old
chain in a certain sense. So our technical criterion for parameters 7 is that
the value of 7 for X* should converge, as p — oo, to the value for X. It is
easy to check this holds for the 7’s we have studied, but it does not hold for,
say,

T= nzax ;BT

which at first sight might seem a natural parameter.
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4.7 Notes on Chapter 4

Section 4.3.1. The definition of 71(2) involves the idea of a stopping time
U such that Xy has distribution 7 and is independent of the starting posi-
tion. This idea is central to the standard modern theory of Harris-recurrent
Markov chains, i.e. chains on continuous space which mimic the asymptotic
behavior of discrete recurrent chains, and does not require reversibility. See
[133] sec. 5.6 for an introduction, and [34, 263] for more comprehensive
treatments. In that field, researchers have usually been content to obtain
some finite bound on EU, and haven’t faced up to our issue of the quanti-
tative dependence of the bound on the underlying chain.

Separation and strong stationary times were introduced in Aldous and
Diaconis [22], who gave some basic theory. These constructions can be used
to bound convergence times in examples, but in practice are used in examples
with much special structure, e.g. non-necessarily-symmetric random walks
on groups. Examples can be found in [21, 22] and Matthews [258]. Develop-
ment of theory, mostly for stochastically monotone chains on 1-dimensional
state space, is in Diaconis and Fill [114, 115], Fill [150, 151] and Matthews
[260].

The recurrent balayage theorem (Chapter 1 yyy) can be combined with
the mean hitting time formula to get

7'1(2) = max ;ZU (4.47)
Curiously, this elegant result doesn’t seem to help much with the inequalities
in Theorem 4.6.

What happens with the 7-family of parameters for general chains re-
mains rather obscure. Some counter-examples to equivalence, and weaker
inequalities containing log 1/, factors, can be found in [6]. Recently, Lo-
vasz and Winkler [241] initiated a detailed study of 7'1(2) for general chains
which promises to shed more light on this question.

Our choice of 71 as the “representative” of the family of 7‘1(1) ’s is somewhat
arbitrary. One motivation was that it gives the constant “1” in the inequality
7o < 711. It would be interesting to know whether the constants in other basic
inequalities relating the 7-family to other parameters could be made “1”:

Open Problem 4.48 (a) Is 7y < 707?
(b) Is 79 < 7'1(2) ?

Much of recent sophisticated theory xxx refs bounds d(¢) by bounding
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d(t) and appealing to Lemma 4.7(b). But it is not clear whether there is an
analog of Theorem 4.6 relating the d-threshold to other quantities.

Section 4.3.2. The parts of Theorem 4.6 involving 7'1(1) and 7'1(3) are
implicit rather than explicit in [6]. That paper had an unnecessarily com-
plicated proof of Lemma 4.13. The proof of (4.15) in [6] gives a constant
K =~ e!3. It would be interesting to obtain a smaller constant! Failing this,
a small constant in the inequality 71(1) < K 7‘1(3) would be desirable. As a

weaker result, it is easy to show

P < 10minmax E;T; (4.48)
J %
which has some relevance to later examples (yyy).
Section 4.3.3. The analog of Open Problem 4.17 in which we measure
distance from stationarity by d instead of d(t) is straightforward, using the
“CM proxy” property of discrete time chains:

P;(Xat = 1) + P;(X2t41 =) L 0 as t — oo.

Open Problem 4.17 itself seems deeper, though the weaker form in which
we require only that ¢(t) = O(t) can probably be proved by translating the
proof of (4.15) into discrete time and using the CM proxy property.

Section 4.8.4. The cat-and-mouse game was treated briefly in Aleliunas
et al [25], who gave a bare-hands proof of a result like (4.21). Variations in
which the cat is also allowed an arbitrary strategy have been called “princess
and monster” games — see Isaacs [190] for results in a different setting.

Section 4.3.5. Sinclair [308] points out that “hard” results of Leighton
and Rao [223] on multicommodity flow imply

irflfw(f) < Kylogn. (4.49)

This follows from Corollary 4.22 and Lemma 4.23 when « is uniform, but
Sinclair posed

Open Problem 4.49 (i) Is there a simple proof of (4.49) in general?
(ii) Does (4.49) hold with the diameter A in place of logn?

Section 4.4. As an example of historical interest, before this topic became
popular Fiedler [146] proved

Proposition 4.50 For random walk on a n-vertex weighted graph where
the stationary distribution is uniform,

w wn
B~

4ncsin? 7 m2c
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where ¢ is the minimum cut defined at (4.4).

This upper bound is sharp. On the other hand, Proposition 4.2 gave the
same upper bound (up to the numerical constant) for the a priori larger
quantity 7%, and so is essentially a stronger result.

Section 4.4.1. In the non-reversible case the definition of the maximal
correlation p(t) makes sense, and there is similar asymptotic behavior:

p(t) ~ cexp(—At) as t — oo

where A is the “spectral gap”. But we cannot pull back from asymptotia
to the real world so easily: it is not true that p(t) can be bounded by
K exp(—At) for universal K. A dramatic example from Aldous [11] section
4 has for each n an n-state chain with spectral gap bounded away from 0 but
with p(n) also bounded away from 0, instead of being exponentially small.
So implicit claims in the literature that estimates of the spectral gap for
general chains have implications for finite-time behavior should be treated
with extreme skepticism.

It is not surprising that the classical Berry-Esseen Theorem for i.i.d.
sums ([133] Thm. 2.4.10) has an analog for chains. Write o2 for the asymp-
totic variance rate in Proposition 4.29 and write Z for a standard Normal
T.v.

Proposition 4.51 There is a constant K, depending on the chain, such
that

S
sup |P,,(ﬁ <x)— P(Z <z)| < Kt~ '/?
T ot

for allt > 1 and all standardized g.

This result is usually stated for infinite-state chains satisfying various mix-
ing conditions, which are automatically satisfied by finite chains. See e.g.
Bolthausen [55]. At first sight the constant K depends on the function g
as well as the chain, but a finiteness argument shows that the dependence
on g can be removed. Unfortunately the usual proofs don’t give any useful
indications of how K depends on the chain, and so don’t help with Open
Problem 4.30.

The variance results in Proposition 4.29 are presumably classical, being
straightforward consequences of the spectral representation. Their use in
algorithmic settings such as Corollary 4.31 goes back at least to [10].

Section 4.4.3. Systematic study of the optimal choice of weights in the
Cauchy-Schwarz argument for Theorem 4.32 may lead to improved bounds
in examples. Alan Sokal has unpublished notes on this subject.
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Section 4.5.1. The quantity 1/7., or rather this quantity with the al-
ternate definition of 7. mentioned in the text, has been called conductance.
I avoid that term, which invites unnecessary confusion with the electrical
network terminology. However, the subscript ¢ can be regarded as standing
for “Cheeger” or “conductance”.

In connection with Open Problem 4.38 we mention the following result.
Suppose that in the definition (section 4.4.1) of the maximal correlation
function p(t) we considered only events, i.e. suppose we defined

p(t) = sup cor(1(x,eca), L(x,eB))-
A,B
Then p(t) < p(t), but in fact the two definitions are equivalent in the sense
that there is a universal function ¢(x) | 0 as | 0 such that p(t) < ¥ (p(t)).
This is a result about “measures of dependence” which has nothing to do
with Markovianness — see e.g. Bradley et al [59].

Section 4.5.2. The history of Cheeger-type inequalities up to 1987 is
discussed in [222] section 6. Briefly, Cheeger [87] proved a lower bound for
the eigenvalues of the Laplacian on a compact Riemannian manifold, and
this idea was subsequently adapted to different settings — in particular, by
Alon [26] to the relationship between eigenvalues and expansion properties
of graphs. Lawler and Sokal [222], and independently Jerrum and Sinclair
[307], were the first to discuss the relationship between 7. and 7o at the
level of reversible Markov chains. Their work was modified by Diaconis
and Stroock [124], whose proof we followed for Lemmas 4.39 and 4.41. The
only novelty in my presentation is talking explicitly about quasistationary
distributions, which makes the relationships easier to follow.

xxx give forward pointer to results of [238, 158].

Section 4.6.2. See Efron-Stein [140] for the origin of their inequality.
Inequality (4.45), or rather the variant mentioned above Corollary 4.47 in-
volving the 2n i.i.d. variables
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Chapter 5

Examples: Special Graphs
and Trees (April 23 1996)

There are two main settings in which explicit calculations for random walks
on large graphs can be done. One is where the graph is essentially just 1-
dimensional, and the other is where the graph is highly symmetric. The main
purpose of this chapter is to record some (mostly) bare-hands calculations for
simple examples, in order to illuminate the general inequalities of Chapter 4.
Our focus is on natural examples, but there are a few artificial examples
devised to make a mathematical point. A second purpose is to set out some
theory for birth-and-death chains and for trees.

Lemma 5.1 below is useful in various simple examples, so let’s record
it here. An edge (v,x) of a graph is essential (or a bridge) if its removal
would disconnect the graph, into two components A(v,z) and A(x,v), say,
containing v and z respectively. Recall that £ is the set of (undirected)
edges, and write £(v, x) for the set of edges of A(v,z).

Lemma 5.1 (essential edge lemma) For random walk on a weighted graph
with essential edge (v, x),

2%, . Wi
B, T, = (%J);g(vvff) Y +1 (5.1)
v

BT, +ET, = ﬂ, where w = Z Zwij' (5.2)

wl)ll' i .]

Specializing to the unweighted case,
ET, = 2/&(v,z)|+1 (5.3)
E, T, + E, T, = 2|&|.

159
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Proof. 1t is enough to prove (5.1), since (5.2) follows by adding the two
expressions of the form (5.1). Because (v, z) is essential, we may delete all
vertices of A(x,v) except x, and this does not affect the behavior of the
chain up until time 7T}, because x must be the first visited vertex of A(z,v).
After this deletion, 7, ! = E, 7)) = 1+ E,T, by considering the first step
from z, and 7, = wye /(2w + 22(1-7]‘)65(1}@) w;j), giving (5.1). =m

Remarks. Of course Lemma 5.1 is closely related to the edge-commute in-
equality of Chapter 3 Lemma yyy. We can also regard (5.2), and hence (5.4),
as consequences of the commute interpretation of resistance (Chapter 3 yyy),
because the effective resistance across an essential edge (v, z) is obviously

1/wyg-

5.1 One-dimensional chains

5.1.1 Simple symmetric random walk on the integers

It is useful to record some elementary facts about simple symmetric random
walk (X;) on the (infinite) set of all integers. As we shall observe, these may
be derived in several different ways.

A fundamental formula gives exit probabilities:

b—
Pb(Tc<Ta):c_Z, a<b<e (5.5)

An elementary argument is that ¢g(i) = Pi(T. < T,) satisfies the 1-step
recurrence
g(i) =3g(i+1)+3g(i—1), a<i<b
g9(a) =0, g(b) =1,
whose solution is ¢g(i) = (i —a)/(b— a). At a more sophisticated level, (5.5)
is a martingale result. The quantity p = P,(1. < T,) must satisfy

b=FEy X(Ty, NT;) = pc+ (1 — p)a,
where the first equality is the optional sampling theorem for the martingale
X, and solving this equation gives (5.5).
For a < ¢, note that T, A T, is the “exit time” from the open interval
(a,c). We can use (5.5) to calculate the “exit before return” probability

P (T > T, AT.) = iPi(T. <Ty) + 1P (T, < T))
11 11
§c—b+§b—a

CcC—a

2(c—b)(b—a)’
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For the walk started at b, let m(b, z;a,c) be the mean number of visits to
x before the exit time T, A T,.. (Recall from Chapter 2 our convention that
“before time ¢” includes time 0 but excludes time ¢). The number of returns
to b clearly has a Geometric distribution, so by (5.6)
2(c—b)(b—
m(b, b;a,c) = M, a<b<ec (5.7)
c—a

To get the analog for visits to  we consider whether or not z is hit at all
before exiting; this gives

m(b, z;a,c) = Py(Ty < Ty A1) m(z, x;a,c).

Appealing to (5.5) and (5.7) gives the famous mean occupation time formula

m(b,x;a,¢) = (5.8)
2(c—z)(b—a)
%, a<b<z<e
Now the (random) time to exit must equal the sum of the (random)

times spent at each state. So, taking expectations,

Eb(Ta A Tc) = Z m(bal‘7 CL,C),

r=a
and after a little algebra we obtain
Lemma 5.2 Ey(T, ANT.) = (b—a)(c—b), a<b<ec.
This derivation of Lemma 5.2 from (5.8) has the advantage of giving the

mean occupation time formula (5.8) on the way. There are two alternative
ways to prove Lemma 5.2. An elementary proof is to set up and solve the
1-step recurrence for h(i) = E;(T, A T¢):
h(i) =1+ 3h(i+1)+3h(i—1), a<i<c
h(a) = h(c) = 0.

The more elegant proof uses a martingale argument. Taking b = 0 without
loss of generality, the first equality below is the optional sampling theorem
for the martingale (X2(t) — t):

Ey(TaNTe) = EoX*(Ty AT)

= a*Py(T, < T.) + *PRy(T. < T,)

= 2 42 by (5.5)
c—a c—a
= —ac.
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The preceding discussion works in discrete or continuous time. Exact
distributions at time ¢ will of course differ in the two cases. In discrete time
we appeal to the Binomial distribution for the number of +1 steps, to get

(2t)! _at
-+ =) 7

and a similar expression for odd times ¢. In continuous time, the numbers
of +1 and of —1 steps in time ¢ are independent Poisson(t) variables, so

Py(Xo = 2j) = —t<j<t (5.9)

o 0 t21+]
Po( Xy = Py( Xy = - 3 =>0. 5.10
0( t ) 0( t j Z Z' Z +] ( )
5.1.2 Weighted linear graphs
Consider the n-vertex linear graph 0 — 1 — 2 — --- — (n — 1) with arbitrary
edge-weights (wy,...,w,_1), where w; > 0 is the weight on edge (i — 1,1).

Set wg = w, = 0 to make some later formulas cleaner. The corresponding
discrete-time random walk has transition probabilities

Dijit1=———— Pii-1= ————, 0<i<n-—1

and stationary distribution

mziwi_‘_wiﬂj 0<1<n—-1
w

where w = 23, w;. In probabilistic terminology, this is a birth-and-death
process, meaning that a transition cannot alter the state by more than 1.
It is elementary that such processes are automatically reversible (xxx spells
out the more general result for trees), so as discussed in Chapter 3 yyy
the set-up above with weighted graphs gives the general discrete-time birth-
and-death process with p; = 0. But note that the continuization does
not give the general continuous-time birth-and-death process, which has
2(n — 1) parameters (g;;—1,¢ii+1) instead of just n — 1 parameters (w;).
The formulas below could all be extended to this general case (the analog of
Proposition 5.3 can be found in undergraduate textbooks, e.g., Karlin and
Taylor [208] Chapter 4) but our focus is on the simplifications which occur
in the “weighted graphs” case.

Proposition 5.3 (a) Fora < b < c,

-1
P(T. < T,) = Shan i Zeize1 B
Zz a+1w
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(b) Forb < c,

c j—1
Eyl.=c—b+2 Z Zwiwj*l.

j=b+1i=1
(c) Forb < c,

(&
ET,+ET,=w Y w;'
i=b+1

Note that we can obtain an expression for E. 1}, b < ¢, by reflecting the
weighted graph about its center.

Proof. These are extensions of (5.5,5.1,5.2) and recycle some of the
previous arguments. Writing h(j) = ] _,w; b, we have that (h(X;)) is a
martingale, so

h(b) = Eph(X(Ta A'Te)) = ph(c) + (1 — p)h(a)

for p = Py(T. < T,). Solving this equation gives p = %, which is (a).

The mean hitting time formula (b) has four different proofs! Two that
we will not give are as described below Lemma 5.2: Set up and solve a
recurrence equation, or use a well-chosen martingale. The slick argument is
to use the essential edge lemma (Lemma 5.1) to show

Then

establishing (b). Let us also write out the non-slick argument, using mean
occupation times. By considering mean time spent at 1,

b—1 c—1
Ech = Z Pb(T’z < Tc)m(za ia C) + Zm(z, ia C)7 (511)
1=0 1=b

where m(i,1i,c) is the expectation, starting at 4, of the number of visits to 4
before T,. But
1
Pi(Tc < Ter)
1
Piiv1 P (Te < Tj)

m(i,i,c) =

= (w; + wiy1) Z w; usmg a).
Jj=i+1
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Substituting this and (a) into (5.11) leads to the formula stated in (b).
Finally, (c) can be deduced from (b), but it is more elegant to use the
essential edge lemma to get

Ei 1T+ ETi—1 = w/w; (5.12)

and then use

C
ET.+ET,= Y (EiaT;+ETi_;). =
i=b+1

We now start some little calculations relating to the parameters discussed
in Chapter 4. Plainly, from Proposition 5.3

Tr=w Y wy (5.13)

Next, consider calculating ETj. We could use Proposition 5.3(b), but in-
stead let us apply Theorem yyy of Chapter 3, giving E;T} in terms of unit
flows from b to m. In a linear graph there is only one such flow, which

for i > b has fiip1 =7wli+1,n—1] = ;’;}H 7j, and for ¢ < b — 1 has
fii+1 = —m|0,1], and so the Proposition implies
n—1 I b 2 .
-1 0,2—1
Ey=w Y 0 s i (5.14)
i=bt1 Wi i=1 Wi

There are several ways to use the preceding results to compute the av-
erage hitting time parameter 7. Perhaps the most elegant is

" = Z Zmﬂrj(EiTj + E;T;)
i >
1
= 7T[0, k— 1]71'[]{3, n— 1](Ek_1Tk + Eka_l)

3
I

1T
=

= 7[0, k — 1]w[k,n — 1Jw/wy by (5.12)
1

n—1 k—1 n—1
= uflzw;l (wk—l—Qij) (wk+2 Z wj>. (5.15)
k=1

j=1 j=k+1

£
Il

There are sophisticated methods (see Notes) of studying 71, but let us
just point out that Proposition 5.23 later (proved in the more general context
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of trees) holds in the present setting, giving

1
73 inmax(FoTy, E,—1T,) <11 < Kyminmax(FEoTy, E,—1T;). (5.16)
1 x xX

We do not know an explicit formula for 75, but we can get an upper bound
easily from the “distinguished paths” result Chapter 4 yyy. For z < y the
path 7y has 7(yzy) = Y% _, 1 1/w, and hence the bound is

1 Al L (we + werr) (wy + wyp)
< — ad ad Y CAR Y 5.17
SR 33 517

Wy

=0 y=j u=x+1
jjj This uses the Diaconis—Stroock version. The Sinclair version is

j—1ln-—1

1
Top < —max — E E (wg;‘f‘wx—&—l)(wy—i_wy'i‘l)(y_x)'
woa Wi 2=

xxx literature on 7o (van Doorn, etc.)

jjj Also relevant is work of N. Kahale (and others) on how optimal
choice of weights in use of Cauchy—Schwarz inequality for Diaconis—Stroock—
Sinclair leads to equality in case of birth-and-death chains.

jij See also Diaconis and Saloff-Coste Metropolis paper, which mentions
work of Diaconis students on Metropolizing birth-and-death chains.

xxx examples of particular w. jjj might just bring up as needed?

xxx contraction principle and lower bounds on 79 (relating to current
Section 6 of Chapter 4)

By Chapter 4 Lemma yyy,

7[0,7 — 1]m[i,n — 1]

Te= Jnax ” . (5.18)

5.1.3 Useful examples of one-dimensional chains

Example 5.4 The two-state chain.

This is the birth-and-death chain on {0,1} with pg1 = 1 — pgo = p and
pio =1—p11 =¢q, where 0 < p <1 and 0 < g < 1 are arbitrarily specified.
Since pgo and py1 are positive, this does not quite fit into the framework of
Section 5.1.2, but everything is nonetheless easy to calculate. The stationary
distribution is given by

m0=q/(p+q), m =p/(p+q).
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In discrete time, the eigenvalues are A\; = 1 and As = 1 — p — ¢, and in
the notation of Chapter 3, Section yyy for the spectral representation, the
matrix S has s;1 = 1 —p, S99 = 1 — ¢, and s12 = S91 = (pq)l/2 with
normalized right eigenvectors

ut = [(¢/(p+a)"2 o/ (+a) AT, ua = [(p/(p+a) 2 —(a/(p+a))/*) .

The transition probabilities are given by

R(=1) = 1-R(X=0=T[1-0-p-a)
A(X=0) = 1-A(Xi=1)= " 1-(1-p-q
in discrete time and by

= — —0=_P —(p+a)t

P(X;=1) = 1-FP(X;=0)= ——[1 — e PTY,

0(X¢ = 1) 0(Xt =0) erq[ e ]

= — 1= 14 —(p+a)t

P(X;=0) = 1-P(X;=1)= ——[1 —e P4

(Xt =0) 1(Xe = 1) p+q[ e ]

in continuous time. It is routine to calculate EgTy = 1/p, E1Ty = 1/q, and

d(t) = et d(t) = max(p/(p + q), ¢/ (p + q)) e PTL,

and then
— _ * _ _ptgq
max EZT] = max(EoTl, ElT()) =, T = E()T1 + E1T0 = -,
i min(p, q) pq
and
To=T1=T2=17.=1/(p+q).

Example 5.5 Biased random walk with reflecting barriers.
We consider the chain on {0,1,...,n — 1} with reflecting barriers at 0 and

n — 1 that at each unit of time moves distance 1 rightward with probability
p and distance 1 leftward with probability ¢ = 1 — p. Formally, the setting
is that of Section 5.1.2 with

w; = pi! w:2(1—0n_1)_> 2
(3 ) 1_p 1_p7

where we assume p = p/q < 1 and all asymptotics developed for this example
are for fixed p and large n. If p # 1, there is by symmetry no loss of generality
in assuming p < 1, and the case p = 1 will be treated later in Example 5.8.
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Specializing the results of Section 5.1.2 to the present example, one can
easily derive the asymptotic results

max BT ~ 7 ~ Ex T,y ~ 2p~ "2 /(1 = p)? (5.19)
ij
and, by use of (5.15),
I+p

For 7., the maximizing i in (5.18) equals (1 4+ o(1))n/2, and this leads to

e = (1+p)/(1—p). (5.21)

The spectral representation can be obtained using the orthogonal poly-
nomial techniques described in Karlin and Taylor [209] Chapter 10; see
especially Section 5(b) there. The reader may verify that the eigenvalues of
P in discrete time are 1, —1, and, for m=1,...,n — 2,

1/2 mr

2
lp—i— p cos 0,,, where 0, = p—]

with (unnormalized) right eigenvector

pi [2cos(ity) — (1 - pyPRE )],

sin(f,,)

In particular,

-1
2p1/2 s 1+p
=|1— —_—. .22
Ty [1 1+pcos<n_1> _>(1—p1/2)2 (5.22)

The random walk has drift p—q¢ = —(1—p)/(1+p) = —p. It is not hard
to show for fixed ¢t > 0 that the distances d,,(tn) and d,,(tn) of Chapter 4 yyy
converge to 1 if t < p and to 0 if t > p.

jjj include details? In fact, the cutoff occurs at un + cpn1/2: cf. (e.g.)
Example 4.46 in [115]. Continue same paragraph:

In particular,

L-p
T~ T pn (5.23)

Example 5.6 The M/M/1 queue.
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We consider the M/M/1/(n — 1) queue. Customers queue up at a facility
to wait for a single server (hence the “1”) and are handled according to a
“first come, first served” queuing discipline. The first “M” specifies that
the arrival point process is Markovian, i.e., a Poisson process with intensity
parameter A\ (say); likewise, the second “M” reflects our assumption that
the service times are exponential with parameter p (say). The parameter
n — 1 is the queue size limit; customers arriving when the queue is full are
turned away.

We have described a continuous-time birth-and-death process with con-
stant birth and death rates A and p, respectively. If A4+ p = 1, this is nearly
the continuized biased random walk of Example 5.5, the only difference being
in the boundary behavior. In particular, one can check that the asymptotics
in (5.19)—(5.23) remain unchanged, where p = \/u, called the traffic inten-
sity, remains fixed and n becomes large. For the M/M/1/(n —1) queue, the
stationary distribution is the conditional distribution of G — 1 given G < n,
where G has the Geometric(1 — p) distribution. The eigenvalues are 1 and,
form=1,...,n—1,

1/2 ma

2
p cos 0,,, where now 0, = —
n

1+p

with (unnormalized) right eigenvector

2p—i/2
1+p

sin((i + 1)0,,)

cos(ilm) + (p*/? cos by, — 1) S0 (0 ,

5.2 Special graphs

In this section we record results about some specific easy-to-analyze graphs.
As in Section 5.1.3, we focus on the parameters 7%, 79, 71, T2, 7. discussed
in Chapter 4; orders of magnitudes of these parameters (in the asymptotic
setting discussed with each example) are summarized in terms of n, the
number of vertices, in the following table. A minor theme is that some of
the graphs are known or conjectured to be extremal for our parameters.
In the context of extremality we ignore the parameter 71 since its exact
definition is a little arbitrary.

jjj David: (1) Shall T add complete bipartite to table? (2) Please fill in
missing entries for torus.

Orders of magnitude of parameters [T = O(entry)] for special graphs.
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Example T To 1 T Te
5.7. cycle n? n? n? n? n
5.8. path n? n? n? n? n
5.9. complete graph n n 1 1 1
5.10. star n n 1 1 1
5.11. barbell n? n? n? n3 n?
5.12. lollipop n? n? n? n? n
5.13. necklace n? n? n? n? n
5.14. balanced r-tree nlogn | nlogn n n n
5.15. d-cube (d = logy n) n n dlogd | d d
5.16. dense regular graphs n n 1 1 1
5.17. d-dimensional torus

d=2 jjii? | nlogn | n%d | n2/d | jjjrnt/d

d>3 jij? n n2/d | p2/d | j35rnt/d
5.19. rook’s walk n n 1 1 1

In simpler cases we also record the t-step transition probabilities P;(X; =
j) in discrete and continuous time. In fact one could write out exact expres-
sions for P;(X; = j) and indeed for hitting time distributions in almost all
these examples, but complicated exact expressions are seldom very illumi-
nating.

qqq names of graphs vary—suggestions for “standard names” from read-
ers of drafts are welcome.

Example 5.7 The n-cycle.

This is just the graph 0 —1—-2—--- — (n—1) — 0 on n vertices. By rotational
symmetry, it is enough to give formulas for random walk started at 0. If
(X;) is random walk on (all) the integers, then X; = ¢(X;) is random walk
on the n-cycle, for

¢(i) = i mod n.

Thus results for the n-cycle can be deduced from results for the integers.
For instance,

EoT; = i(n — i) (5.24)

by Lemma 5.2, because this is the mean exit time from (i —n,4) for random
walk on the integers. We can now calculate

max E;T; = |n?/4]
ij
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™ = max(E;T; + E;T;) = 2[n?/4] (5.25)
1J

o=n"" Y BT = (n®—1)/6 (5.26)
J

where for the final equality we used the formula

zn: 5 nd N n? L
m°=—+ -+ .
— 3 2 6
m=1
As at (5.9) and (5.10) we can get an expression for the distribution
at time ¢ from the Binomial distribution (in discrete time) or the Poisson

distribution (in continuous time). The former is

|

(X =)= Y o
j:2j—t=i mod n ‘]'(t o ‘7)'
A more useful expression is obtained from the spectral representation. The
n eigenvalues of the transition matrix are cos(2rm/n), 0 < m < n—1. That
is, 1 and (if n is even) —1 are simple eigenvalues, with respective normalized
eigenvectors uo = 1/v/n and u; , /o = (=1)"/y/n (0 < i <n —1). The mul-
tiplicity of cos(2rm/n) is 2 for 0 < m < n/2; the corresponding normalized
eigenvectors are u;, = /2/ncos(2mim/n) and u; _m, = \/2/nsin(2wim/n)
(0<i<n-—1). Thus

n—1
Py( Xy =1) = % Z (cos(2mm/n))t cos(2mim,/n),

m=0

a fact most easily derived using Fourier analysis.
jjj Cite Diaconis book [112]? Continue same paragraph:
So the relaxation time is

1 n?

7T cos(2m/n) T op

As an aside, note that the eigentime identity (Chapter 3 yyy) gives the
curious identity
n?—1 ”i 1
6 = 1 —cos(2mm/n)

whose n — oo limit is the well-known formula Y2, m=2 = 72/6.
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If n is even, the discrete-time random walk is periodic. This parity
problem vanishes in continuous time, for which we have the formula

n—1
Py(X(t) =1i) = % Z exp(—t(1 — cos(2rm/n))) cos(2wim/n).  (5.27)
m=0

Turning to total variation convergence, we remain in continuous time
and consider the distance functions d,,(t) and d,(t) of Chapter 4 yyy. The
reader familiar with the notion of weak convergence of random walks to
Brownian motion (on the circle, in this setting) will see immediately that

dn(tn?) — doo (1)

where the limit is “d for Brownian motion on the circle”, which can be
written as -
doo(t) =1 —2P((t"?Z) mod 1 € (1/4,3/4))

where Z has the standard Normal distribution. So
71 ~ cn?

for the constant ¢ such that d(c) = e, whose numerical value ¢ = 0.063
has no real significance.
jjj David: You got 0.054. Please check. Continue same paragraph:
Similarly

A (t02) = do (1) = ;/01 fu(w) — 1| du,

where f; is the density of (t/2Z) mod 1.
As for 7., the sup in its definition is attained by some A of the form

[0, — 1], so
i1-4 1VQJ n

4

Te = max t——"1> = — ~—.

¢ i 1/n n 2
As remarked in Chapter 4 yyy, this provides a counter-example to reversing
inequalities in Theorem yyy. But if we consider max 4 (7(A)E;T4), the maz
is attained with A = [§ — an,§ + an|, say, where 0 < o < 1/2. By

Lemma 5.2, for x € (-3 + a, 3 — @),

E|(z mod 1)n)Ta ~ (% —a— x) (% —a+ ac) n?,

and so

1

l-a /1 1 4(3 — a)®n?
E7rTA~n2/2 (2—a—x><2—a+m)da::(23).

1
-5+
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Thus . X )
max(m(A)E,;Ty) ~n® sup - 2 = QL,
A 0<a<l1/2 3 512

consistent with Chapter 4 Open Problem yyy.

xxx level of detail for d results, here and later.

Remark. Parameters 7%, 79, 71, and 7o are all ©(n?) in this example, and
in Chapter 6 we'll see that they are O(n?) over the class of regular graphs.
However, the exact maximum values over all n-vertex regular graphs (or the
constants c in the ~ cn? asymptotics) are not known. See Chapter 6 for the
natural conjectures.

Example 5.8 The n-path.

This is just the graph 0 — 1 — 2 — --- — (n — 1) on n vertices. If (X;) is
random walk on (all) the integers, then X; = ¢(X) is random walk on the
n-path, for the “concertina” map

i if i mod 2(n—1)<n-—1
¢(i) =
2(n—1) — (i mod 2(n — 1)) otherwise.
Of course the stationary distribution is not quite uniform:
. 1
Wi:m, 1SZ§’I7/—2, Wozﬂn_lzm.

Again, results for the n-path can be deduced from results for the integers.
Using Lemma 5.2,

ET;j=({—i)(j+1i), 0<i<j<n-—1. (5.28)
i From this, or from the more general results in Section 5.1.2, we obtain
max ET; = (n—1)? (5.29)
T = max(ET; + B;T;) = 2(n- 1)2 (5.30)
J 1 9 1
T0 = ijEoTj = g(n -1+ 6 (5.31)

J

We can also regard X; as being derived from random walk X, on the
(2n —2)-cycle via Xy = min(Xy,2n —2— X;). So we can deduce the spectral
representation from that in the previous example:

n—1
Pi(Xy = j) = \/mj/mi D NpUimUjm

m=0
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where, for 0 <m <n —1,
Am = cos(mm/(n — 1))

and
Uom = VTm; Upn—1m = VT (_1)m;
Uim = V2T cos(mim/(n — 1)), 1<i<n-—2.

In particular, the relaxation time is

R
 1—cos(n/(n—1)) w2

T2

Furthermore, d,,(t) = c_ign,g(t) and dy, (t) = dan_o(t) for all ¢, so
dn(t(2n)%) — doo(t)

dn(t(2n)?) = doo(2)

where the limits are those in the previous example. Thus 71 ~ cn?, where
¢ = 0.25 is 4 times the corresponding constant for the n-cycle.

xxx explain: BM on [0, 1] and circle described in Chapter 16.

It is easy to see that

”T_l if n is even

Te =

In Section 5.3.2 we will see that the n-path attains the exact maximum
values of our parameters over all n-vertex trees.

Example 5.9 The complete graph.

For the complete graph on n vertices, the t-step probabilities for the chain
started at ¢ can be calculated by considering the induced 2-state chain which
indicates whether or not the walk is at 7. This gives, in discrete time,

P(X=i) = :ﬁ(l‘;) (‘nil)t

P(Xe=3) = -7 (-= )t, j#i (5.32)

n—1
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and, in continuous time,

P(X, = j) — 1—1exp(—n”t ) A (5.33)

It is clear that the hitting time to j # ¢ has Geometric(1/(n — 1)) distri-
bution (in continuous time, Exponential(1/(n — 1)) distribution), and so in
particular

ETj=n—1, j#i. (5.34)

Thus we can calculate the parameters

" = max(E;T; + EiT;) = 2(n—1) (5.35)
ij
max ET; = n—1 (5.36)
ij
m=n"" ZEiTj = (n—1)?/n. (5.37)
J
From (5.32) the discrete-time eigenvalues are Ay = A3 = -+ = A\, =

—1/(n —1). So the relaxation time is
7= (n-—1)/n. (5.38)

The total variation functions are

J(t):exp(— nt >, d(t):nglexp(— nt >,

n—1 n—1
SO
1= (n—-1)/n. (5.39)
It is easy to check
Te = (n—1)/n.

We have already proved (Chapter 3 yyy) that the complete graph attains
the exact minimum of 7%, max;; F;T}, 79, and 79 over all n-vertex graphs.
The same holds for 7., by considering (in an arbitrary graph) a vertex of
minimum degree.

Example 5.10 The n-star.
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This is the graph on n > 3 vertices {0,1,2,...,n — 1} with edges 0 — 1, 0 —
2,0-3,...,0— (n—1). The stationary distribution is
mo=1/2, m=1/(2(n—1)), i>1.

In discrete time the walk is periodic. Starting from the leaf 1, the walk at
even times is simply independent and uniform on the leaves, so

Pl(XQt = ’L) = 1/(TL— 1), 7 2 1
for t > 1. At odd times, the walk is at 0. Writing these t-step probabilities

as

. 1 1
P (X =1) = Q(T—l)(l + (=)D + S+ (=1)"* 1=y, t>1

we see that the discrete-time eigenvalues are Ao = --- = X\,_1 =0, A\, = —1
and hence the relaxation time is

T2:1.

The mean hitting times are
BTy =1
BTy =2n—1), j>2,
where the latter comes from the fact that 7);/2 has Geometric(1/(n—1)) dis-

tribution, using the “independent uniform on leaves at even times” property.
Then

EOT1 =2n — 3
We can calculate the parameters
™ = max;;(E;T; + E;T;) =4n—4 (5.40)
maxs, EZTJ =2n—2 (541)
T0 = > EoTym; =n-—3. (5.42)
In continuous time we find
1 n—2
P(X;=1 = ———(1+e )+ —Ze!
1(Xe=1) St )T
1 1
P(X;=i) = —(1+e2)— ——¢t i>1
1(Xe =) TCES A A
P(X;=0) = J(1-e?)
Py(X;=0) = I(1+e )
1 _
Py(X;=1) = (1—e2)
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This leads to

1 _ n—2 _
o2t ot

d(t) =et, d(t) = 1) —c

from which
7 =1.

Clearly (isolate a leaf)

1
2(n—1)°

We shall see in Section 5.3.2 that the n-star attains the exact minimum
of our parameters over all n-vertex trees.

Te=1-—

Example 5.11 The barbell.

Here is a graph on n = 2m; + mgy vertices (m; > 2,mg > 0). Start with
two complete graphs on mj vertices. Distinguish vertices v; # vy, in one
graph (“the left bell”) and vertices vg # v, in the other graph (“the right
bell”). Then connect the graphs via a path vy — w; —wg — -+ — Wy, — VR
containing meo new vertices.

XXX picture

A point of the construction is that the mean time to go from a typical
point v; in the left bell to a typical point v, in the right bell is roughly m2ms.
To argue this informally, it takes mean time about m; to hit vy ; then there
is chance 1/m; to hit ws, so it takes mean time about m? to hit wi; and
from w; there is chance about 1/mgy to hit the right bell before returning
into the left bell, so it takes mean time about m?ms to enter the right bell.

The exact result, argued below, is

mg +1

max E;T; = By, Ty, = mi(m1—1)(ma+1)+(ma+1)2+4(mq —1)+4 1271 .
ij 1

(5.43)

It is cleaner to consider asymptotics as
n — oo, mi/n — a, my/n —1— 2«
with 0 < @ < 1/2. Then

max E;T; ~ o?(1—2a)n?
7]

3
~ %forazl/?)
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where a = 1/3 is the asymptotic maximizer here and for the other parame-
ters below. Similarly

™~ 2a%(1 - 2a)n?

m3
~ 2—n7fora:1/3.

The stationary distribution 7 puts mass — 1/2 on each bell. Also, by (5.45)—
(5.47) below, E,, T, = o(E,, T, ) uniformly for vertices v in the left bell and
E,T, ~ E,T,, ~ a?(1 — 2a)n?® uniformly for vertices v in the right bell.
Hence

1 1
0= 1By Ty ~ 5 BT ~ 5042(1 —2a)n?
v
and so we have proved the “ry” part of
each of {10, 71,72} ~ 1a*(1-2a)n® (5.44)
n3
~ g fora= 1/3.

Consider the relaxation time 7. For the function g defined to be +1 on the
left bell, —1 on the right bell and linear on the bar, the Dirichlet form gives

2 2
(ma + )(mi(my — 1) +ma+1)  a2(1— 2a)n3’

£(g,9) =

Since the variance of g tends to 1, the extremal characterization of 7 shows
that $a%(1 — 2a)n® is an asymptotic lower bound for 7. But in general
T2 < 70, so having already proved (5.44) for 7y we must have the same
asymptotics for 7». Finally, without going into details, it is not hard to
show that for fixed ¢ > 0,

- (1 1 1
dp, (2a2(1 - 2a)n3t> —el dy (2a2(1 - 2a)n3t> — ge_t

from which the “7m1” assertion of (5.44) follows.

jjj Proof? (It’s not so terrifically easy, either! How much do we want
to include?) I've (prior to writing this) carefully written out an argument
similar to the present one, also involving approximate exponentiality of a
hitting time distribution, for the balanced r-tree below. Here is a rough
sketch for the argument for d here; note that it uses results about the next
example (the lollipop). (The argument for d is similar.) The pair (v, v;)
of initial states achieves d(t) for every t (although the following can be
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made to work without knowing this “obvious fact” a priori). Couple chains
starting in these states by having them move symmetrically in the obvious
fashion. Certainly these copies will couple by the time T the copy started
at vy has reached the center vertex w,,, » of the bar. We claim that the
distribution of T' is approximately exponential, and its expected value is
~ %m%mg ~ %aQ(l — 2a)n? by the first displayed result for the lollipop
example, with mgy changed to ma/2 there. (In keeping with this observation,
I'll refer to the “half-stick” lollipop in the next paragraph.)

jij (cont.) To get approximate exponentiality for the distribution of
T, first argue easily that it’s approximately the same as that of T}, /2 for
the half-stick lollipop started in stationarity. But that distribution is, in
turn, approximately exponential by Chapter 3 Proposition yyy, since 15 =
O(n?) = o(n?) for the half-stick lollipop. m

Proof of (5.43). The mean time in question is the sum of the following
mean times:

E,T,, =m; —1 (5.45)
Ey, Ty = mi(my — 1)(mg + 1) + (mg + 1)? (5.46)
1
By, Ty, =3(m1 —1) + 4m72n+ . (5.47)
1

Here (5.45) is just the result (5.34) for the complete graph. And (5.46) is
obtained by summing over the edges of the “bar” the expression

EwiTw :ml(m1—1)+2i—|—1, 1=20,...,m9 (548)

i+1

obtained from the general formula for mean hitting time across an essen-
tial edge of a graph (Lemma 5.1), where wg = vy, and wp,+1 = vg. To
argue (5.47), we start with the 1-step recurrence

mi — 2

Ty + E, Ty,

Wmgy

1
E,,T, =14+ —E
mi mi

where x denotes a vertex of the right bell distinct from vg and v,.. Now

E Tw = ml(ml — 1) +2mg + 1+ EvRTvT

’Ujm2

using the formula (5.48) for the mean passage time from w;,, to vg. Starting
from x, the time until a hit on either vy or v, has Geometric(2/(m; — 1))
distribution, and the two vertices are equally likely to be hit first. So

E,T,, = (m1-1)/2+ E,,T,,.
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The last three expressions give an equation for £, , T, whose solution is (5.47).
And it is straightforward to check that E,,T,, does achieve the maximum,
using (5.45)-(5.47) to bound the general E;T;. =

It is straightforward to check

a’n?

2

Te ~
Example 5.12 The lollipop.

XXX picture

This is just the barbell without the right bell. That is, we start with a
complete graph on m; vertices and add mo new vertices in a path. So there
are n = mj + mg vertices, and wy,, is now a leaf. In this example, by (5.45)
and (5.46), with mg in place of mgy + 1, we have

2

max E;T; = By, Ty,,,. = mi(mi — 1)ma + (m; — 1) + m5.
ij

mo
In the asymptotic setting with
n — oo,mi/n — a,my/n —1—«

where 0 < a < 1, we have

max E;T; ~ o*(1—a)n® (5.49)
ij
4 3
~ 27717 for a = 2/3,

where o = 2/3 gives the asymptotic maximum.
Let us discuss the other parameters only briefly, in the asymptotic set-
ting. Clearly E.y,, T,, = mj ~ (1 —a)?n? and it is not hard to check

Wmeo

Eu,,, Ty, = max E,T,, ~ (1~ a)?n?, (5.50)
whence

7 = max(ET} + E;T;) = Ey Ty, + Euw,, Ty ~ o*(1— a)n’.

ij
Because the stationary distribution puts mass O(1/n) on the “bar”, (5.50) is
also enough to show that 7o = O(n?). So by the general inequalities between

our parameters, to show

each of {79, 71,72} = O(n?) (5.51)
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it is enough to show that 7 = Q(n?). But for the function g defined to be
0 on the “bell”, 1 at the end w,, of the “bar,” and linear along the bar, a
brief calculation gives

£(9.9)=0O(n™"), var rg=0O(n"")

so that 7 > (var -g)/&(g,g) = Q(n?), as required.
Finally, in the asymptotic setting it is straightforward to check that 7.
is achieved by A = {w1,...,wpn,}, giving

Te ~ 2(1 — a)n.

Remark. The barbell and lollipop are the natural candidates for the n-
vertex graphs which maximize our parameters. The precise conjectures and
known results will be discussed in Chapter 6.

jii We need to put somewhere—Chapter 4 on 7.7 Chapter 6 on max
parameters over n-vertex graphs? in the barbell example?—the fact that
max 7. is attained, when n is even, by the barbell with me = 0, the max
value being (n?—2n+2)/8 ~ n?/8. Similarly, when n is odd, the maximizing
graph is formed by joining complete graphs on |n/2] and [n/2] vertices
respectively by a single edge, and the max value is easy to write down (I've
kept a record) but not so pretty; however, this value too is ~ n?/8, which
is probably all we want to say anyway. Here is the first draft of a proof:

For random walk on an unweighted graph, 7. is the maximum over
nonempty proper subsets A of the ratio

(deg A)(deg A°)
2(18|(A, A°)

(5.52)

where deg A is defined to be the sum of the degrees of vertices in A and
(A, A€) is the number of directed cut edges from A to A°.

jjj Perhaps it would be better for exposition to stick with undirected
edges and introduce factor 1/27?

Maximizing now over choice of graphs, the max in question is no larger
than the maximum M, over all choices of n; > 0, ny > 0, e1, €2, and €
satisfying ny + ng =n and 0 < e; < (%) for i = 1,2 and 1 < € < nyng, of
the ratio

(2e1 +€)(2e2 + €)
2(e1 + eg +€)e’
(We don’t claim equality because we don’t check that each n;-graph is con-
nected. But we’ll show that M is in fact achieved by the connected graph
claimed above.)

(5.53)
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Simple calculus shows that the ratio (5.53) is (as one would expect)
increasing in e; and ey and decreasing in €. Thus, for given nq, (5.53) is
maximized by considering complete graphs of size n; and ns = n—nq joined
by a single edge. Call the maximum value M(n1). If n is even, it is then
easy to see that M,,, is maximized by n1 = n/2, giving M = (n? —2n+2)/8,
as desired.

For the record, here are the slightly tricky details if n is odd. Write
v =n/2 and n; = v —y and put x = y2. A short calculation gives M (n1) =
1+g(x), where g(z) = [(a—2)(b—2) —1]/(2x+¢) with a = 2, b = (v —1)?,
and ¢ = 2v(v—1)+2. Easy calculus shows that g is U-shaped over [0, 7] and
then that g(1/4) > g(v?). Thus M(n;) is maximized when n; = v — 3 =

2
In/2]. =
Example 5.13 The necklace.

This graph, pictured below, is 3-regular with n = 4m + 2 vertices, consisting
of m subgraphs linked in a line, the two end subgraphs being different from
the intervening ones. This is an artificial graph designed to mimic the n-
path while being regular, and this construction (or some similar one) is the
natural candidate for the n-vertex graph which asymptotically maximizes

our parameters over regular graphs.
_—

a b
W
¢

This example affords a nice illustration of use of the commute interpre-

tation of resistance. Applying voltage 1 at vertex a and voltage 0 at e, a
brief calculation gives the potentials at intervening vertices as

g(b) =4/7, g(c) =5/7, g(d) = 4/7

and gives the effective resistance r,. = 7/8. Since the effective resistance
between f and g equals 1, we see the maximal effective resistance is

m — 2 repeats

rah =5+ (@2m—3)+ I =2m 5.

So

5

3 2
T = ETh + EpT, =3 x (dm +2) x <2m—4) o2

5
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One could do elementary exact calculations of other parameters, but it is
simpler to get asymptotics from the Brownian motion limit, which implies
that the asymptotic ratio of each parameter (excluding 7.) in this example
and the n-path is the same for each parameter. So

n? 3n?2
TN~ ——, T2~ —F.
212

4 )
jij T haven’t checked this carefully, and I also have abstained from writing
anything further about 7.
Finally, it is clear that 7. ~ 3n/4, achieved by breaking a “link” between
“beads” in the middle of the necklace.

Example 5.14 The balanced r-tree.

Take r > 2 and h > 1. The balanced r-tree is the rooted tree where all leaves
are at distance h from the root, where the root has degree r, and where the
other internal vertices have degree r + 1. Call h the height of the tree. For
h =1 we have the (r + 1)-star, and for » = 2 we have the balanced binary
tree. The number of vertices is

n:1+r+’r2+---+7“h:(T’H_l*l)/(?ﬂ*l)'

The chain X induced (in the sense of Chapter 4 Section yyy) by the
function
f(i) = h — (distance from i to the root)

is random walk on {0, ..., h}, biased towards 0, with reflecting barriers, as
in Example 5.5 with

p=1/r
In fact, the transition probabilities for X can be expressed in terms of X
as follows. Given vertices v; and ve with f(vy) = fi1 and f(va) = fo,
the paths [root,v;] and [root, vs] intersect in the path [root,vs], say, with

f(vs) = f3 > f1V fa. Then

As a special case, suppose that vy is on the path from the root to vo; in
this case v3 = v;. Using the essential edge lemma (or Theorem 5.20 below)
we can calculate

By, Ty =2(r — )2(r1T — o2 —2(r — 1)7Y(f1 = fo) — (f1 — fo),
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Ey Ty =2(n—1)(f1 — f2) — Eu,Tb,. (5.54)

Using this special case we can deduce the general formula for mean hitting
times. Indeed, E,, T, = Ey, Ty, + Ey;Ty,, which leads to

Ey Ty, = 2(n—1)(fs — f2) +2(r — 1) 2(r/2T1 — p/1t1)
=2(r = 1)7"(f2 = f1) = (f2 = f1). (5.55)

The maximum value 2h(n — 1) is attained when v; and vy are leaves and v3
is the root. So
ir* =max E,T, = 2(n — 1)h. (5.56)
2 ,T

(The 7* part is simpler via (5.88) below.) Another special case is that, for
a leaf v,

EyTroot = 2(r — 1)_2(7‘h+1 —r)=2h(r—1)"t—h~2n/(r—1), (5.57)

ErootTy = 2(n — 1)h — EyTroot ~ 2nh (5.58)

where asymptotics are as h — oo for fixed r. Since Ey o071y is decreasing in
f(w), it follows that

70 =Y TwFrootTw < (1+ 0(1))2nh.
w

On the other hand, we claim 79 > (1 + o(1))2nh, so that
T0 ~~ 2nh.

To sketch the proof, given a vertex w, let v be a leaf such that w lies on
the path from v to the root. Then

ErootTw = rootTv - EwTvu

and F,T, < 2(n —1)f(w) by (5.54). But the stationary distribution puts
nearly all its mass on vertices w with f(w) of constant order, and n = o(nh).
We claim next that

T~ Ty~ 2n/(r —1).

Since 1o < 7, it is enough to show

2n

71 < (1+0(1))7"— .

(5.59)
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and
2n

r—1°

T2 > (1+0(1)) (5.60)

Proof of (5.59). Put
2n

r—1
for brevity. We begin the proof by recalling the results (5.22) and (5.19) for
the induced walk X:

t, =

. (r+1)
T GAE )

2’/“h+l
(r—1)2

BT, ~ ~ b, (5.61)

By Proposition yyy of Chapter 3,

sup
t

A t 7/\_2 -1
P:(Ty, >t) — - < — =0 =o0(1). 5.62
(> 1) exp< EﬁThﬂ g =0 )=o) (56)

For X started at 0, let S be a stopping time at which the chain has exactly
the stationary distribution. Then, for 0 < s <'¢,
Po(Ty, > t) < Py(S > s) + Pi(T), > t — s).

Since %1(2) = O(h) = O(logn) by (5.23), we can arrange to have FyS =
O(logn). Fixing ¢ > 0 and choosing t = (14-€)t,, and (say) s = (logn)?, (5.62)
and (5.61) in conjunction with Markov’s inequality yield

(1+ €)t,, — (logn)?

Py(Tp, > (14 €e)t,) = exp|—

E:T),
+0((logn)™") + O(n™1)
— e~ (),

Returning to the continuous-time walk on the tree, for n sufficiently large
we have
Py(Troot > (1 + €)tn) < Po(T), > (1 + €)t,) < et

for every vertex v. Now a simple coupling argument (jjj spell out details?:
Couple the induced walks and the tree-walks will agree when the induced
walk starting farther from the origin has reached the origin) shows that

dn((1+e)t,) < et
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for all large n. Hence 71 < (1 + €)t,, for all large n, and (5.59) follows. m

Proof of (5.60).

jjj [This requires further exposition in both Chapters 3 and 4-1. In Chap-
ter 3, it needs to be made clear that one of the inequalities having to do with
CM hitting time distributions says precisely that E, T4 > E;Ta/m(A°) >
E;T4. In Chapter 4-1 (2/96 version), it needs to be noted that Lemma 2(a)
(concerning 7o for the joining of two copies of a graph) extends to the joining
of any finite number of copies.|

Let G denote a balanced r-tree of height h. Let G” denote a balanced
r-tree of height A — 1 with root y and construct a tree G’ from G” by adding
an edge from y to an additional vertex z. We can construct G by joining r
copies of G’ at the vertex z, which becomes the root of G. Let 7’ and 7"
denote the respective stationary distributions for the random walks on G’
and G”, and use the notation 7" and T”, respectively, for hitting times on
these graphs. By Chapter 4 jjj,

7y = Eo T (5.63)

where o is the quasistationary distribution on G’ associated with the hitting
time T7. By Chapter 3 jjj, the expectation (5.63) is no smaller than E/T7,
which by the collapsing principle equals

W) (BTl + B,TY) = #(@") (BT + BT.)

But it is easy to see that this last quantity equals (1 + o(1))E;T%, which is
asymptotically equivalent to 2n/(r — 1) by (5.61). =

;From the discussion at the beginning of Section 5.3.1, it follows that 7.
is achieved at any of the r subtrees of the root. This gives
2rh —r —1)(2r" —1)  2n

c 2r(rh — 1) r

An extension of the balanced r-tree example is treated in Section 5.2.1
below.

Example 5.15 The d-cube.

This is a graph with vertex-set I = {0,1}% and hence with n = 2% vertices.
Write i = (i1, ...,4q) for a vertex, and write |[i—j| = >_, |iy — ju|- Then (i, )
is an edge if and only if |i—j| = 1, and in general |i—j| is the graph-distance
between i and j. Thus discrete-time random walk proceeds at each step by
choosing a coordinate at random and changing its parity.
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It is easier to use the continuized walk X(t) = (X1(t),..., X4(t)), because
the component processes (X, (t)) are independent as u varies, and each is
in fact just the continuous-time random walk on the 2-path with transition
rate 1/d. This follows from an elementary fact about the superposition of
(marked) Poisson processes.

Thus, in continuous time,

d

PX(t)=j) = HB (1+(_1)|iu—ju|e—2t/d)}

u=1
= 277(1- e*Qt/d)lH‘ (1+ e*Zt/d)df‘ifj‘ . (5.64)

By expanding the right side, we see that the continuous-time eigenvalues are
d
A = 2k/d with multiplicity (k:)’ k=0,1,...,d. (5.65)

(Of course, this is just the general fact that the eigenvalues of a d-fold
product of continuous-time chains are

Ny + -+ X3 1 <dg,...,ig <n) (5.66)

where (A;;1 < i < n) are the eigenvalues of the marginal chain.)

In particular,
T =d/2. (5.67)

By the eigentime identity (Chapter 3 yyy)

=21 +d7 ' +0(d7?)), (5.68)

the asymptotics being easy analysis.
From (5.64) it is also straightforward to derive the discrete-time ¢-step
transition probabilities:

d

m=0

m—r
r

Starting the walk at 0, let Y; = |X(¢)|. Then Y is the birth-and-death
chain on states {0, 1,...,d} with transition rates (transition probabilities,
in discrete time)

d—1 1 .
Gigtl =~ Gii-1 = 0<iqi<d.
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xxx box picture

This is the Ehrenfest urn model mentioned in many textbooks. In our
terminology we may regard Y as random walk on the weighted linear graph
(Section 5.1.2) with weights

In particular, writing 7" for hitting times for Y, symmetry and (5.13) give

d
1,y 1 _ 1
§TY:§( 0Ty + E4Ty) = BTy =27 1}:(&1).
=1 \4—1

On the d-cube, it is “obvious” that EoTj is maximized by j = 1, and this
can be verified by observing in (5.64) that Po(X(t) = j) is minimized by
J =1, and hence Zp; is minimized by j = 1, so we can apply Chapter 2 yyy.
Thus

1 |
57* = max BT} = EoTy =271 ——— ~2%(1+1/d+ O(1/d?)). (5.69)
ij

=4

The asymptotics are the same as in (5.68). In fact it is easy to use (5.64) to

show
Zii = 27d7'0 =1+ d—! + O(d72)

Zi; = O(d™?%) uniformly over |i — j| > 2
and then by Chapter 2 yyy
ET; =21 +d ™+ 0(d™?)) uniformly over |i — j| > 2.

Since
1+ BTy = BTy + BTy = w/w =2,

it follows that
ET; =20 —1if|i—j| =1

xxx refrain from write out exact EjTj—refs
To discuss total variation convergence, we have by symmetry (and writ-
ing d to distinguish from dimension d)

d(t) = [|[Po(X(t) € -) — Pr(X(t) € )|

d(t) = [[Po(X(t) € -) = ()]
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Following Diaconis et al [116] we shall sketch an argument leading to
d (%dlogd—i— sd) — L(s)=P (\Z| < %6725) ,—00 < § < 00 (5.70)
where Z has the standard Normal distribution. This implies
71 ~ tdlogd. (5.71)

For the discrete-time walk made aperiodic by incorporating chance 1/(d +
1) of holding, (5.70) and (5.71) remain true, though rigorous proof seems
complicated: see [116].

Fix u, and consider j = j(u) such that |j| — d/2 ~ ud'/?/2. Using
1 —exp(—0) ~ § — 30?2 as § — 0 in (5.64), we can calculate for t = t(d) =
Tdlogd + sd with s fixed that

d : et —2s
2Py (X(t) =j) » exp | — 5~ T ue .

Note the limit is > 1 when u < ug(s) = —e~2%/2. Now
1 . - . _
d(t) = 5 > [Po(X(t) =) =27 ~ 3 (Po(X(t) =§) = 279)
J

where the second sum is over j(u) with u < ug(s). But from (5.64) we can
write this sum as

P (B (50 —d72e72)) < Jj(ug(s))]) — P (B (3) < li(uo(s))])
where B(p) denotes a Binomial(d, p) random variable. By the Normal ap-
proximation to Binomial, this converges to

P(Z < —uo(s)) = P(Z < uo(s))

as stated.
As an aside, symmetry and Chapter 4 yyy give

70 < EoTh < 71(2) + 70

and so the difference EoTy — 79 is O(dlogd), which is much smaller than
what the series expansions (5.68) and (5.69) imply.
The fact that the “half-cube” A ={i €1: iy = 0}, yielding

Te =d/2,

achieves the sup in the definition of 7, can be proved using a slightly tricky
induction argument. However, the result follows immediately from (5.67)
together with the general inequality 7 > 7.
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Example 5.16 Dense regular graphs.

Consider an r-regular n-vertex graph with r» > n/2. Of course here we are
considering a class of graphs rather than a specific example. The calculations
below show that these graphs necessarily mimic the complete graph (as far
as smallness of the random walk parameters is concerned) in the asymptotic
setting r/n — ¢ > 1/2.

The basic fact is that, for any pair i, j of vertices, there must be at least
2r — n other vertices k such that ¢ — k — j is a path. To prove this, let a;
(resp., a2) be the number of vertices k # i, j such that exactly 1 (resp., 2)
of the edges (k,1), (k,j) exist. Then a; + az < n — 2 by counting vertices,
and ay + 2ag > 2(r — 1) by counting edges, and these inequalities imply
as > 2r —n.

Thus, by Thompson’s principle (Chapter 3, yyy) the effective resistance
rij < —2— and so the commute interpretation of resistance implies

2r—m

. 2rn 2cn
7 <

=9 —n" 2—-1

(5.72)

A simple “greedy coupling” argument (Chapter 14, Example yyy) shows

T < ~
2r—n 2c—1

(5.73)

This is also a bound on 79 and on 7., because 7. < 1o < 71 always, and special
case 2 below shows that this bound on 7. cannot be improved asymptotically
(nor hence can the bound on 71 or 7). Because E;T; < nry for regular
graphs (Chapter 3 yyy), we get

nr
E.T;, < .
T = or—n
This implies
nr cn
T0 <

=2 —n  2-1
which also follows from (5.72) and 79 < 7*/2. We can also argue, in the
notation of Chapter 4 yyy, that

e nr cn
1+ nm < (1+0(1))

(2)
max BTy < 7 +m?XEW1}§e—1 2w —n  2—1

v

Special case 1. The orders of magnitude may change for ¢ = 1/2. Take
two complete (n/2)-graphs, break one edge in each (say edges (v1,v2) and
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(w1, ws)) and add edges (v1,w) and (ve, w2). This gives an n-vertex ((n/2)—
1)-regular graph for which all our parameters are ©(n?).

jij T haven’t checked this.

Special case 2. Can the bound 7. < r/(2r—n) ~ ¢/(2c—1) be asymptoti-
cally improved? Eric Ordentlicht has provided the following natural counter-
example. Again start with two (n/2)-complete graphs on vertices (v;) and
(w;). Now add the edges (v, w;) for which 0 < (j—i) mod (n/2) <r—(n/2).
This gives an n-vertex r-regular graph. By considering the set A consisting
of the vertices v;, a brief calculation gives

Te 2> - ~C .
2r—-n+2 2¢c—-1

Example 5.17 The d-dimensional torus Z%,.

The torus is the set of d-dimensional integers i = (i1, ...,ig) modulo m,
considered in the natural way as a 2d-regular graph on n = m? vertices. It
is much simpler to work with the random walk in continuous time, X(t) =
(X1(t),...,Xq4(t)), because its component processes (X, (t)) are independent
as u varies; and each is just continuous-time random walk on the m-cycle,
slowed down by a factor 1/d. Thus we can immediately write the time-¢
transition probabilities for X in terms of the corresponding probabilities
po,;j(t) for continuous-time random walk on the m-cycle (see Example 5.7
above) as

d
po(t) = I poj.(t/d).
u=1

Since the eigenvalues on the m-cycle are (1 — cos(2wk/m),0 < k < m — 1),
by (5.66) the eigenvalues of X are
1 d
Alyokg) = g;(l — cos(2mky/m)), 0 <k, <m — 1.

In particular, we see that the relaxation time satisfies

dm?  dn?/¢
o2 T 2p2
where here and below asymptotics are as m — oo for fixed d. This relaxation
time could more simply be derived from the N-cycle result via the general
“product chain” result of Chapter 4 yyy. But writing out all the eigenvalues
enables us to use the eigentime identity.

0= > 1/ Aty k)

k1 kq

T2
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(the sum excluding (0, ...,0)), and hence
70 ~ meRy (5.74)

where

1 1 1
R E// dzry---dx 5.75
Tl IS (1 —cos(2rzy) (5.75)

provided the integral converges. The reader who is a calculus whiz will see
that in fact Ry < oo for d > 3 only, but this is seen more easily in the
alternative approach of Chapter 15, Section yyy.

xxx more stuff: connection to transience, recurrent potential, etc

xxx new copy from lectures

XXX T1, Te

jijj David: I will let you develop the rest of this example. Note that 7|
is considered very briefly in Chapter 15, eq. (17) in 3/6/96 version. Here
are a few comments for 7.. First suppose that m > 2 is even and d > 2.
Presumably, 7. is achieved by the following half-torus:

A:={i=(i1,...,iq) € Z% : 0 <ig < m/2}.
In the notation of (5.52) observe
|E| = dn, degA =dn, degA®=dn, (A,A°)= omd=1 = 2n/m,

whence

T(A) = %nl/d.

[By Example 5.15 (the d-cube) this last result is also true for m = 2, and
(for even m > 2) it is by Example 5.7 (the n-cycle) also true for d = 1.] If
we have correctly conjectured the maximizing A, then

Te = %nl/d if m is even,

and presumably(?7)

e~

in any case.

Example 5.18 Chess moves.

Here is a classic homework problem for an undergraduate Markov chains
course.
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Start a knight at a corner square of an otherwise-empty chess-
board. Move the knight at random, by choosing uniformly from
the legal knight-moves at each step. What is the mean number
of moves until the knight returns to the starting square?

It’s a good question, because if you don’t know Markov chain theory it looks
too messy to do by hand, whereas using Markov chain theory it becomes very
simple. The knight is performing random walk on a graph (the 64 squares
are the vertices, and the possible knight-moves are the edges). It is not hard
to check that the graph is connected, so by the elementary Chapter 3 yyy
for a corner square v the mean return time is

B, T} = L 21¢|

Ty dy

and by drawing a sketch in the margin the reader can count the number of
edges |€| to be 168.

Other chess pieces—queen, king, rook—define different graphs (the bish-
op’s is of course not connected, and the pawn’s not undirected). One might
expect that the conventional ordering of the “strength” of the pieces as
(queen, rook, knight, king) is reflected in parameters 79 and 7o (jjj how
about the other taus?) being increasing in this ordering. The reader is
invited to perform the computations. (jjj: an undergraduate project?) We
have done so only for the rook’s move, treated in the next example.

The computations for the queen, knight, and king are simplified if the
walks are made on a toroidal chessboard. (There is no difference for the
rook.)

jjj Chess on a bagel, anyone? Continue same paragraph:

Then Fourier analysis (see Diaconis [112]) on the abelian group Z2, (with
m = 8) can be brought to bear, and the eigenvalues are easy to compute.
We omit the details, but the results for (queen, rook, knight, king) are
asymptotically

= |5’7

0 = (m*+ Sm+0(1), m* +m+0(1),
J33?7(1 + o(1)) cinighem® log m, jjj?(1 + o(1))ciingm” log m)
Ty o~ (%, 2, #mQ, %mz)
as m — oo, in conformance with our expectations, and numerically
70 = (65.04, 67.38, 69.74, 79.36)
1o = (1.29, 1.75, 1.55, 4.55)

for m = 8. The only surprise is the inverted 7o ordering for (rook, knight).
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Example 5.19 Rook’s random walk on an m-by-m chessboard.

jjj Do we want to do this also on a d-dimensional grid? We need to
mention how this is a serious example, used with Metropolis for sampling
from log concave distributions; reference is [32]7 [33]7

Number the rows and columns of the chessboard each 0 through m — 1
in arbitrary fashion, and denote the square of the chessboard at row 7; and
column iy by i = (i1,42). In continuous time, the rook’s random walk (X(t))
is the product of two continuous-time random walks on the complete graph
K,, on m vertices, each run at rate 1/2. Thus (cf. Example 5.9)

A =) = ] ot (= e (g )] 60

u=1

which can be expanded to get the discrete-time multistep transition proba-
bilities, if desired. We recall that the eigenvalues for discrete-time random
walk on K, are 1 with multiplicity 1 and —1/(m—1) with multiplicity m—1.
It follows [recall (5.66)] that the eigenvalues for the continuous-time rook’s
walk are

m

Sm—1)’ mri | with resp. multiplicities 1, 2(m — 1), (m — 1)2.

0,

In particular,
2(m —1
Ty = Am=1) ), (5.77)

m
which equals 1.75 for m = 8 and converges to 2 as m grows. Applying the
eigentime identity, a brief calculation gives
— 1) 3
= M=V (m+3) (5.78)

m

which equals 67.375 for m = 8 and m? + m + O(1) for m large.

Starting the walk X at 0 = (0,0), let Y (¢) denote the Hamming distance
H(X(t),0) of X(¢) from 0, i.e., the number of coordinates (0, 1, or 2) in
which X(¢) differs from 0. Then Y is a birth-and-death chain with transition

rates
1 _ 1 _ 1

This is useful for computing mean hitting times. Of course

qor =1, qio =

ET; = 0if H(i,j) = 0.
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Since
1+ BTy = EoTY + B\T) = m?,

it follows that
ETy=m? - 1if H(i,j) = 1.

Finally, it is clear that Engy =m — 1, so that
ExTY = BoTY + E\Ty =m? +m —2,

whence
ETy=m? +m—2if H(i,j) = 2.

These calculations show

%T* =max BT = m? +m — 2,
ij
which equals 70 for m = 8, and they provide another proof of (5.78).
From (5.76) it is easy to derive

0= 12w {y) (-2 ()

and thence

et o) e ()]

which rounds to 2.54 for m = 8 and converges to —2In(1 — (1 — e~ 1)1/2) =
3.17 as m becomes large.

Any set A of the form {(i1,12) : i, € J} with either v =1 or u =2 and
J a nonempty proper subset of {0, ..., m — 1} achieves the value

Te = QL — 1.
m

A direct proof is messy, but this follows immediately from the general in-
equality 7. < 1, (5.77), and a brief calculation that the indicated A indeed
gives the indicated value.

xxx other examples left to reader? complete bipartite; ladders

jij Note: I've worked these out and have handwritten notes. How much
do we want to include, if at all? (I could at least put the results in the
table.)
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5.2.1 Biased walk on a balanced tree

Consider again the balanced r-tree setup of Example 5.14. Fix a parameter
0 < A < co. We now consider biased random walk (X;) on the tree, where
from each non-leaf vertex other than the root the transition goes to the
parent with probability A\/(A+7) and to each child with probability 1/(A+7).
As in Example 5.14 (the case A = 1), the chain X induced by the function

f(i) = h — (distance from ¢ to the root)

is (biased) reflecting random walk on {0, ..., h} with respective probabilities
A/(A+7) and /(X + r) of moving to the right and left from any i # 0, h;
the ratio of these two transition probabilities is

p=A\r.
The stationary distribution # for X is a modified geometric:
1 1 iftm=0
fm=—x{ (1+p)pmt ifl<m<h-1
v ph1 ifm=nh

where

ke 200/ -p) ifp#£1
=23 p :{ 2h if p=1.

Since the stationary distribution 7 for X is assigns the same probability to
each of the #"~/(*) vertices v with a given value of f(v), a brief calculation
shows that m,pye = M) /iorh for any edge (v = child, z = parent) in the
tree. In the same notation, it follows that X is random walk on the balanced
r-tree with edge weights w,, = M @) and total weight w = Z%x Wy = WM.

The distribution 7 concentrates near the root-level if p < 1 and near the
leaves-level if p > 1; it is nearly uniform on the h levels if p = 1. On the
other hand, the weight assigned by the distribution 7 to an individual vertex
v is a decreasing function of f(v) (thus favoring vertices near the leaves) if
A <1 (ie, p < 1/r) and is an increasing function (thus favoring vertices
near the root) if A > 1; it is uniform on the vertices in the unbiased case
A=1

The mean hitting time calculations of Example 5.14 can all be extended
to the biased case. For example, for A # 1 the general formula (5.55)
becomes [using the same notation as at (5.55)]

—J3 _ \"J2
BT, — wrh)\fl)\lf Lo(pt—1)? (p*(ferl) _ p*(f1+1)>

=2~ =) fo = A1) = (o= f1) (5.79)



196CHAPTER 5. EXAMPLES: SPECIAL GRAPHS AND TREES (APRIL 23 1996)

if p=#£1 and
A Sz )\
Tl + 13- 17

if p = 1. The maximum value is attained when vy and vy are leaves and v3
is the root. So if A # 1,

E,,T,, = wr"

rh)\_h_ 1.
Al—1

T =max E,T, = W
v,T

(5.80)

D=

The orders of magnitude for all of the T-parameters (with r and A, and
hence p, fixed as h, and hence n, becomes large) are summarized on a
case-by-case basis in the next table. Following are some of the highlights
in deriving these results; the details, and derivation of exact formulas and
more detailed asymptotic results, are left to the reader.

Orders of magnitude of parameters [7 = ©(entry)]
for A-biased walk on a balanced r-tree of height h (p = A/r).

Value of p T* T0 a5l D) Te

p<1/r p Mo e T ph
p=1/r (= Example 5.14) | nh | nh | n n n

I/r<p<l1 n n | ph|ph|ph
p=1 nh n h

p>1 n n h 1 1

For 1o = >, Mz Eroot Ty we have 79 < E oot Tieat- If p < 1/r, this bound
is tight:
2ph
(1=p2(1 =X
for p > 1/r a more careful calculation is required.

If p < 1, then the same arguments as for the unbiased case (p = 1/r)
show

70 ~ E oot Lieat ~

(A= p);

T~ T2~ 2p” D /(1 — )2,

In this case it is not hard to show that
Te = G(Pih)
as well. If p =1, then it is not hard to show that

n=0(h), m~21-1h
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with 7. achieved at a branch of the root (excluding the root), and so
T2 = @(h)

as well. If p > 1, then since X has positive drift equal to (p —1)/(p + 1), it
follows that
p+1
T ~ ——h.
p—1
The value 7. is achieved by isolating a leaf, giving

Te — 1,
and so, by the inequalities 7. < 75 < 872 of Chapter 4, Section yyy,
T = 0O(1)

as well.
jjj Limiting value of 79 when p > 1 is that of 7 for biased infinite tree?
Namely?

5.3 Trees

For random walk on a finite tree, we can develop explicit formulas for means
and variances of first passage times, and for distributions of first hitting
places. We shall only treat the unweighted case, but the formulas can be
extended to the weighted case without difficulty.

xxx notation below —change w to = 7 Used 4, j, v, w, x haphazardly for
vertices.

In this section we’ll write r, for the degree of a vertex v, and d(v, )
for the distance between v and x. On a tree we may unambiguously write
[v,z] for the path from v to z. Given vertices j,v1,ve,... in a tree, the
intersection of the paths [j,v1], [j,v2],... is a (maybe trivial) path; write
d(j,v1 Avg A--+) >0 for the length of this intersection path.

On an n-vertex tree, the random walk’s stationary distribution is

Ty

2(n—1)°

Ty =

Recall from the beginning of this chapter that an edge (v, x) of a graph
is essential if its removal would disconnect the graph into two components
A(v,z) and A(x,v), say, containing v and z respectively. Obviously, in a
tree every edge is essential, so we get a lot of mileage out of the essential
edge lemma (Lemma 5.1).
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Theorem 5.20 Consider discrete-time random walk on an n-vertex tree.
For each edge (i,j),

BTy = 2|AG.j)| - 1 (5.81)
ET; + E;T; = 2(n —1). (5.82)
For arbitrary 1, 7,
ET; = —d(i,j) + 2> _d(j,iAnv) =Y _red(j,i Av) (5.83)
ET; + E;T; = 2(n — 1)d(1, 7). (5.84)
For each edge (i,j),
var;1; = —E;T; + Z Z rorw(2d(4,v Aw) — 1). (5.85)

vEA(i,j) weA(i,J)
For arbitrary i, 7,
var;1; = —E;Tj + Z errwd(j,i AvAw)[2d(j,v ANw) —d(j,i ANvAw).
c (5.86)

Remarks. 1. There are several equivalent expressions for the sums above:
we chose the most symmetric-looking ones. We've written sums over ver-
tices, but one could rephrase in terms of sums over edges.

2. In continuous time, the terms “
formulas—see xxx.

Proof of Theorem 5.20. Equations (5.81) and (5.82) are rephrasings
of (5.3) and (5.4) from the essential edge lemma. Equation (5.84) and the
first equality in (5.83) follow from (5.82) and (5.81) by summing over the
edges in the path [7,j]. Note alternatively that (5.84) can be regarded as
a consequence of the commute interpretation of resistance, since the ef-
fective resistance between i and j is d(i,7). To get the second equality
in (5.83),consider the following deterministic identity (whose proof is obvi-
ous), relating sums over vertices to sums over edges.

—E;T;” disappear from the variance

Lemma 5.21 Let f be a function on the vertices of a tree, and let j be a
distinguished vertex. Then

dorefw) =Y (f(v) + f(v"))
v v

where v* is the first vertex (other than v) in the path [v, j].



5.3. TREES 199

To apply to (5.83), note

d(jiine) = d(jiAv)itv¢li,j]
= d(jiAv)—1ifvelij], v

The equality in Lemma 5.21 now becomes the equality in (5.83).
We prove (5.85) below. To derive (5.86) from it, sum over the edges in
the path [, j] = (¢ = ig,1,...,%m = j) to obtain

var Ty = —ET; + Y > > (2d(ig,v Aw) — 1) (5.87)
voow ]
where Y, denotes the sum over all 0 < [ < m — 1 for which A(i;,941)
contains both v and w. Given vertices v and w, there exist unique smallest
values of p and ¢ so that v € A(ip,ipt1) and w € A(ig,ig41). If p # ¢, then
the sum »~; in (5.87) equals

m—1 m—1
> Qdli1sipg) 1) = Y U+~ (pVq)—1)
l=pVq l=pVvq

= (m—(pVq)*=d*(jvAw)
= d(j,i NvAw)[2d(j,v ANw) —d(j,i NvAw)],

as required by (5.86). If p = ¢, then the sum }; in (5.87) equals

—_

m—
(Qd(il-i—la Zp) + 2d(ip7 vA ’LU) - 1)
l=p
which again equals d(j,7 A v Aw)[2d(j,v Aw) —d(j,i Av A w)] by a similar
calculation.

So it remains to prove (5.85), for which we may suppose, as in the proof
of Lemma 5.1, that j is a leaf. By considering the first step from j to i we
have

vaurojJr = var;Tj.

Now yyy of Chapter 2 gives a general expression for Vau"jTjJr in terms of
E;T;, and in the present setting this becomes

var; T =2(n—1) = (2(n—1))* +>_ 2r,B,Tj.
v

Using the second equality in (5.83), we may rewrite the sum as

Z Z Torw2d(j,v A w).

V] W]
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Also,

d ry=2(n-1)-1.

v#j

Combining these expressions gives

var;Tj = —(2n — 3 +Z errw 2d(j,v ANw) —1).
vFEJ wEG

But by (5.81), E{T; =2n—3. =
5.3.1 Parameters for trees
Here we discuss the five parameters of Chapter 4. Obviously by (5.84)
™" =2(n—1)A (5.88)

where A is the diameter of the tree. As for 7, it is clear that the sup in its
definition is attained by A(v,w) for some edge (v, w). Note that

2|A(v,w)| — 1
T(A(v, w)) = M (5.89)
This leads to
2|A(v,w)|—1 2|A(w,v)|—1
2(n—1) 2(n—1)
T = max T
(vie) 2T
4|A A -2 1
(v,w) 2(n 1)

Obviously the maz is attained by an edge for which |A(v,w)| is as close as
possible to n/2. This is one of several notions of “centrality” of vertices
and edges which arise in our discussion—see Buckley and Harary [81] for a
treatment of centrality in the general graph context, and for the standard
graph-theoretic terminology.

Proposition 5.22 On an n-vertex tree,

1

1
1.2 Z {]Avw)HA(w Rl

(v,w)

(1460, w) + | AGw, 0)?)]

where y ., . denotes the sum over all undirected edges (v, w).
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Proof. Using the formula for the stationary distribution, for each ¢
L > riET,
= rET:.
"7 2(n—1) —

Appealing to Lemma 5.21 (with i as the distinguished vertex)

" = gy BT — i)

J

where a(i,7) = 0 and a(i, j) = E,T}, where (4, x) is the first edge of the path
[7,7]. Taking the (unweighted) average over i,

= %(nl_l) > D QET; — a(i, ).
t 7

Each term E;T} is the sum of terms E, T, along the edges (v, w) of the path
[i,7]. Counting how many times a directed edge (v, w) appears,

1

0= 2n(n —1)

> QA w)||A(w, v)| = [A(v,w) ) EsTo,

where we sum over directed edges (v, w). Changing to a sum over undirected
edges, using E,T, + E,T, = 2(n — 1) and E,T,, = 2|A(v,w)| — 1, gives

2n(n—1)mo = Y [2[A(v, w)]|A(w,v)[2(n - 1)
(v,w)
—|A (v, w)[(2[A(v, w)| = 1)
—|A(w, 0)|(2|A(w, v)| = 1)].

This simplifies to the assertion of the Proposition. m
For 71 we content ourselves with a result “up to equivalence”.

Proposition 5.23 There exist constants K1, Ko < 0o such that

— minmax F;T; < 11 < Ko minmax E;T;.
1t J i

Of course the expectations can be computed by (5.83).
Proof. We work with the parameter

7'1(3) = Il’;%)(z:’]T]{;’EBT]C - Esz|
’ k
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which we know is equivalent to 7. Write

o = minmax F;T;.
i

Fix an ¢ attaining the minimum. For arbitrary j we have (the first equality
uses the random target lemma, cf. the proof of Chapter 4 Lemma yyy)

S mlEiTy — ETy| = 2> mu(EjTy — ET)"
k k
< 2 Z BT because E;T, < E;T; + BT}
k
< 20

and so 71(3) < 4o.

For the converse, it is elementary that we can find a vertex ¢ such that
the size (n*, say) of the largest branch from i satisfies n* < n/2. (This is
another notion of “centrality”. To be precise, we are excluding ¢ itself from
the branch.) Fix this ¢, and consider the j which maximizes E;T;, so that
E;T; > o by definition. Let B denote the set of vertices in the branch from
¢ which contains j. Then

Eka = Ejn + BT}, k€ B¢

and so
3) 2 Z?Tk’Eka — E’LTk“ Z W(BC)EJ'E Z W(BC)J.
k
But by (5.89) m(B) = % < 1, so we have shown 7'1(3) >0/2. =

We do not know whether 7 has a simple expression “up to equivalence”
analogous to Proposition 5.23. It is natural to apply the “distinguished
paths” bound (Chapter 4 yyy). This gives the inequality

T2 < 2(n—1)max Z Z Tpmyd(z,y)
(v,w) z€A(v,w) yeA(w,v)

= 2(n—-1) {22113 (W(A(U,w)) {d(v, V)1 (VeA(wﬂ)))}
+7(A(w, 0)E [d(v, V)1 veatw) )

where V' has the stationary distribution m and where we got the equality
by writing d(x,y) = d(v,y) + d(v,x). The edge attaining the mazx gives yet
another notion of “centrality.”

xxx further remarks on 7.
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5.3.2 Extremal trees

It is natural to think of the n-path (Example 5.8) and the n-star (Exam-
ple 5.10) as being “extremal” amongst all n-vertex trees. The proposition
below confirms that the values of 7", max; ; F;T}, 79, T2, and 7. in those
examples are the exact extremal values (minimal for the star, maximal for
the path).

Proposition 5.24 For any n-vertex tree with n > 3,
(a) 4(n —1) < 7* < 2(n—1)?
(b) 2(n — 1) < max; 5 EiTj < (n — 1)2
(¢c)n—3 <75<(2n? —4n +3)/6.
(d) 1 <7 < (1—cos(n/(n—1)))" L

n?/4]—2n
(6) 1- Q(nlfl) <7 < 4 2/(45712) +1-

Proof. (a) is obvious from (5.88), because A varies between 2 for the
n-star and (n — 1) for the n-path. The lower bound in (b) follows from the
lower bound in (a). For the upper bound in (b), consider some path i =
V0, V1, ...,V = j in the tree, where plainly d < (n—1). Now |A(v4_1,vq)| <
n — 1 and so

|A(vg—i, vg—it1)| < n —i for all ¢

because the left side decreases by at least 1 as ¢ increases. So

d—1
E’LCZ__’] = Z EUmT'Um+1
m=0

d—1
= S (21 A vms)] — 1) by (5.81)
m=0
d—1
S @m+n—d)—1)

m=0

IN

n—1

< Y (@-1

=1
= (n— 1)2.

To prove (c), it is enough to show that the sum in Proposition 5.22 is min-
imized by the n-star and maximized by the n-path. For each undirected
edge (v,w), let

b(v,w) = min(|A(v,w)|, |[A(w,v)]) < n/2.
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Let b = (b1, b2, ...,b,—1) be the non-decreasing rearrangement of these val-
ues b(v, w). The summands in Proposition 5.22 are of the form

a(n —a) — (a2 + (n— a)2)

2(n—1)
with a ranging over the b;.

One can check that this quantity is an increasing function of a < n/2.
Thus it is enough to show that the vector b on an arbitrary n-tree dominates
coordinatewise the vector b for the n-star and is dominated by the vector b
for the n-path. The former is obvious, since on the n-star b = (1,1,...,1).
The latter needs a little work. On the n-path b = (1,1,2,2,3,3,...). So we
must prove that in any n-tree

141

by < { J for all <. (5.91)

Consider a rooted tree on m vertices. Breaking an edge e gives two
components; let a(e) be the size of the component not containing the root.
Let (a1, az,...) be the non-decreasing rearrangement of (a(e)). For an m-
path rooted at one leaf, (a1, as,...) = (1,2,3,...). We assert this is extremal,
in that for any rooted tree

a; <1 for all i. (5.92)

This fact can be proved by an obvious induction on m, growing trees by
adding leaves.

Now consider an unrooted tree, and let b be as above. There exists some
vertex v, of degree r > 2, such that each of the r branches from v has size
(excluding v) at most n/2. Consider these branches as trees rooted at v,
apply (5.92), and it is easy to deduce (5.91).

For (d), the lower bound is easy. Fix a leaf v and let w be its neighbor.
We want to apply the extremal characterization (Chapter 3 yyy) of 72 to
the function

g(v) =1—m, — 7y, g(w) = 0,g(-) = —m, elsewhere.
For this function, Y m,g(z) = 0,
[9,9] = 7o (1 = 7y = 70)? + (1 = 7y — )07,
and by considering transitions out of w

E(Q,g) = 7rv(1 — Ty — Ww)2 + (7rw - 7TU)7T12,-
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Since m, < 1/2 we have [g, g] > £(g,¢9) and hence 72 > [g,9]/E(g,9) > 1.

qqq Anyone have a short proof of upper bound in (d)?

Finally, (e) is clear from (5.90). m

Other extremal questions. Several other extremal questions have been
studied. Results on cover time are given in Chapter 6. Yaron [340] shows
that for leaves [ the mean hitting time E,7; is maximal on the n-path and
minimal on the n-star. (He actually studies the variance of return times,
but Chapter 2 yyy permits the rephrasing.) Finally, if we are interested in
the mean hitting time E,T4 or the hitting place distribution, we can reduce
to the case where A is the set L of leaves, and then set up recursively-
solvable equations for h(i) = E;T7, or for f(i) = P;(T4 = T;) for fixed | € L.
An elementary treatment of such ideas is in Pearce [277], who essentially
proved that (on n-vertex trees) max, F, Ty is minimized by the n-star and
maximized by the n-path.

5.4 Notes on Chapter 5

Most of the material seems pretty straightforward, so we will give references
sparingly.

Introduction. The essential edge lemma is one of those oft-rediscovered
results which defies attribution.

Section 5.1.2. One can of course use the essential edge lemma to derive
the formula for mean hitting times in the general birth-and-death process.
This approach seems more elegant than the usual textbook derivation. Al-
though we are fans of martingale methods, we didn’t use them in Proposi-
tion 5.3(b), because to define the right martingale requires one to know the
answer beforehand!

For a birth-and-death chain the spectral representation involves orthog-
onal polynomials. This theory was developed by Karlin and McGregor in
the 1950s, and is summarized in Chapter 8 of Anderson [31]. It enables
one to write down explicit formulas for P;(X; = j) in special cases. But
it is less clear how to gain qualitative insight, or inequalities valid over all
birth-and-death chains, from this approach.

An alternative approach which is more useful for our purposes is based
on Siegmund duality (see e.g. [31] Section 7.4). Associated with a birth-and-
death process (X;) is another birth-and-death process (Y;) which is “dual”
in the sense that

Py(X, < j) = Pj(Y; > i) for all i, j, t
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and whose transition rates have a simple specification in terms of those of
(X¢). It is easy to see that 7 for (X;) is equivalent to max; E;Tp , for (Y;),
for which there is an explicit formula. This gives an alternative to (5.16).

Section 5.2.

That the barbell is a good candidate for an “extremal” graph with re-
spect to random walk properties was realized by Landau and Odlyzko [219],
who computed the asymptotics of 72, and by Mazo [261], who computed
the asymptotics of the unweighted average of (E;Tj;¢,j € I), which in this
example is asymptotically our 9. Note we were able to give a one-line
argument for the asymptotics of 7 by relying on the general fact < 7p.

Formulas for quantities associated with random walk on the d-cube and
with the Ehrenfest urn model have been repeatedly rediscovered, and we
certainly haven’t given all the known results. Bingham [51] has an extensive
bibliography. Palacios [275] uses the simple “resistance” argument used in
the text, and notes that the same argument can be used on the Platonic
graphs. Different methods of computing EoTy lead to formulas looking
different from our (5.69), for instance

d
EeTy = dY 27'/i [216], eq. (4.27)
=1

= d > j1 <d> [51].

1<j<d,jodd J

Similarly, one can get different-looking expressions for 9. Wilf [337] lists 54
identities involving binomial coefficients—it would be amusing to see how
many could be derived by calculating a random walk on the d-cube quantity
in two different ways!

Comparing our treatment of dense regular graphs (Example 5.16) with
that in [272] should convince the reader of the value of general theory.

Section 5.3. An early reference to formulas for the mean and variance
of hitting times on a tree (Theorem 5.20) is Moon [264], who used less
intuitive generating function arguments. The formulas for the mean have
been repeatedly rediscovered.

Of course there are many other questions we can ask about random walk
on trees. Some issues treated later are

xxx list.

xxx more sophisticated ideas in Lyons [245].



Chapter 6

Cover Times (October 31,
1994)

The maximal mean hitting time max; ; F;T}; arises in many contexts. In
Chapter 5 we saw how to compute this in various simple examples, and the
discussion of 7* in Chapter 4 indicated general methods (in particular, the
electrical resistance story) for upper bounding this quantity. But what we’ve
done so far doesn’t answer questions like “how large can 7* be, for random
walk on a n-vertex graph”. Such questions are dealt with in this Chapter, in
parallel with a slightly different topic. The cover time for a n-state Markov
chain is the random time C' taken for the entire state-space I to be visited.
Formally,

C = maxT}.
j

It is sometimes mathematically nicer to work with the “cover-and-return”
time

CT=min{t > C: X; = Xo}.
There are several reasons why cover times are interesting.

e Several applications involve cover times directly: graph connectivity
algorithms (section 6.8.2), universal traversal sequences (section 6.8.1),
the “white screen problem” (Chapter 1 yyy)

e There remains an interesting “computability” open question (section
6.8.3)

e In certain “critical” graphs, the uncovered subset at the time when
the graph is almost covered is believed to be “fractal” (see the Notes
on Chapter 7).

207
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We are ultimately interested in random walks on unweighted graphs,
but some of the arguments have as their natural setting either reversible
Markov chains or general Markov chains, so we sometimes switch to those
settings. Results are almost all stated for discrete-time walks, but we occa-
sionally work with continuized chains in the proofs, or to avoid distracting
complications in statements of results. Results often can be simplified or
sharpened under extra symmetry conditions, but such results and examples
are deferred until Chapter 7.

xxx contents of chapter

6.1 The spanning tree argument

Except for Theorem 6.1, we consider in this section random walk on an n-
vertex unweighted graph. Results can be stated in terms of the number of
edges |€| of the graph, but to aid comparison with results involving minimal
or maximal degree it is helpful to state results in terms of average degree d:

d= %; €] = nd/2.
n

The argument for Theorem 6.1 goes back to Aleliunas et al [25]. Though
elementary, it can be considered the first (both historically and logically)
result which combines Markov chain theory with graph theory in a non-
trivial way.

Consider random walk on a weighted graph. Recall from Chapter 3 yyy
the edge-commute inequality: for an edge (v, )

E T, + E, T, < w/wy, (weighted) (6.1)
< dn (unweighted). (6.2)

One can alternatively derive these inequalities from the commute interpre-
tation of resistance (Chapter 3 yyy), since the resistance between x and v
is at most 1/w,,.

Theorem 6.1 For random walk on a weighted graph,

m3XEv0+ < wmin Z 1/we
eET

where the min is over spanning trees T. In the unweighted case

max E,CT <dn(n—1).
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Proof. Given a spanning tree 7 and a vertex v, there is a path v =

Vg, V1,...,Van_o = v which traverses each edge of the tree once in each
direction, and in particular visits every vertex. So
2n—3

E”0+ S ZEvavj+1
=0

e=(v,x)eT

< Z w/we by (6.1)
eGT

This gives the weighted case, and in the unweighted case w = dn and each
spanning tree has ZeGT 1l/we=n—-1. 0

Note that in the unweighted case, the bound is at most n(n—1)2. On the
barbell (Chapter 5 Example yyy) it is easy to see that min; E;C = Q(n?),
so the maximal values of any formalization of “mean cover time”, over n-
vertex graphs, is ©(n?). Results and conjectures on the optimal numerical
constants in the ©(n3) upper bounds are given in section 6.3.

Corollary 6.2 On an unweighted n-vertex tree, E,Cf < 2(n — 1)%, with
equality iff the tree is the n-path and v is a leaf.

Proof. The inequality follows from Theorem 6.1. On the n-path with leaves
v,z we have E,C,f = E,T, + E,T, = 2(n —1)%. O

It is worth dissecting the proof of Theorem 6.1. Two different inequalities
are used in the proof. Inequality (6.2) is an equality iff the edge is essential,
so the second inequality in the proof is an equality iff the graph is a tree.
But the first inequality in the proof bounds C'* by the time to traverse a
spanning tree in a particular order, and is certainly not sharp on a general
tree, but only on a path. This explains Corollary 6.2. More importantly,
these remarks suggest that the bound dn(n — 1) in Theorem 6.1 will be
good iff there is some fixed “essential path” in the graph, and the dominant
contribution to C' is from the time taken to traverse that path (as happens
on the barbell).

There are a number of variations on the theme of Theorem 6.1, and we
will give two. The first (due to Zuckerman [342], whose proof we follow)
provides a nice illustration of probabilistic technique.

Proposition 6.3 Write C, for the time to cover all edges of an unweighted
graph, i.e. until each edge (v,w) has been traversed in each direction. Then

max E,C. < 11dn?.
v
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Proof. Fix a vertex v and a time ty. Define “excursions”, starting and ending
at v, as follows. In each excursion, wait until all vertices have been visited,
then wait ¢y longer, then end the excursion at the next visit to v. Writing
S; for the time at which the ¢’th excursion ends, and N for the (random)
number of excursions required to cover each edge in each direction, we have

Sy = min{SZ- 1S > Ce}
and so by Wald’s identity (yyy refs)
E,C. < E,Sy = E,N x E,S;. (6.3)

Clearly
E,S1 < E,CH+tg+ max BT, <tog+ 2max E;C.
(2

To estimate the other factor, we shall first show
Py(N >2) <m?/t3 (6.4)

where m = dn is the number of directed edges. Fix a directed edge (w,z),
say. By Chapter 3 Lemma yyy the mean time, starting at x, until (w,x) is
traversed equals m. So the chance, starting at x, that (w, ) is not traversed
before time t( is at most m/tg. So using the definition of excursion, the
chance that (v,w) is not traversed during the first excursion is at most
m/ty, so the chance it is not traversed during the first two excursions is at
most (m/tg)2. Since there are m directed edges, (6.4) follows.
Repeating the argument for (6.4) gives

3\ J
Pv<N>2j)§<TQ> L j>0
0

and hence, assuming m?> < t2,

E,N < ———.
YT 1 —md/td

Putting to = [2m?/?] gives E,N < 8/3. Substituting into (6.3),

8
mgLXEvC6 < g([ng/ﬁ + QmEXEvC).
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Now Theorem 6.1 says max, E,C < m(n—1) <mn —1, so

8
max E,Ce < §(2m3/2 + 2mn)
v

= ?m(ml/2 +n)

IN

—mn

3

establishing the Proposition. O

Another variant of Theorem 6.1, due to Kahn et al [205] (whose proof
we follow), uses a graph-theoretical lemma to produce a “good” spanning
tree in graphs of high degree.

Theorem 6.4 Writing d, = min, d,,
6dn?

*

max E,Ct <
v

and so on a reqular graph
max E,CT < 6n°. (6.6)

To appreciate (6.6), consider

Example 6.5 Take an even number j > 2 cliques of size d > 3, distinguish
two vertices v;, v} in the i’th clique (for each 0 < i < j), remove the edges
(vi,v}) and add the edges (v}, Y . This creates a (d — 1)-regular

i+1) mod j)
graph with n = jd vertices.

Arguing as in the barbell example (Chapter 5 yyy), as d — oo with j varying
arbitrarily,
d j2  n?

IE,?UXE’UTW ~ 5 X d X Z ~ §
Thus the O(n?) bound in (6.6) can’t be improved, even as a bound for
the smaller quantity max, ., F,T,,. (Note that in the example, d/n < 1/2.
From the results in Chapter 5 Example yyy and Matthews’ method one gets
EC = O(nlogn) for regular graphs with d/n bounded above 1/2.)

Here is the graph-theory lemma needed for the proof of Theorem 6.4.

Lemma 6.6 Let G be an n-vertex graph with minimal degree d.. There
exists a family of [d«/2] spanning forests F; such that

(i) Each edge of G appears in at most 2 forests

(ii) Each component of each forest has size at least [d,/2].
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Proof. Replace each edge (i,7) of the graph by two directed edges (i —
j), (j — ). Pick an arbitrary v; and construct a path v; — va — ...v, on
distinct vertices, stopping when the path cannot be extended. That is the
first stage of the construction of Fi. For the second stage, pick a vertex vg{1
not used in the first stage and construct a path vy41 — vg42 — ... 0 in
which no second-stage vertex is revisited, stopping when a first-stage vertex
is hit or when the path cannot be extended. Continue stages until all vertices
have been touched. This creates a directed spanning forest Fj. Note that
all the neighbors of v, must be amongst {vi,...,v4-1}, and so the size of
the component of F; containing v; is at least d. 4+ 1, and similarly for the
other components of Fj.

Now delete from the graph all the directed edges used in F}. Inductively
construct forests Fb, F, ..., F7q, /2] in the same way. The same argument
shows that each component of F; has size at least d, + 2 — i, because at a
“stopping” vertex v at most ¢ — 1 of the directed edges out of v were used
in previous forests.

Proof of Theorem 6.4. Write m for the number of (undirected) edges.
For an edge e = (v, ) write b, = E, T, + E,;T,. Chapter 3 Lemma yyy says
Y ebe =2m(n—1). Now consider the [d,/2] forests F; given by Lemma 6.6.
Since each edge appears in at most two forests,

Z Z be < 2266 < 4dmn,

i eeF; €

and so there exists a forest F' with > cpbe < 4mn/[d./2] < 8mn/d,.
But each component of F' has size at least [d./2], so F' has at most 2n/d,
components. So to extend F' to a tree T requires adding at most 2n/d, — 1
edges (ej), and for each edge e we have b, < 2m by (6.2). This creates a
spanning tree 7 with }° 7 be < 12mn/d,. As in the proof of Theorem 6.1,
this is an upper bound for E,C.

6.2 Simple examples of cover times

There are a few (and only a few) examples where one can study EC by
bare-hands exact calculations. Write h,, for the harmonic sum

hp =Y i " ~logn. (6.7)
1=1

(a) The coupon collector’s problem. Many textbooks discuss this clas-
sical problem, which involves C' for the chain (Xy;¢ > 0) whose values are
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independent and uniform on an n-element set, i.e. random walk on the
complete graph with self-loops. Write (cf. the proof of Matthews’ method,
Chapter 2 yyy) C™ for the first time at which m distinct vertices have been
visited. Then each step following time C™ has chance (n — m)/n to hit a
new vertex, so B(C™! — C™) =n/(n —m), and so

n—1
EC =) E(C™!'—C™) = nhy_1. (6.8)

m=1

(By symmetry, E,C is the same for each initial vertex, so we just write
EC) It is also a textbook exercise (e.g. [133] p. 124) to obtain the limit
distribution

n~1(C —nlogn) 4 13 (6.9)

where £ has the extreme value distribution
P <zx)=exp(—e*), —oo<z<o0. (6.10)

We won’t go into the elementary derivations of results like (6.9) here, because
in Chapter 7 yyy we give more general results.

(b) The complete graph. The analysis of C' for random walk on the
complete graph (i.e. without self-loops) is just a trivial variation of the
analysis above. Each step following time C™ has chance (n —m)/(n—1) to
hit a new vertex, so

EC = (n—1)hy, ~nlogn. (6.11)

And the distribution limit (6.9) still holds. Because E,T,, = n—1 for w # v,
we also have

ECT=FEC+ (n—1)=(n—1)(1+ hy_1) ~ nlogn. (6.12)

(¢) The n-star (Chapter 5 Example yyy). Here the visits to the leaves
(every second step) are exactly i.i.d., so we can directly apply the coupon
collector’s problem. For instance, writing v for the central vertex and [ for
a leaf,

EC = 2(n—1)hy_2~2nlogn
E,CT = 14+ EC+1=2(n—1)h,_1 ~2nlogn

and C/2 satisfies (6.9). Though we won’t give the details, it turns out that
a clever inductive argument shows these are the minima over all trees.
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Proposition 6.7 (Brightwell - Winkler [61]) On an n-vertex tree,
min £,C > 2(n — 1)h,—2
v
min E,C* > 2(n — 1)h,_1.
v

(d) The n-cycle. Random walk on the n-cycle is also easy to study.
At time C™ the walk has visited m distinct vertices, and the set of visited
vertices must form an interval [j, j +m — 1], say, where we add modulo n. At
time C™ the walk is at one of the endpoints of that interval, and C™+!1 —C™
is the time until the first of {j — 1,j 4+ m} is visited, which by Chapter 5
yyy has expectation 1 x m. So

n—1 n—1
EC=Y B o)=Y i= %n(n _1).
m=1 i=1

There is also an expression for the limit distribution (see Notes).
The n-cycle also has an unexpected property. Let V denote the last
vertex to be hit. Then

P()(V = ’U) = PO(val < Tv+1)Pv,1(Tv+1 < Tv)
+Po(Tyy1 < Ty—1)Pop1 (To—1 < To)
n—(v+1) 1 v—1 1

n—2 n—1 n—-2n-1
1

n—1

In other words, the n-cycle has the property

For any initial vertex vg, the last-visited vertex V' is uniform on
the states excluding vg.

Obviously the complete graph has the same property, by symmetry. Lovasz
and Winkler [240] gave a short but ingenious proof that these are the only
graphs with that property, a result rediscovered in [179].

6.3 More upper bounds

We remain in the setting of random walk on an unweighted graph. Theorems
6.1 and 6.4 show that the mean cover times, and hence mean hitting times,
are O(n?®) on irregular graphs and O(n?) on regular graphs, and examples
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such as the barbell and the n-cycle show these bounds are the right order
of magnitude. Quite a lot of attention has been paid to sharpening the
constants in such bounds. We will not go into details, but will merely
record a very simple argument in section 6.3.1 and the best known results
in section 6.3.2.

6.3.1 Simple upper bounds for mean hitting times

Obviously max;(E;T; + E;T;) < E;C™, so maximizing over i gives
7™ < max E;C™T (6.13)
K

and the results of section 6.1 imply upper bounds on 7*. But implicit in
earlier results is a direct bound on 7*. The edge-commute inequality implies
that, for arbitrary v, x at distance A(v, z),

BT, + E, T, < dnA(v,z) (6.14)
and hence
Corollary 6.8 7 < dnA, where A is the diameter of the graph.

It is interesting to compare the implications of Corollary 6.8 with what can
be deduced from (6.13) and the results of section 6.1. To bound A in terms
of n alone, we have A < n— 1, and then Corollary 6.8 gives the same bound
7% < dn(n — 1) as follows from Theorem 6.1. On the other hand, the very
simple graph-theoretic Lemma 6.10 gives (with Corollary 6.8) the following
bound, which removes a factor of 2 from the bound implied by Theorem 6.4.

I 2

Corollary 6.9 7 and so on a regular graph TF < 3n?.

Lemma 6.10 A < 3n/d,.
Proof. Consider a path vg,v1,...,va, Where vertices vg and va are distance
A apart. Write A; for the set of neighbors of v;. Then A; and A; must be

disjoint when [j — i| > 3. So a given vertex can be in at most 3 of the A’s,
giving the final inequality of

A A
(A+1)dy <> dy, =D |Ai| < 3n. m
=0 =0
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6.3.2 Known and conjectured upper bounds

Here we record results without giving proofs. Write max for the maximum
over n-vertex graphs. The next result is the only case where the exact
extremal graph is known.

Theorem 6.11 (Brightwell-Winkler [62]) max max, , E,T; is attained
by the lollipop (Chapter 5 Example yyy) with m; = [(2n + 1)/3], taking z
to be the leaf.

Note that the implied asymptotic behavior is
4 3

max Iﬁé}UXEva ~ o (6.15)
Further asymptotic results are given by
Theorem 6.12 (Feige [143, 144])
max max £,C" ~ in3 (6.16)
v Y 27 '
max min £,C" ~ in‘3 (6.17)
v 27 '
0 E,C ~ 2 6.18
maxmin E,C' ~ -on (6.18)

The value in (6.16) is asymptotically attained on the lollipop, as in Theo-
rem 6.11. Note that (6.15) and (6.16) imply the same 4n/27 behavior for
intermediate quantities such as 7* and max, E,C. The values in (6.17) and
(6.18) are asymptotically attained by the graph consisting of a n/3-path
with a 2n/3-clique attached at the middle of the path.

The corresponding results for 79 and 7o are not known. We have 75 <
70 < min, E,C, the latter inequality from the random target lemma, and so
(6.18) implies

2
max7y and maxry < (ﬁ + o(1))n?. (6.19)

But a natural guess is that the asymptotic behavior is that of the barbell,
giving the values below.

Open Problem 6.13 Prove the conjectures

1 3 1 3
max 79~ —"Nn-, max 79 ~ —71 .

54 54
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For regular graphs, none of the asymptotic values are known exactly.
A natural candidate for extremality is the necklace graph (Chapter 5 yyy),
where the time parameters are asymptotically 3/4 times the parameters
for the n-path. So the next conjecture uses the numerical values from the
necklace graph.

Open Problem 6.14 Prove the conjectures that, over the class of regular

n-vertex graphs
3

max max ;T ~ “n?
(2%} 4

3
max 7% ~ 5712

3
max max F,CT ~ 5712
v

15
max max E,C ~ —n?
v 16
3

max min E,C ~ an
v

L
max Ty ~ Zn

2

max 7y ~ n

22
The best bounds known are those implied by the following result.

Theorem 6.15 (Feige [144]) On a d-regular graph,
max F,C < 2n?
v

+ 2 d—2 2
mELXEvCU < 2n (1+W> < 13n°/6.

6.4 Short-time bounds

It turns out that the bound “7* < 3n? on a regular graph” given by Corol-
lary 6.9 can be used to obtain bounds concerning the short-time behavior
of random walks. Such bounds, and their applications, are the focus of
this section. We haven’t attempted to optimize numerical constants (e.g.
Theorem 6.15 implies that 7* < 13n2/6 on regular graphs). More elaborate
arguments (see Notes) can be used to improve constants and to deal with the
irregular case, but we’ll restrict attention to the regular case for simplicity.

Write N;(t) for the number of visits to ¢ before time ¢, i.e. during [0,¢—1].
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Proposition 6.16 Consider random walk on an n-vertex regular graph G.
Let A be a proper subset of vertices and let i € A.

(i) E;Tac < 4]|A%.

(i1) EiNi(Tac) < 5|A|.

(iii) E;Ni(t) < 5t1/2, 0 <t < 5n?.

(iv) Pr(T; < t) > 2= min(t}/2 n).

Remarks. For part (i) we give a slightly fussy argument repeating ingredients
of the proof of Corollary 6.9, since these are needed for (ii). The point of
(iv) is to get a bound for ¢t <« E;T;. On the n-cycle, it can be shown that
the probability in question really is ©(min(t'/2 /n, 1)), uniformly in n and ¢.

Proof of Proposition 6.16. Choose a vertex b € A° at minimum distance
from ¢, and let i = 49, %1,...,7j,7j4+1 = b be a minimum-length path. Let G*
be the subgraph on vertex-set A, and let G** be the subgraph on vertex-set
A together with all the neighbors of ;. Write superscripts * and ** for the
random walks on G* and G**. Then

The inequality holds because we can specify the walk on G in terms of the
walk on G** with possibly extra chances of jumping to A¢ at each step (this
is a routine stochastic comparison argument, written out as an example in
Chapter 14 yyy). The equality holds because the only routes in G** from i
to A are via i;, by the minimum-length assumption. Now write &,&*, €
for the edge-sets. Using the commute interpretation of resistance,

BT} <2|E*5. (6.20)

Writing ¢ > 1 for the number of neighbors of i; in A€, the effective resistance
in G** between i; and A is 1/q, so the commute interpretation of resistance
give the first equality in

1 E*
E;The =218~ —1= 2| | +1<2/E+1< |42
q q
The neighbors of ig,41,...,%j—1 are all in A, so the proof of Lemma 6.10
implies
Jj <3|Al/d (6.21)

where d is the degree of G. Since 2|€*| < d|A|, the bound in (6.20) is at
most 3|A|%, and part (i) follows.
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For part (ii), by the electrical network analogy (Chapter 3 yyy) the
quantity in question equals

1

— = wir(i, A%) = dr(i, A° 6.22
Pl(TAc < 1—;+) w T(Z ) T(Z ) ( )

where r(i, A°) is the effective resistance in G between i and A¢. Clearly this
effective resistance is at most the distance (j 4 1, in the argument above)
from i to A°, which by (6.21) is at most 3|A|/d +1. Thus the quantity (6.22)
is at most 3|A| + d, establishing the desired result in the case d < 2|A|. If
d > 2| Al then there are at least d—|A| edges from i to A°, so r(i, A®) <

[A]
and the quantity (6.22) is at most d_iw <2 <5|A]
For part (iii), fix a state ¢ and an integer time ¢t. Write N;(t) for the

number of visits to i before time ¢, i.e. during times {0,1,...,¢t — 1}. Then
t
= = B.Ni(t) < Pr(T; < DENi(1) (6.23)

the inequality by conditioning on T;. Now choose real s such that ns > t.
Since }; E;N;(t) = t, the set
A={j: EN;(t) > s}
has |A| < t/s < n, so part (ii) implies
E;Ni(Tye) < 5t/s. (6.24)
Now by regularity we can rewrite A as {j : E;N;(t) > s}, and so by condi-

tioning on T'4e
EZNl(t) < ElNZ(TAc) + s.

Setting s = /5t and combining with (6.24) gives (iii). The bound in (iv)
now follows from (iii) and (6.23).

6.4.1 Covering by multiple walks

The first application is a variant of work of Broder et al [67] discussed further
in section 6.8.2.

Proposition 6.17 On a reqular n-vertex graph, consider K independent
random walks, each started at a uniform random vertex. Let C'! be the
time until every vertex has been hit by some walk. Then

(25 + o(1))n?log? n

K
ECEl < 3

as n — oo with K > 6logn.
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Remarks. The point is the % dependence on K. On the n-cycle, for K ~ en
it can be shown that initially the largest gap between adjacent walkers is
©(logn) and that ECK] = O(log? n), so in this respect the bound is sharp.
Of course, for K < log n the bound would be no improvement over Theorem
6.4.

Proof. As usual write T; for the hitting time on ¢ for a single walk, and

write TZ-[K] for the first time ¢ is visited by some walk. Then

Po(T > ) = (Po(Ti > 1)~
(1= Pe(T; < )X
exp(—K Pr(T; < 1))

Kt1/2
exXp | — 5

by Proposition 6.16 (iii), provided ¢ < n%. So

IN

IN

Ktl/2
5%0)

P(CHEl > 1) <ZP K> <nexp< ) t <n?. (6.25)

25n

The bound becomes 1 for tg = logZn. So

pcHl = Z pP(CHl > 1)

< [to] S _kih 3 P(CIE] >
< [tol + Z nexp o + ) P > 1)

t=[to]+1 t=n2
= [to| + S1+ Sz, say,

and the issue is to show that S and Sy are o(tp). To handle So, split the set
of K walks into subsets of sizes K — 1 and 1. By independence, for ¢ > n?
we have P(CK! > t) < P(CK~1 > n2)P(CIM > t). Then

PCE > p2yEC by summing over ¢
nexp(—(K —1)/5) - 6n? by (6.25) and Theorem 6.4
o(tp) using the hypothesis K > 6logn.

Sy <
<

To bound S; we start with a calculus exercise: for v > 1

oo
/ exp(—nvl/2 / 2y exp(—y) dy by putting x = >
u2
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o0 —1
< 26_1U/ exp(— <u ) y) dy , using J < exp(g
u u u u
2u? exp(—u)
u—1
The sum S; is bounded by the corresponding integral over [tg,00) and

the obvious calculation, whose details we omit, bounds this integral by
2to/(logn — 1).

6.4.2 Bounding point probabilities

Our second application is to universal bounds on point probabilities. A quite
different universal bound will be given in Chapter yyy.

Proposition 6.18 For continuous-time random walk on a regular n-vertex
graph,

Pi(X,=j) < 5t7Y2 t<n?

< 1 n K ( —t ) > 2
— —€X — n
= n n p K2n2 ) -

where K1 and K9 are absolute constants.

In discrete time one can get essentially the same result, but with the bounds
multiplied by 2, though we shall not give details (see Notes).
Proof. P;(X; = 1) is decreasing in ¢, so

t
Pi(X; =14) < t’l/ Pi(X, =i)ds = t T E;N;(t) < 5t~ 1/2
0

where the last inequality is Proposition 6.16 (iii), whose proof is unchanged
in continuous time, and which holds for t < n?. This gives the first inequality
when ¢ = j, and the general case follows from Chapter 3 yyy.

For the second inequality, recall the definition of separation s(t) from
Chapter 4 yyy. Given a vertex ¢ and a time ¢, there exists a probability
distribution 6 such that

Pi(X; €)= (1—s(t)m+ s(t).

Then for u > 0,
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Thus, defining ¢(t) = max; ; (Pi(Xt =j)— %), we have proved

q(t+u) < s(t)g(u); t,u>0. (6.26)

Now ¢(n?) < 4/n by the first inequality of the Proposition, and 8(7’1(1)) =e"

)

1

by definition of in Chapter 4 yyy, so by iterating (6.26) we have

4
q(n? +m71(1)) < - e m>1. (6.27)

But by Chapter 4 yyy we have 7'1(1) < K7* for an absolute constant K, and

then by Corollary 6.9 we have 7'1(1) < 3Kn?. The desired inequality now

follows from (6.27).

6.4.3 A cat and mouse game

Here we reconsider the cat and mouse game discussed in Chapter 4 sec-
tion yyy. Recall that the cat performs continuous-time random walk on a
n-vertex graph, and the mouse moves according to some arbitrary determin-
istic strategy. Let M be the first meeting time, and let m* be the maximum
of EM over all pairs of initial vertices and all strategies for the mouse.

Proposition 6.19 On a regular graph, m* < KN? for some absolute con-
stant K.

Proof. The proof relies on Proposition 6.18, whose conclusion implies there
exists a constant K such that

1
p*(t) = max py,(t) < — + Kt_l/Q; 0<t< oo.
T,v n

Consider running the process forever. The point is that, regardless of the
initial positions, the chance that the cat and mouse are “together” (i.e. at
the same vertex) at time w is at most p*(u). So in the case where the cat
starts with the (uniform) stationary distribution,

P( together at time s ) = / f(u)P( together at time s|M = u) du
0

where f is the density function of M

| (s = wydu

1

n

IN

IN

P(M <s) + K/Os fu)(s —u) "V 2du.
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So

t
L. / P( together at time s ) ds by stationarity
n 0
1/t t t 1y
< E/ P(M < s)ds +K/ f(u)du/ (s —u) /4ds
0 0 u
t 1 ¢ t 1/2
- f_f/ P(M>s)ds+2K/ Flu)(t — ) 2du
n n Jo 0
1
< r_ —Emin(M,t) + 2Kt'/2.
n o n

Rearranging, Fmin(M,t) < 2Knt'/2. Writing ty = (4Kn)?, Markov’s in-
equality gives P(M < tp) > 1/2. This inequality assumes the cat starts
with the stationary distribution. When it starts at some arbitrary vertex,
we may use the definition of separation s(u) (recall Chapter 4 yyy) to see
P(M < u+ty) > (1 —s(u))/2. Then by iteration, EM < 21(%220)) So
D
1

9

appealing to the definition of

m* < (to + 7'1(1)).

1—e!
But results from Chapter 4 and this chapter show 7'1(1) = O(1*) = 0(n?),
establishing the Proposition.

6.5 Hitting time bounds and connectivity

The results so far in this chapter may be misleading in that upper bounds ac-
commodating extremal graphs are rather uninformative for “typical” graphs.
For a family of n-vertex graphs with n — oo, consider the property

7 = O(n). (6.28)

(in this order-of-magnitude discussion, 7* is equivalent to max, , E,T%).
Recalling from Chapter 3 yyy that 7* > 2(n — 1), we see that (6.28) is
equivalent to 7* = ©(n). By Matthews’ method (repeated as Theorem
2.6 below), (6.28) implies EC = O(nlogn), and then by Theorem 6.31 we
have EC' = ©(nlogn). Thus understanding when (6.28) holds is fundamen-
tal to understanding order-of-magnitude questions about cover times. But
surprisingly, this question has not been studied very carefully. An instruc-
tive example in the d-dimensional torus (Chapter 5 Example yyy), where
(6.28) holds iff d > 3. This example, and other examples of vertex-transitive
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graphs satisfying (6.28) discussed in Chapter 8, suggest that (6.28) is fre-
quently true. More concretely, the torus example suggests that the following
condition (“the isoperimetric property in 2 + ¢ dimensions”) may be suffi-
cient.

Open Problem 6.20 Show that for real 1/2 < v < 1 and 6 > 0, there
exists a constant K, s with the following property. Let G be a reqular n-
vertex graph such that, for any subset A of vertices with |A| < n/2, there
exist at least 5| A|Y edges between A and A°. Then 7% < K, 5 n.

The v = 1 case is implicit in results from previous chapters. Chapter 3 yyy
gave the bound max; ; B;T; < 2max; E;T;, and Chapter 3 yyy gave the
bound E,T; < 1o/m;. This gives the first assertion below, and the second
follows from Cheeger’s inequality.

Corollary 6.21 On a regular graph,

max B, T, < 2nm < 16n7‘3.
V,x

Thus the “expander” property that 7, = O(1), or equivalently that 7. =
O(1), is sufficient for (6.28), and the latter is the v = 1 case of Open Problem
6.20.

6.5.1 Edge-connectivity

At the other end of the spectrum from expanders, we can consider graphs
satisfying only a little more than connectivity.

xxx more details in proofs — see Fill’s comments.

Recall that a graph is r-edge-connected if for each proper subset A of
vertices there are at least r edges linking A with A°. By a variant of Menger’s
theorem (e.g. [86] Theorem 5.11), for each pair (a,b) of vertices in such a
graph, there exist r paths (a = v}, v}, v}, ... ,vfm =b),i=1,...,r for which
the edges (v;-, 7); 41) are all distinct.

Proposition 6.22 For a r-edge-connected graph,

where v is defined by »
(15) -
60 s tinear on [(F1) (D2 D)
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Note (1) ~ v/2r. So for a d-regular, d-edge-connected graph, the bound
becomes ~ 21/2d=1/2n2 for large d, improving on the bound from Corollary
6.9. Also, the Proposition improves on the bound implied by Chapter 4 yyy
in this setting.

Proof. Given vertices a,b, construct a unit flow from a to b by putting
flow 1/r along each of the r paths (a = v}, v},v},..., v}, =b). By Chapter
3 Theorem yyy

E,Ty + EyT, < dn(1/r)*M

where M = )", m,; is the total number of edges in the r paths. So the
issue is bounding M. Consider the digraph of all edges (v;-,v; 41)- If this
digraph contained a directed cycle, we could eliminate the edges on that
cycle, and still create r paths from a to b using the remaining edges. So we
may assume the digraph is acyclic, which implies we can label the vertices
asa=1,2,3,...,n = b in such a way that each edge (j,k) has k > j. So
the desired result follows from

Lemma 6.23 In a digraph on vertices {1,2,...,n} consisting of r paths
1 =vp <wvj] <vy <...v,. =n and where all edges are distinct, the total
number of edges is at most n(r).

Proof.
xxx give proof and picture.

Example 6.24 Take vertices {0,1,...,n—1} and edges (7,7 +u mod n) for
all i and all 1 <u < k.

This example highlights the “slack” in Proposition 6.22. Regard x as large
and fixed, and n — oo. Random walk on this graph is classical random
walk (i.e. sums of independent steps) on the n-cycle, where the steps have

: 2 _ 15K 2 s
variance 0° = = > 4 v, and it is easy to see

2
T = 2E0T\_n/2j ~ <n0/_§) = @(nQ/Hz).

This is the bound Proposition 6.22 would give if the graph were ©(k?)-
edge-connected. And for a “typical” subset A such as an interval of length
greater than  there are indeed Q(k?) edges crossing the boundary of A. But
by considering a singleton A we see that the graph is really only 2x-edge-
connected, and Proposition 6.22 gives only the weaker O(n?/x'/?) bound.

xxx tie up with similar discussion of 79 and connectivity being affected
by small sets; better than bound using 7, only.
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6.5.2 Equivalence of mean cover time parameters

Returning to the order-of-magnitude discussion at the start of section 6.5,
let us record the simple equivalence result. Recall (cf. Chapter 4 yyy) we
call parameters equivalent if their ratios are bounded by absolute constants.

Lemma 6.25 The parameters max; E;CT, E.Ct, min; £;C", max; E;C
and E;C are equivalent for reversible chains, but min; E;C is not equivalent
to these.

Proof. Of the five parameters asserted to be equivalent, it is clear that
max; F;C is the largest, and that either min; £;C" or E,C is the smallest,
so it suffices to prove

max F;CT < 4E,C (6.29)
(2
max E;Ct < 3min E,C™. (6.30)
j 7

Inequality (6.30) holds by concatenating three “cover-and-return” cycles
starting at ¢ and considering the first hitting time on j in the first and
third cycles. In more detail, write

['(s) = min{u > s : (X : s <t < wu) covers all states}.

For the chain started at ¢ write Ct+ =T(C*) and CT** = T(C*™). Since
T; < C" we have I'(Tj) < C™. So the chain started at time T} has covered
all states and returned to j by time C***, implying E;,CT < ECt*+ =
3E;C*t. For inequality (6.29), recall the random target lemma: the mean
time to hit a m-random state V equals 7y, regardless of the initial distribu-
tion. The inequality

E,CT <719+ E.C + 10+ E.T;

follows from the four-step construction:
(i) Start the chain at ¢ and run until hitting a 7-random vertex V' at time
Ty;
(ii) continue until time I'(7Ty);
(ili) continue until hitting an independent 7-random vertex V”;
(iv) continue until hitting .
But E,T; < E,C, and then by the random target lemma 79 < E.C, so
(6.29) follows.

For the final assertion, on the lollipop graph (Chapter 5 Example yyy)
one has min; E;C = ©(n?) while the other quantities are ©(n3). One can
also give examples on regular graphs (see Notes).
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6.6 Lower bounds

6.6.1 Matthews’ method

We restate Matthews’ method (Chapter 2 yyy) as follows. The upper bound
is widely useful: we have already used it several times in this chapter, and
will use it several more times in the sequel.

Theorem 6.26 For a general Markov chain,

max F,C < hy,_1 max E;T}.
v 17-]

And for any subset A of states,

i ELC 2 o, i BT

In Chapter 2 we proved the lower bound in the case where A was the entire
state space, but the result for general A follows by the same proof, taking
the J’s to be a uniform random ordering of the states in A. One obvious
motivation for the more general formulation comes from the case of trees,
where for a leaf [ we have min; F;T; = 1, so the lower bound with A being
the entire state space would be just h,—1. We now illustrate use of the more
general formulation.

6.6.2 Balanced trees

We are accustomed to finding that problems on trees are simpler than prob-
lems on general graphs, so it is a little surprising to discover that one
of the graphs where studying the mean cover time is difficult is the bal-
anced r-tree of height H (Chapter 5 Example yyy). Recall this tree has
n = (r+1 —1)/(r — 1) vertices, and that (by the commute interpretation
of resistance)

E;T; = 2m(n — 1) for leaves (i, j) distance 2m apart.

Now clearly E;T; is maximized by some pair of leaves, so max; ; F;T; =
2H(n —1). Theorem 6.26 gives

mzz)levC <2H(n—1)hp—1 ~ 2Hnlogn.

To get a lower bound, consider the set S,, of 1= vertices at depth

H 4+ 1—m, and let A,, be a set of leaves consisting of one descendant of
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each element of S,,. The elements of A,, are at least 2m apart, so applying
the lower bound in Theorem 6.26

min £,C > max2m(n—1) hpuii-m
v m

~ 2nlogr maxm(H —m)
m
Lo
~ §H nlogr.

It turns out that this lower bound is asymptotically off by a factor of 4,
while the upper bound is asymptotically correct.

Theorem 6.27 ([16]) On the balanced r-tree, as H — oo for arbitrary
starting vertez,
2H?rH+ 1 logr

EC ~2Hnlogn ~
r—1

Improving the lower bound to obtain this result is not easy. The natural
approach (used in [16]) is to seek a recursion for the cover time distribution
CUH+D) i terms of CH). But the appropriate recursion is rather subtle
(we invite the reader to try to find it!) so we won’t give the statement or
analysis of the recursion here.

6.6.3 A resistance lower bound

Our use of the commute interpretation of resistance has so far been only to
obtain upper bounds on commute times. One can also use “shorting” ideas
to obtain lower bounds, and here is a very simple implementation of that
idea.

Lemma 6.28 The effective resistance between r(v, x) between vertices v and
x in a weighted graph satisfies

1 1
< Wy,z + 1 1

Wy —Wy,z Wy —Wy,x

r(v,x)

In particular, on an unweighted graph

dy +dy —2 ,
r(v,xz) > ﬁ if (v,x) is an edge
1 1
> —+ — if not

dy  dy
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and on an unweighted d-regular graph

2
r(v,z) > P if (v,x) is an edge
2
> p if not .

So on an unweighted d-regular n-vertex graph,

2dn

— d+1
> 2n if not .

BT, + E,T, if (v,z) is an edge

Proof. We need only prove the first assertion, since the others follow by
specialization and by the commute interpretation of resistance. Let A be
the set of vertices which are neighbors of either v or x, but exclude v and =
themselves from A. Short the vertices of A together, to form a single vertex
a. In the shorted graph, the only way current can flow from v to x is directly
v — x or indirectly as v — a — . So, using ’ to denote the shorted graph,
the effective resistance 7/(v,z) in the shorted graph satisfies

Now wy, ,, = Wy, Wy, — Wy and Wy, , = Wy — Wy . Since shorting

= w’U
decreases resistance, r'(v, z) < r(v, ), establishing the first inequality.

6.6.4 General lower bounds

Chapter 3 yyy shows that, over the class of random walks on n-vertex graphs
or the larger class of reversible chains on n states, various mean hitting
time parameters are minimized on the complete graph. So it is natural to
anticipate a similar result for cover time parameters. But the next example
shows that some care is required in formulating conjectures.

Example 6.29 Take the complete graph on n vertices, and add an edge
(v,1) to a new leaf [.

Since random walk on the complete graph has mean cover time (n—1)h,_1,
random walk on the enlarged graph has

ElC =1+ (n — 1)hn—1 =+ 2/,L
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where y is the mean number of returns to [ before covering. Now after each
visit to v, the walk has chance 1/n to visit [ on the next step, and so the
mean number of visits to [ before visiting some other vertex of the complete
graph equals 1/(n — 1). We may therefore write p in terms of expectations
for random walk on the complete graph as

po= = i 1Ev( number of visits to v before C)
= = i 1EU( number of visits to v before CT)
= - i 1 %EUC'Jr by Chapter 2 Proposition yyy
(At

n

This establishes an expression for E;C, which (after a brief calculation) can

be rewritten as
2 1
EC = nhy — (1) <h>
n n

Now random walk on the complete (n + 1)-graph has mean cover time nh,,,
so E;C is smaller in our example than in the complete graph.

The example motivates the following as the natural “exact extremal
conjecture”.

Open Problem 6.30 Prove that, for any reversible chain on n states,
EWC Z (n — 1)hn71
(the value for random walk on the complete graph).

The related asymptotic question was open for many years, and was finally
proved by Feige [142].

Theorem 6.31 For random walk on an unweighted n-vertex graph,
min E,C > ¢,,
v
where ¢, ~ nlogn as n — oo.

The proof is an intricate mixture of many of the techniques we have already
described.
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6.7 Distributional aspects

In many examples one can apply the following result to show that hitting
time distributions become exponential as the size of state space increases.

Corollary 6.32 Leti,j be arbitrary states in a sequence of reversible Markov
chains.
(1) If ExTj/To — oo then

T,
Pﬂ(EﬁjTj >x>—>e_x, 0<x<oo.

(it) If EiT;/m1 — oo and E;T; > (1 —o(1))E;T; then E;T;/E;T; — 1 and

T.
Pi<Ei§1j>x>—>e_I, 0<z<oo.

Proof. In continuous time, assertion (i) is immediate from Chapter 3 Propo-
sition yyy. The result in discrete time now holds by continuization: if
T; is the hitting time in discrete time and TJ’ in continuous time, then
E;T; = E;Tj and T; — T} is order \/E;T;. For (ii) we have (cf. Chap-
ter 4 section yyy) T; < U; + T} where T} is the hitting time started at

¢, T} is the hitting time started from stationarity, and E;U; < 7'1(2). So

ET; < ET* + O(71), and the hypotheses of (ii) force ET;/ET; — 1 and
force the limit distribution of T;/ET}; to be the same as the limit distribu-
tion of T}/ ET}, which is the exponential distribution by (i) and the relation
To < T11. O

In the complete graph example, C' has mean ~ nlogn and s.d. ©(n),
so that C'//EC — 1 in distribution, although the convergence is slow. The
next result shows this “concentration” result holds whenever the mean cover
time is essentially larger than the maximal mean hitting time.

Theorem 6.33 ([17]) For states i in a sequence of (not necessarily re-
versible) Markov chains,

C
f E,C /" Pl -1 : .
if E;C/T" — oo then ()E,C ‘>5)—>0 e>0

The proof is too long to reproduce.
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6.8 Algorithmic aspects

Many of the mathematical results in this chapter arose originally from algo-
rithmic questions, so let me briefly describe the questions and their relation
to the mathematical results.

6.8.1 Universal traversal sequences

This was one motivation for the seminal paper [25]. Consider an n-vertex
d-regular graph G, with a distinguished vertex vy, and where for each vertex
v the edges at v are labeled as 1,2, ..., d in some way — it is not required that
the labels be the same at both ends of an edge. Now consider a sequence
i=(i1,49,...,ir) € {1,...,d}". The sequence defines a deterministic walk
(x;) on the vertices of G via

o = Vg

(xj—1,2;) is the edge at x;_; labeled i;.
Say i is a traversal sequence for G if the walk (z; : 0 < i < L) visits every
vertex of G. Say i1is a universal traversal sequence if it is a traversal sequence
for every graph G in the set G, 4 of edge-labeled graphs with distinguished
vertices.

Proposition 6.34 (Aleliunas et al [25]) There exists a universal traver-
sal sequence of length (6e + o(1))dn?log(nd) as n — oo with d varying arbi-
trarily.

Proof. Tt is enough to show that a uniform random sequence of that length
has non-zero chance to be a universal traversal sequence. But for such a
random sequence, the induced walk on a fixed G is just simple random walk
on the vertices of G. Writing tg = [6en?], Theorem 6.4 implies

E,C _ 6n?

< —— < ¢! for all initial v
to to

Pv(c>t0) <

and so inductively (cf. Chapter 2 section yyy)
P, (C > Kty) <e X, K >1 integer .
Thus by taking K sufficiently large that
e K |Gnal <1

there is non-zero chance that the induced walk on every G covers before
time Ktp. The crude bound |G, 4| < (nd)" means we may take K =
[ndlog(nd)].
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6.8.2 Graph connectivity algorithms

Another motivation for the seminal paper [25] was the time-space tradeoff in
algorithms for determining connectivity in graphs. Here is a highly informal
presentation, illustrated by the two Mathematician graphs. The vertices are
all mathematicians (living or dead). In the first graph, there is an edge be-
tween two mathematicians if they have written a joint paper; in the second,
there is an edge if they have written two or more joint papers. A well known
Folk Theorem asserts that the first graph has a giant component containing
most famous mathematicians; a lesser known and more cynical Folk The-
orem asserts that the second graph doesn’t. Suppose we actually want to
answer a question of that type — specifically, take two mathematicians (say,
the reader and Paul Erdos) and ask if they are in the same component of
the first graph. Suppose we have a database which, given a mathematician’s
name, will tell us information about their papers and in particular will list
all their co-authors.

xxx continue story

Broder et al [67]

6.8.3 A computational question

Consider the question of getting a numerical value for E;C' (up to error factor
1+e, for fixed €) for random walk on a n-vertex graph. Using Theorem 6.1
it’s clear we can do this by Monte Carlo simulation in O(n?) steps.

xxx technically, using s.d./mean bounded by submultiplicitivity.

Open Problem 6.35 Can E;C' be deterministically calculated in a poly-
nomial (in n) number of steps?

It’s clear one can compute mean hitting times on a n-step chain in polynomial
time, but to set up the computation of F;C' as a hitting-time problem one has
to incorporate the subset of already-visited states into the “current state”,
and thus work with hitting times for a n x 2" l-state chain.

6.9 Notes on Chapter 6

Attributions for what I regard as the main ideas were given in the text.
The literature contains a number of corollaries or variations of these ideas,
some of which I've used without attribution, and many of which I haven’t
mentioned at all. A number of these ideas can be found in Zuckerman
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[341, 343], Palacios [276, 273] and the Ph.D. thesis of Sbihi [306], as well as
papers cited elsewhere.

Section 6.1. The conference proceedings paper [25] proving Theorem 6.1
was not widely known, or at least its implications not realized, for some
years. Several papers subsequently appeared proving results which are con-
sequences (either obvious, or via the general relations of Chapter 4) of The-
orem 6.1. I will spare their authors embarrassment by not listing them all
here!

The spanning tree argument shows, writing b, for the mean commute
time across an edge e, that

max E,Ct < min Z be.
eET

Coppersmith et al [100] give a deeper study and show that the right side is
bounded between  and 107/3, where

= (zo) (Tat)

The upper bound is obtained by considering a random spanning tree, cf.
Chapter yyy.
Section 6.2. The calculations in these examples, and the uniformity

property of V' on the n-cycle, are essentially classical. For the cover time

C,, on the n-cycle there is a non-degenerate limit distribution n=2C,, A

C. From the viewpoint of weak convergence (Chapter yyy), C is just the
cover time for Brownian motion on the circle of unit circumference, and its
distribution is known as part of a large family of known distributions for
maximal-like statistics of Brownian motion: Imhof [187] eq. (2.4) gives the
density as

0 2
3/2 _—1/2,-3/2 m—1,_ 2 m
fo(t) = 28271273 m§::1(_1) m”exp(—— ).

Sbihi [306] gives a direct derivation of a different representation of fc.

Section 6.4. Use of Lemma 6.10 in the random walk context goes back
at least to Flatto et al [152].

Barnes and Feige [42] give a more extensive treatment of short-time
bounds in the irregular setting, and their applications to covering with mul-
tiple walks (cf. Proposition 6.17 and section 6.8.2). They also give bounds
on the mean time taken to cover u different edges or v different vertices —
their bound for the latter becomes O(v?logv) on regular graphs.
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Proposition 6.18 implies that on an infinite regular graph P;i(X; = j) <
Kt=1/2. Carlen et al [84] Theorem 5.14 prove this as a corollary of results
using more sophisticated machinery. Our argument shows the result is fairly
elementary. In discrete time the analog of the first inequality can be proved
using the “CM proxy” property than P;(Xo = i)+ P;(Xoi+1 = 4) is decreas-
ing, but the analog of the second inequality requires different arguments
because we cannot exploit the 7'1(1) inequalities.

Section 6.5. Variations on Corollary 6.21 are given in Broder and Karlin
[66] and Chandra et al. [85].

Upper bounds on mean hitting times imply upper bounds on the relax-
ation time 79 via the general inequalities 70 < 79 < %7’*. In most concrete
examples these bounds are too crude to be useful, but in “extremal” settings
these bounds are essentially as good as results seeking to bound 75 directly.
For instance, in the setting of a d-regular r-edge-connected graph, a direct
bound (Chapter 4 Proposition yyy) gives

2= Y sin? =
Up to the numerical constant, the same bound is obtained from Proposition
6.22 and the general inequality 7 < 7*/2.

xxx contrast with potential and Cheeger-like arguments ?

To sketch an example of a regular graph where min; F;C has a different
order than max; F;C, make a regular mj + mo-vertex graph from a m;-
vertex graph with mean cover time ©(m;jlogm;) and a mg-vertex graph
(such as the necklace) with mean cover time ©(m3), for suitable values
of the m’s. Starting from a typical vertex of the former, the mean cover
time is ©(mq logmy + myma + m%) whereas starting from the unattached
end of the necklace the mean cover time is ©(mjlogm; + m3). Taking
milogmy +m3) = o(myms) gives the desired example.

Section 6.6. The “subset” version of Matthews’ lower bound (Theorem
2.6) and its application to trees were noted by Zuckerman [343], Sbihi [306]
and others. As well as giving a lower bound for balanced trees, these authors
give several lower bounds for more general trees satisfying various constraints
(cf. the unconstrained result, Proposition 6.7). As an illustration, Devroye
- Sbihi [111] show that on a tree

2
A =

I believe that the recursion set-up in [16] can be used to prove Open
Problem 6.35 on trees, but I haven’t thought carefully about it.

min £,C >
v
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The “shorting” lower bound, Lemma 6.28, was apparently first exploited
by Coppersmith et al [100].

Section 6.7. Corollary 6.32 encompasses a number of exponential limit
results proved in the literature by ad hoc calculations in particular examples.

Section 6.8.1. Proposition 6.34 is one of the neatest instances of “Erdos’s
Probabilistic Method in Combinatorics”, though surprisingly it isn’t in the
recent book [29] on that subject. Constructing explicit universal traversal
sequences is a hard open problem: see Borodin et al [56] for a survey.

Section 6.8.2. See [67] for a more careful discussion of the issues. The
alert reader of our example will have noticed the subtle implication that the
reader has written fewer papers than Paul Erdos, otherwise (why?) it would
be preferable to do the random walk in the other direction.

Miscellaneous. Condon and Hernek [98] study cover times in the follow-
ing setting. The edges of a graph are colored, a sequence (¢;) of colors is
prespecified and the “random walk” at step t picks an edge uniformly at
random from the color-¢; edges at the current vertex.



Chapter 7

Symmetric Graphs and
Chains (January 31, 1994)

In this Chapter we show how general results in Chapters 3, 4 and 6 can
sometimes be strengthened when symmetry is present. Many of the ideas
are just simple observations. Since the topic has a “discrete math” flavor
our default convention is to work in discrete time, though as always the
continuous-time case is similar. Note that we use the word “symmetry” in
the sense of spatial symmetry (which is the customary use in mathematics
as a whole) and not as a synonym for time-reversibility. Note also our use
of “random flight” for what is usually called “random walk” on a group.

Biggs [48] contains an introductory account of symmetry properties for
graphs, but we use little more than the definitions. I have deliberately not
been overly fussy about giving weakest possible hypotheses. For instance
many results for symmetric reversible chains depend only of the symmetry
of mean hitting times (7.7), but I haven’t spelt this out. Otherwise one
can end up with more definitions than serious results! Instead, we focus on
three different strengths of symmetry condition. Starting with the weakest,
section 7.1 deals with symmetric reversible chains, a minor generalization
of what is usually called “symmetric random walk on a finite group”. In
the graph setting, this specializes to random walk on a Cayley or vertex-
transitive graph. Section 7.2 deals with random walk on an arc-transitive
graph, encompassing what is usually called “random walk on a finite group
with steps uniform on a conjugacy class”. Section 5.16 deals with random
walk on a distance-regular graph, which roughly corresponds to nearest-
neighbor isotropic random walk on a discrete Gelfand pair.

This book focuses on inequalities rather than exact calculations, and the

237



238CHAPTER 7. SYMMETRIC GRAPHS AND CHAINS (JANUARY 31, 1994)

limitation of this approach is most apparent in this chapter. Group repre-
sentation theory, though of course developed for non-probabilistic reasons,
turns out to be very well adapted to the study of many questions concern-
ing random walks on groups. I lack the space (and, more importantly, the
knowledge) to give a worthwhile treatment here, and in any case an account
which is both introductory and gets to interesting results is available in Di-
aconis [112]. In many concrete examples, eigenvalues are known by group
representation theory, and so in particular our parameters 79 and 7y are
known. See e.g. section 7.2.1. In studying a particular example, after inves-
tigating eigenvalues one can seek to study further properties of the chain by
either
(i) continuing with calculations specific to the example; or
(ii) using general inequalities relating other aspects of the chain to 79 and
70-
The purpose of this Chapter is to develop option (ii). Of course, the more
highly-structured the example, the more likely one can get stronger explicit
results via (i). For this reason we devote more space to the weaker setting
of section 7.1 than to the stronger settings of sections 7.2 and 5.16.

xxx scattering of more sophisticated math in Chapter 10.

7.1 Symmetric reversible chains

7.1.1 Definitions

Consider an irreducible transition matrix P = (p;;) on a finite state space
1. A symmetryof Pisa 1 —1 map «v: I — I such that

Pr(i)vy(5) = Pij for all Z,j

The set T' of symmetries forms a group under convolution, and in our (non-
standard) terminology a symmetric Markov transition matrix is one for
which I" acts transitively, i.e.

for all 7,5 € I there exists v € I' such that (i) = j.

Such a chain need not be reversible; a symmetric reversible chain is just a
chain which is both symmetric and reversible. A natural setting is where I is
itself a group under an operation (i, j) — ij which we write multiplicitively.
If p is a probability distribution on I and (Z;;¢t > 1) are i.i.d. I-valued with
distribution p then

Xt = nglZQ...Zt (71)
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is the symmetric Markov chain with transition probabilities
pij = n(i =+ )
started at xg. This chain is reversible iff
(i) = p(i~1) for all i. (7.2)

We have rather painted ourselves into a corner over terminology. The
usual terminology for the process (7.1) is “random walk on the group I” and
if (7.2) holds then it is a

“symmetric random walk on the group I” . (7.3)

Unfortunately in this phrase, both “symmetric” and “walk” conflict with
our conventions, so we can’t use the phrase. Instead we will use “random
flight on the group I” for a process (7.1), and “reversible random flight on
the group I” when (7.2) also holds. Note that we always assume chains are
irreducible, which in the case of a random flight holds iff the support of
generates the whole group I. Just keep in mind that the topic of this section,
symmetric reversible chains, forms a minor generalization of the processes
usually described by (7.3).

On an graph (V,€&), a graph automorphismis a 1 —1 map v :V — V
such that

(v(w),y(v)) € € iff (w,v) €&.

The graph is called vertex-transitive if the automorphism group acts tran-
sitively on vertices. Clearly, random walk on a (unweighted) graph is a
symmetric reversible chain iff the graph is vertex-transitive. We specialize
to this case in section 7.1.8. A further specialization is to random walk on
a Cayley graph. If G = (g;) is a set of generators of a group I, which we
always assume to satisfy

g € Gimplies gt € G
then the associated Cayley graph has vertex-set I and edge-set
{(v,vg) :v el geg}

A Cayley graph is vertex-transitive.

Finally, recall from Chapter 3 yyy that we can identify a reversible chain
with a random walk on a weighted graph. With this identification, a sym-
metric reversible chain is one where the weighted graph is vertex-transitive,
in the natural sense.
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7.1.2 This section goes into Chapter 3

Lemma 7.1 For an irreducible reversible chain, the following are equiva-
lent.

(a“) R(Xt = 7’) = F)](Xt :])727.] € I,t Z 1

(b) Pi(T; =t) = Pj(T; =t),i,j € I,t > 1.

Proof. In either case the stationary distribution is uniform — under (a), by
letting ¢ — oo, and under (b) by taking ¢ = 1, implying p;; = pji. So by
reversibility P;(X; = j) = Pj(Xy = i) for i # j and t > 1. But recall from
Chapter 2 Lemma yyy that the generating functions Gj;(z) = >, Pi(X; =
7)27 and Fyj(z) = 3, P{(Ty = j)27 satisty

Fij = Gij/Gjj. (7.4)
For i # j we have seen that G;; = Gj;, and hence by (7.4)
Fy; = Fy; it Gj; = Gy,
which is the assertion of Lemma 7.1.

7.1.3 Elementary properties

Our standing assumption is that we have an irreducible symmetric reversible
n-state chain. The symmetry property implies that the stationary distribu-
tion 7 is uniform, and also implies

Pi(X;=1i)=Pj(Xy =j),i,jel,t > 1 (7.5)
But by Chapter 3 Lemma yyy, under reversibility (7.5) is equivalent to
P(Tj=t)=P(T; =t),i,j e I,t > 1. (7.6)
And clearly (7.6) implies
E;T; = E;T; for all i, j. (7.7)

We make frequent use of these properties. Incidently, (7.7) is in general
strictly weaker than (7.6): van Slijpe [330] p. 288 gives an example with a
3-state reversible chain.
We also have, from the definition of symmetric, that E,T; is constant in
i, and hence
E, T, = 19 for all 1. (7.8)
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So by Chapter 4 yyy
7" < 47. (7.9)

The formula for E;T; in terms of the fundamental matrix (Chapter 2 yyy)
can be written as

o0
To/n=1+> (P(X;=1i)—1/n). (7.10)
t=1
Approximating 7y by the first few terms is what we call the local transience

heuristic. See Chapter xxx for rigorous discussion.
Lemma 7.2 (i) E;/T; > #@j)a J#i.
(’L’L) max; ; E’E < 27’0
Proof. (i) This is a specialization of Chapter 6 xxx.
(ii) For any 1, j, k,

Averaging over k, the right side becomes 27j.
Recall that a simple Cauchy-Schwartz argument (Chapter 3 yyy) shows
that, for any reversible chain whose stationary distribution is uniform,

P(Xat =j) < \/B-(th = i) Pj(Xat = j).

So by (7.5), for a symmetric reversible chain, the most likely place to be
after 2t steps is where you started:

Corollary 7.3 P;(Xoy = j) < Pi(Xoy = 1), foralli,j,e I,t> 1.

This type of result is nicer in continuous time, where the inequality holds
for all times.

7.1.4 Hitting times
Here is our first non-trivial result, from Aldous [12].

Theorem 7.4 Suppose a sequence of symmetric reversible chains satisfies
T9/70 — 0. Then

(a) For the stationary chain, and for arbitrary j, we have T}/ N £
and var (Tj/19) — 1, where & has exponential(1) distribution.

(b) max; j Eijjj/To — 1.

(¢c) If (in, jn) are such that E; Tj, /70 — 1 then P;, (Tj,/70 € -) 4 €.
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Note that, because 7 < 71+1 and 79 > (n—1)?/n, the hypothesis “m5 /79 —
0” is weaker than either “r5/n — 0” or “r /79 — 0”.

Part (a) is a specialization of Chapter 3 Proposition yyy and its proof.
Parts (b) and (c) use refinements of the same technique. Part (b) implies

if 7o/79 — 0 then 7° ~ 2.

Because this applies in many settings in this Chapter, we shall rarely need
to discuss 7" further.

xxx give proof

In connection with (b), note that

ETy <7+ (7.11)
by definition of 71(2) and vertex-transitivity. So (b) is obvious under the
slightly stronger hypothesis 71 /79 — 0.

Chapter 3 Proposition yyy actually gives information on hitting times
T4 to more general subsets A of vertices. Because (Chapter 3 yyy) E T4 >
%, we get (in continuous time) a quantification of the fact that T4
has approximately exponential distribution when |A| < n/7 and when the
chain starts with the uniform distribution:

A —2
sup |Pr(Ta > t) —exp(—t/E;T4)| < T2n < _ ||) '
! Al n

7.1.5 Cover times

Recall the cover time C from Chapter 6. By symmetry, in our present setting
FE;C doesn’t depend on the starting place i, so we can write FC. In this
section we combine results on hitting times with various forms of Matthews
method to obtain asymptotics for cover times in the setting of a sequence of
symmetric reversible chains. Experience, and the informal argument above
(7.15), suggest the principle

EC ~ 19logn, except for chains resembling random walk on the n-cycle .

(7.12)
The results in this chapter concerning cover times go some way towards
formalizing this principle.

Corollary 7.5 For a sequence of symmetric reversible chains

() 11:)1()1) nlogn < EC < (2+ o(1))79logn, where p* = max;,; Pij-

(b) If 2/10 — 0 then EC < (1 + o(1))7 logn.
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(c) If 2/70 = O(n=P) for fized 0 < B < 1 then
EC > (B —o0(1))m0logn.

Proof. Using the basic form of Matthews method (Chapter 2 yyy), (a)
follows from Lemma 7.2 and (b) from Theorem 7.4. To prove (c), fix a state
j and € > 0. Using (7.11) and Markov’s inequality,

(2)

m{i: ET; < (1—¢)no} < L a, say.
ETO

So we can inductively choose [a~!] vertices iy such that
E, T, >(1—¢e)r; 1<k <1< [a1].
By the extended form of Matthews method (Chapter 6 Corollary yyy)
EC > (1 —¢)rohrq-11-1-

From Chapter 4 yyy, 71 < 72(1+logn) and so the hypothesis implies 71 /79 =
O(n°%). So the asymptotic lower bound for EC becomes (1 — &)7o(8 —
e)logn, and since ¢ is arbitrary the result follows.

Since the only natural examples with 71 /79 /4 0 are variations of random
walk on the n-cycle, for which EC = O(7y) without the “logn” term, we
expect a positive answer to

Open Problem 7.6 In the setting of Corollary 7.5, is EC' < (1+0(1))19 logn
without further hypotheses?

Here is an artificial example to illustrate the bound in (c).
Example 7.7 Two time scales.

Take m; = my(n),ma = ma(n) such that m; ~ n'=% mimg ~ n. The
underlying idea is to take two continuous-time random walks on the complete
graphs K, and K,,,, but with the walks run on different time scales. To set
this up directly in discrete time, take state space {(x,y) : 1 < < mj,1 <
y < mg} and transition probabilities

1
). 4o
am1 logmy

Ly Fy

(z,y) — (2',y) chance (m; —1)7! (1 -

5 (z,y) ch S P
(z,y') chance (mg — 1) . P
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where a = a(n) 1 oo slowly. It is not hard to formalize the following analy-
sis. Writing the chain as (X3, Y}), the Y-component stays constant for time
©(amjlogmy), during which time every z-value is hit, because the cover
time for K, is ~ mqlogm;. And mglogms jumps of the Y-component are
required to hit every y-value, so

EC ~ (mglogms) x (amqlogmy) ~ an(logmi)(logms). (7.13)

Now 75 ~ amqlogmi, and because the mean number of returns to the
starting point before the first Y-jump is ~ alogm; we can use the local
transience heuristic (7.10) to see 79 ~ (alogmy) X n. So m2/19 ~ my/n ~
n~3, and the lower bound from (c) is

(8 —o(1))(alogmi)nlogn.

But this agrees with the exact limit (7.13), because mgy ~ n®.

We now turn to sharper distributional limits for C. An (easy) back-
ground fact is that, for independent random variables (Z;) with exponential,
mean 7, distribution,

max(Z1,...,2Z,) — 7logn d

T

where 7 has the extreme value distribution
Pn<z)=exp(—e "), —00 <z < 0. (7.14)

Now the cover time C' = max; T; is the maz of the hitting times, and with
the uniform initial distribution the 7;’s have mean 79. So if the T;’s have
approximately exponential distribution and are roughly independent of each
other then we anticipate the limit result

C —1ologn

~ —T008R 4 (7.15)

70

Theorem 7.4 has already given us a condition for limit exponential distribu-
tions, and we shall build on this result to give (Theorem 7.9) conditions for
(7.15) to hold.

The extreme value distribution (7.14) has transform
Eexp(fn) =T(1—-0), —co <0 < 1. (7.16)

Classical probability theory (see Notes) says that to prove (7.15) it is enough
to show that transforms converge, i.e. to show

Eexp(0C/15) ~n~T(1 - 0), —00 <0 < 1. (7.17)
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But Matthews method, which previously we have used on expectations, can
just as well be applied to transforms. By essentially the same argument as
in Chapter 2 Theorem yyy, Matthews [257] obtained

Proposition 7.8 The cover time C in a not-necessarily-reversible Markov
chain with arbitrary initial distribution satisfies

D(n + DO(1/£.(8)) D(n + DO/ F(5))
Tt /50 =200 < = 0)

where
f B = max E; exp(8Tj)
f«(B) = min £, exp(BT;).

Substituting into (7.17), and using the fact

I'(n+1)

S
————————— ~ N asn—-0o, S, —+ S
D(n+1-sp) P

we see that to establish (7.15) it suffices to prove that for arbitrary j, # i,
and for each fixed —co < 0 < 1,

1
E’in eXp(eTjn/TO) — m (718)

Theorem 7.9 For a sequence of symmetric reversible chains, if
(a) min;; E;T; = 19(1 — o(1))

(b) /70 = 0 (1555)
then

C —1ologn q

n.
70

Proof. By hypothesis (a) and Theorem 7.4 (b,c), for arbitrary j, # i, we
have P;, (Tj,/m0 € -) LN ¢. This implies (7.18) for # < 0, and also by
Fatou’s lemma implies liminf, E;, exp(67},/70) > ti5for 0 < § < 1. Thus
it is sufficient to prove

14 0(1)
-0

The proof exploits some of our earlier general inequalities. Switch to contin-
uous time. Fix 8 > 0. By conditioning on the position at some fixed time

mjx E; exp(0T;/70) < , 0<6<1. (7.19)
VB

S,

Eiexp(B(T; —s)™) < mgx(nPi(Xs =x)) x Erexp(BT}).
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By Corollary 7.3 the maz is attained by x = ¢, and so
E; exp(BT) < (nPi(X, = i)e’®) x Er exp(BT)).

We now apply some general inequalities. Chapter 4 yyy says nP;(X; = 1) <
1+ nexp(—s/m). Writing «; for the quasistationary distribution on {;}¢,
Chapter 3 (yyy) implies Pr(T; > t) < exp(—t/Eq,;T;) and hence

E TH)< —o .
WeXp(ﬂ ]) = 1 _/BEQJT]

But Chapter 3 Theorem yyy implies E,;T; < 7o + m2. So setting 8 = 0/,

these inequalities combine to give

1
O(1+ 12/70)

E;exp(0T; /1) < (1 4+ nexp(—s/m2)) x exp(0s/19) x =

But by hypothesis (b) we can choose s = o(19) = Q(m2logn) so that each
of the first two terms in the bound tends to 1, establishing (7.19). Finally,
the effect of continuization is to change C' by at most O(v/EC), so the
asymptotics remain true in discrete time.

Remark. Presumably (c.f. Open Problem 7.6) the Theorem remains true
without hypothesis (b).

In view of Chapter 6 yyy it is surprising that there is no obvious example
to disprove

Open Problem 7.10 Let V denote the last state to be hit. In a sequence
of vertex-transitive graphs with n — oo, is it always true that V converges
(in variation distance, say) to the uniform distribution?

7.1.6 Product chains

In our collection of examples in Chapter 5 of random walks on graphs, the
examples with enough symmetry to fit into the present setting have in fact
extra symmetry, enough to fit into the arc-transitive setting of section 7.2.
So in a sense, working at the level of generality of symmetric reversible
chains merely serves to illustrate what properties of chains depend only on
this minimal level of symmetry. But let us point out a general construction.
Suppose we have symmetric reversible chains XM, ..., X (4 on state spaces
IW . I@_ Fix constants ai,...,aq with each a; > 0 and with >oiai =1
Then (c.f. Chapter 4 section yyy) we can define a “product chain” with
state-space (M x ... x I'@ and transition probabilities

L ...,xq): probability aiP(Xfi) = x;]Xéi) = ;).

(x1,...,2q) = (z1,..., 25
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This product chain is also symmetric reversible. But if the underlying chains
have extra symmetry properties, these extra properties are typically lost
when one passes to the product chain. Thus we have a general method of
constructing symmetric reversible chains which lack extra structure. Ex-
ample 7.14 below gives a case with distinct underlying components, and
Example 7.11 gives a case with a non-uniform product. In general, writing
(/\q(f) 1 < u < |[IY)) for the continuous-time eigenvalues of X (), we have
(Chapter 4 yyy) that the continuous-time eigenvalues of the product chain
are

A= a AV o ag\?

Ud

indexed by u = (u1,...,ug) € {1,...,[IW|} x ... x {1,...,[I¥|}. So in
particular

T0 —
ut(L,...,1) a1/\91) +...+ ad/\g?

and of course these parameters take the same values in discrete time.
Example 7.11 Coordinate-biased random walk on the d-cube.

Take I = {0,1}? and fix 0 < a1 < as < ... < aq with > ;a; = 1. Then the
chain with transitions

(b1,...,bq) = (b1,...,1 —0b;,...,bg) : probability a;

is the weighted product of two-state chains. Most of the calculations for
simple symmetric random walk on the d-cube done in Chapter 5 Example
yyy extend to this example, with some increase of complexity. In particular,

Ty = —
2a1

1

TS

d o
2 uel,u#0 Zi:l Uiy

1

In continuout time we still get the product form for the distribution at time
t:

Py(X; =b) =271 H(l + m;i exp(—2a;t)) ; m; = 1 if b, = b;, = 0 if not.

1
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So in a sequence of continuous time chains with d — oo, the “separation”

parameter 7'1(1) of Chapter 3 section yyy is asymptotic to the solution ¢ of

Zexp(—Zait) = —log(l—et).

More elaborate calculations can be done to study 71 and the discrete-time
version.

7.1.7 The cutoff phenomenon and the upper bound lemma

Chapter 2 yyy and Chapter 4 yyy discussed quantifications of notions of
“time to approach stationarity” using variation distance. The emphasis in
Chapter 4 yyy was on inequalities which hold up to universal constants.
In the present context of symmetric reversible chains, one can seek to do
sharper calculations. Thus for random walk on the d-cube (Chapter 5 Ex-
ample yyy), with chances 1/(d + 1) of making each possible step or staying
still, writing n = 2% and ¢, = %dlog d, we have (as n — oo) not only the
fact 7 ~ ¢, but also the stronger result

d((14+¢)cp) = 0 and d((1 —€)c,) — 1, for all e > 0. (7.20)

We call this the cutoff phenomenon, and when a sequence of chains satisfies
(7.20) we say the sequence has “variation cutoff at ¢,”. As mentioned at
xxx, the general theory of Chapter 4 works smoothly using d(t), but in
examples it is more natural to use d(t), which we shall do in this chapter.
Clearly, (7.20) implies the same result for d and implies 71 ~ ¢,. Also, our
convention in this chapter is to work in discrete time, whereas the Chapter
4 general theory worked more smoothly in continuous time. (Clearly (7.20)
in discrete time implies the same result for the continuized chains, provided
¢n — 00). Note that, in the context of symmetric reversible chains,

d(t) = di(t) = ||P;(X¢ € -) — mw(-)|| for each .

We also can discuss separation distance (Chapter 4 yyy) which in this context
is
s(t)=1- nmjinPi(Xt = j) for each i,
and introduce the analogous notion of separation threshold.
It turns out that these cut-offs automatically appear in sequences of
chains defined by repeated products. An argument similar to the analysis
of the d-cube (see [22] for a slightly different version) shows



7.1. SYMMETRIC REVERSIBLE CHAINS 249

Lemma 7.12 Fiz an aperiodic symmetric reversible chain with m states
and with relazation time 7o = 1/(1 — \g). Consider the d-fold product chain
with n = m® states and transition probabilities

o1
(1, yxq) = (1, Yis- -, Ya) : probability g Privic
As d — oo, this sequence of chains has variation cutoff %nglogd and sepa-
ration cut-off Todlogd.

xxx discuss upper bound lemma
xxx heuristics
xxx mention later examples

7.1.8 Vertex-transitive graphs and Cayley graphs

So far we have worked in the setting of symmetric reversible chains, and
haven’t used any graph theory. We now specialize to the case of random
walk on a vertex-transitive or Cayley graph (V, ). As usual, we won’t write
out all specializations of the previous results, but instead emphasize what
extra we get from graph-theoretic arguments. Let d be the degree of the
graph.

Lemma 7.13 For random walk on a vertex-transitive graph,
(Z) E, T, > n if (va) 91 &

(ii) 3% —d > BT, > {2 if (v,2) € €

Proof. The lower bounds are specializations of Lemma 7.2(i), i.e. of Chapter
6 xxx. For the upper bound in (ii),

1
n—1 = gyEN;EyTQE (7.21)

1
> p <EUTx +(d— 1)dLT1> by the lower bound in (ii).

Rearrange.
xxx mention general lower bound 79 > (1—o0(1))nd/(d—2) via tree-cover.
It is known (xxx ref) that a Cayley graph of degree d is d-edge-connected,
and so Chapter 6 Proposition yyy gives

™ < n*p(d)/d

where ¢(d)/d ~ \/2/d.
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Example 7.14 A Cayley graph where E,T,, is not the same for all edges
(v, w).

Consider Z,, x Z3 with generators (1,0), (—1,0), (0,1). The figure illustrates
the case m = 4.

30 20

31 21

01 11

00 10
Let’s calculate FyoT1¢ using the resistance interpretation. Put unit volt-
age at 10 and zero voltage at 00, and let a; be the voltage at :0. By symmetry
the voltage at il is 1 — a;, so we get the equations

1
aizg(ai—1+ai+l+(1_ai))7 I<i<m-—1

with ag = a,, = 0. But this is just a linear difference equation, and a brief
calculation gives the solution

1 9m/2—i + 0i—m/2
5 gm/2 4 g—m/2

1
a¢:§—

where § = 2 — /3. The current flow is 1 + 2a1, so the effective resistance is
r=(1+ 2a1)*1. The commute interpretation of resistance gives 2FggTh1 =

3nr, and so
3n

2(1 + 2a1)

where n = 2m is the number of vertices. In particular,

EooTo1 =

n_l EO0T01 — Y = as n — oQ.

3
1++v3
Using the averaging property (7.21)

3
n 1 EyTio — 7 = L as n — oo.

2(1 + /3)
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Turning from hitting times to mixing times, recall the Cheeger constant

Te = supc(A)
A

where A is a proper subset of vertices and

_ m(A)
‘A= p X ax, c A

For random walk on a Cayley graph one can use simple “averaging” ideas
to bound ¢(A). This is Proposition 7.15 below. The result in fact extends
to vertex-transitive graphs by a covering graph argument - see xxx.

Consider a n-vertex Cayley graph with degree d and generators G =
{g1,...,94}, where g € G implies g~ € G. Then

[Ag \ 4]
|A]

1
P.(X1 € A% Xg € A) = y >
9€g
where Ag = {ag : a € A}. Lower bounding the sum by its maximal term,

we get

c(A) <

n .

max, ¢ [Ag \ A’
Proposition 7.15 On a Cayley graph of degree d

(i) T < dA, where A is the diameter of the graph.
(ii) c(A) < 2dp(A) for all A with p(A) > 1, where

A) = mi d
p(A) minmax (v, w)

is the radius of A.

Note that supy p(A) is bounded by A but not in general by A/2 (consider
the cycle), so that (ii) implies (i) with an extra factor of 2. Part (i) is from
Aldous [10] and (ii) is from Babai [36].

Proof. (i) Fix A. Because

LS~ 14 0] = 4120
n
veV

there exists some v € V such that |A N Av| < |A|?/n, implying

|Av\ A| > |A]|A°|/n. (7.23)
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We can write v = g1 ... gs for some sequence of generators (g;) and some
0 <A, and

4 1)
|Av\ A] < Z|Agl...gi\Agl...gi_1] :Z\Agi\A|.
=1 =

So there exists g € G with [Ag\ A| > £ x |A|[A°|/n, and so (i) follows from
(7.22). For part (ii), fix A with |[A] < n/2, write p = p(A) and suppose

max\Ag\A\ < —|A| (7.24)
9€G

Fix v with maxye d(w,v) = p. Since |[Ag\ A| < 45 L|A| and
A\ Azg C (A\ Ag) U (A\ Az)g

we have by induction
1
|A\ Azx| < %|A\d(:v, v). (7.25)

Write B" = {vgy ... gi;1 < r,g; € G} for the ball of radius r about v. Since
(2p+1)/(4p) < 1, inequality (7.25) shows that AN Az is non-empty for each
x € B?*1 and so B>+ C A='A. But by definition of p we have A C B”,
implying B?**t! C B2/, which in turn implies B% is the whole group. Now
(7.25) implies that for every x

A\ Al < * \A[ < |A|‘A j

But this contradicts (7.23). So (7.24) is false, i.e.

Al| A€
max\Ag\A]>—|A|>—‘ I ’
geG 2p n

By complementation the final inequality remains true when |A| > n/2, and
the result follows from (7.22).

7.1.9 Comparison arguments for eigenvalues

The “distinguished paths” method of bounding relaxation times (Chapter
4 yyy) can also be used to compare relaxation times of two random flights
on the same group, and hence to bound one “unknown” relaxation time
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in terms of a second “known” relaxation time. This approach has been
developed in great depth in

xxx ref Diaconis Saloff-Coste papers.

Here we give only the simplest of their results, from [117].

Consider generators G of a group I, and consider a reversible random
flight with step-distribution p supported on G. Write d(z, id) for the distance
from z to the identity in the Cayley graph, i.e. the minimal length of a word

rT=g192...94; i €Y

For each x choose some minimal-length word as above and define N (g, z)
to be the number of occurences of g in the word. Now consider a different
reversible random flight on I with some step-distribution f, not necessarily
supported on G. If we know 79, the next result allows us to bound 7.

Theorem 7.16

T2 1 ) N
2 - K =max —— S d(z. id)N .
= < {ggﬂw>gg(%Z)(me@ﬁ

xxx give proof — tie up with L? discussion

Perhaps surprisingly, Theorem 7.16 gives information even when the
comparison walk is the “trivial” walk whose step-distribution f is uniform
on the group. In this case, both d(x,id) and N(g,x) are bounded by the
diameter A, giving

Corollary 7.17 For reversible flight with step-distribution p on a group I,

A2
< ——
min g #(9)

Y

where G is the support of p and A is the diameter of the Cayley graph
associated with G.

When g is uniform on G and |G| = d, the Corollary gives the bound dAZ2,
which improves on the bound 8d?A? which follows from Proposition 7.15 and
Cheeger’s inequality (Chapter 4 yyy). The examples of the torus Z¢ show
that A2 enters naturally, but one could hope for the following variation.

Open Problem 7.18 Write 7. = 7.(I,G) for the minimum of 7o over all
symmetric random flights on I with step-distribution supported on G. Is it
true that 7, = O(A?)?
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7.2 Arc-transitivity

Example 7.14 shows that random walk on a Cayley graph does not nec-
essarily have the property that E,T, is the same for all edges (v,w). It
is natural to consider some stronger symmetry condition which does im-
ply this property. Call a graph arc-transitive if for each 4-tuple of vertices
(v1, w1, v2,ws) such that (v, w;) and (v, w2) are edges, there exists an au-
tomorphism v such that v(v1) = wy,y(va) = we. Arc-transitivity is stronger
than vertex-transitivity, and immediately implies that F, T, is constant over
edges (v, w).

Lemma 7.19 On a n-vertex arc-transitive graph,
(i) E,Ty =n —1 for each edge (v, w).
(i) E,Tyw >n—2+d(v,w) for all w # v.

Proof. (i) follows from E,T," = n. For (ii), write N(w) for the set of
neighbors of w. Then

E,T, = EUTN('LU) + (TL — 1)

and Ty () > d(v, N(w)) = d(v,w) — 1.

In particular, min, £,T,, = n — 1, which gives the following bounds
on mean cover time EC. The first assertion uses Matthews method for
expectations (Chapter 2 yyy) and the second follows from Theorem 7.9.

Corollary 7.20 On a n-verter arc-transitive graph, EC' > (n — 1)hy,_1.

And if io/n — 1 and 7o = o(n/logn) then
C -1l
C—mlogn a4 (7.26)

70

Note that the lower bound (n — 1)h,_; is attained on the complete graph.
It is not known whether this exact lower bound remains true for vertex-
transitive graphs, but this would be a consequence of Chapter 6 Open Prob-
lem yyy. Note also that by xxx the hypothesis 79/n — 1 can only hold if
the degrees tend to infinity.

Corollary 7.20 provides easily-checkable conditions for the distributional
limit for cover times, in examples with ample symmetry, such as the card-
shuffling examples in the next section. Note that

b+o(1)
logn

C—nlogn—bn 4

) imply - — n.

(7.26) and 79 = n (1 +
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Thus on the d-cube (Chapter 5 yyy) 70 = n (1 + 1%(1)) =n (1 + %)

and so o | |
- - 2
nlogn — nlog i

n

7.2.1 Card-shuffling examples

These examples are formally random flights on the permutation group,
though we shall describe them informally as models for random shuffles
of a m-card deck. Write X} for the configuration of the deck after ¢ shuffles,
and write Y; = f1(X) for the position of card 1 after ¢ shuffles. In most ex-
amples (and all those we discuss) Y} is itself a Markov chain on {1,2,...,m}.
Example 7.21, mentioned in Chapter 1 xxx, has become the prototype for
use of group representation methods.

Example 7.21 Card-shuffling via random transpositions.
The model is

Make two independent uniform choices of cards, and interchange
the positions of the two cards.

With chance 1/m the same card is chosen twice, so the “interchange” has
no effect. This model was studied by Diaconis and Shahshahani [122], and
more concisely in the book Diaconis [112] Chapter 3D. The chain Y; has
transition probabilities

i—j probability 2/m?, j#i
2(m—1)

1 — 1 probability 1— 5
m

This is essentially random walk on the complete m-graph (precisely: the
continuized chains are deterministic time-changes of each other) and it is
easy to deduce that (Y;) has relaxation time m/2. So by the contraction
principle xxx the card-shuffling process has 9 > m/2, and group represen-
tation methods show

o =m/2. (7.27)

Since the chance of being in the initial state after 1 step is 1/m and after 2
steps in O(1/m?), the local transience heuristic (7.10) suggests

70 = m!(1 + 1/m 4+ O(1/m?)) (7.28)
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which can be verified by group representation methods (see Flatto et al
[152]). The general bound on 77 in terms of 75 gives only 71 = O(12 logm!) =
O(m?logm). In fact group group representation methods ([112]) show

1
there is a variation cutoff at §mlog m. (7.29)

Example 7.22 Card-shuffling via random adjacent transpositions.

The model is

With probability 1/(m + 1) do nothing. Otherwise, choose one
pair of adjacent cards (counting the top and bottom cards as ad-
jacent), with probability 1/(m+1) for each pair, and interchange
them.

The chain Y; has transition probabilities
i— i+1 probability 1/(m+ 1)
i— i—1 probability 1/(m+ 1)
s ) probability (m —1)/(m + 1)

with ¢ & 1 counted modulo m. This chain is (in continuous time) just a
time-change of random walk on the m-cycle, so has relaxation time
(m) m+1 1 m3
a(m ~—.
2 1—cos(2r/m)  4m?

So by the contraction principle xxx the card-shuffling process has 72 > a(m),
and (xxx unpublished Diaconis work) in fact

5 = a(m) ~ m?3/4xn>.

A coupling argument which we shall present in Chapter xxx gives an upper
bound 71 = O(m3logm) and (xxx unpublished Diaconis work) in fact

1 = O(m?logm).
The local transience heuristic (7.10) again suggests
70 = m!(1 4+ 1/m + O(1/m?))

but this has not been studied rigorously.

Many variants of these examples have been studied, and we will mention
a generalization of Examples 7.21 and 7.22 in Chapter xxx. Here is another
example, from Diaconis and Saloff-Coste [117], which illustrates the use of
comparison arguments.
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Example 7.23 A slow card-shuffling scheme.

The model is: with probability 1/3 each, either

(1) interchange the top two cards

(ii) move the top card to the bottom

(iii) move the bottom card to the top.

This process is random walk on a certain Cayley graph, which (for m > 3)
is not arc-transitive. Writing d for distances in the graph and writing

f = max(d(o,id) : o a transposition ),

it is easy to check that 8 < 3m. Comparing the present chain with the
“random transpositions” chain (Example 7.21), denoted by ~, Theorem 7.16

implies
2 <3
T2
Since T2 = m/2 we get
T2 < 27m3.
-2

7.2.2 Cover times for the d-dimensional torus Z¢.

This is Example yyy from Chapter 5, with n = N¢ vertices, and is clearly
arc-transitive. Consider asymptotics as N — oo for d fixed. We studied
mean hitting times in this example in Chapter 5. Here 179/n 4 1, so we
cannot apply Corollary 7.20. For d = 1 the graph is just the d-cycle, treated
in Chapter 6 yyy. For d > 3, Chapter 5 yyy gave

EoT; ~nRg as N — oo, |i] = oo

where |i| is Euclidean distance on the torus, i.e.

d

(i1, .., ig)[> = > (min(iy, N = iy))*.

u=1
So EC has the asymptotic upper bound Rgnlogn. Now if we apply the
subset form of Matthews method (Chapter 6 yyy) to the subset
, . . _ N
A=A{Gim, ... jam) : 1< ji < —} (7.30)
then we get a lower bound for EC asymptotic to
log |A| x nRy.

By taking m = m(n) 1 oo slowly, this agrees with the upper bound, so we
find
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Corollary 7.24 On the d-dimensional torus with d > 3,
EC ~ Rgnlogn.

Perhaps surprisingly, the case d = 2 turns out to be the hardest of all
explicit graphs for the purposes of estimating cover times. (Recall this case
is the white screen problem Chapter 1 xxx.) Loosely, the difficulty is caused
by the fact that 72 = O(nlogn) — recall from Chapter 6 yyy that another
example with this property, the balanced tree, is also hard. Anyway, for the
case d = 2 the calculations in Chapter 5 yyy gave

2
EoT; ~n ( log || + O(l)) .
7r

This leads to the upper bound in Corollary 7.25 below. For the lower bound,
we repeat the d > 3 argument using a subset of the form (7.30) with m — oo,
and obtain a lower bound asymptotic to

2
Zlogm x log(n?/m?).
s

The optimal choice is m ~ n'/2, leading to the lower bound below.

Corollary 7.25 On the 2-dimensional torus Z]2V,

1 2 1 2
— < < |- .
(47r 0(1)) nlog“n < EC < (7T +0(1)> nlog”n

Lawler [221] has improved the constant in the lower bound to % - see Notes.
It is widely believed that the upper bound is in fact the limit.

Open Problem 7.26 Prove that, on the 2-dimensional torus ZJQV,
1 2
EC ~ — nlog”n.
T

The usual distributional limit
C -1l
T0logn d
70

certainly fails in d = 1 (see Chapter 6 yyy). It has not been studied in d > 2,
but the natural conjecture it that it is true for d > 3 but false in d = 2.
Note that (by Chapter 6 yyy) the weaker concentration result

C/EC 3 1
holds for all d > 2.
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7.2.3 Bounds for the parameters

In Chapter 6 we discussed upper bounds on parameters 7 for regular graphs.
One can’t essentially improve these bounds by imposing symmetry condi-
tions, because the bounds are attained (up to constants) by the n-cycles.
But what if we exclude the n-cycles? Example 7.14 shows that one can
invent vertex-transitive graphs which mimic the n-cycle, but it is not clear
whether such arc-transitive graphs exist. So perhaps the next-worst arc-
transitive graph is Z2,.

Open Problem 7.27 Is it true that, over arc-transitive graphs excluding
the n-cycles, 7 = O(nlogn), 72 = O(n) and % =1+4+0(1)?

7.2.4 Group-theory set-up

Recall that the Cayley graph associated with a set G of generators of a group
I has edges

{(v,vg);vel,geG}

where we assume G satisfies
(i) g € G implies g~ € G.
To ensure that the graph is arc-transitive, it is sufficient to add the condition

(ii) for each pair g1, g2 in G, there exists a group automorphism - such
that v(id) = id and v(g1) = geo.

In words, “the stabilizer acts transitively on G”. This is essentially the
general case: see [71] Prop. A.3.1.

As a related concept, recall that elements x,y of a group I are conjugate
if = g~ 'yg for some group element g. This is an equivalence relation which
therefore defines conjugacy classes. It is easy to check that a conjugacy class
must satisfy condition (ii). Given a conjugacy class C' one can consider the
uniform distribution puc on C and then consider the random flight with step
distribution pe. Such random flights fit into the framework of section 7.2,
and Example 7.21 and the torus Zj‘f, are of this form. On the other hand,
Example 7.22 satisfies (i) and (ii) but are not random flights with steps
uniform on a conjugacy class.

7.3 Distance-regular graphs

A graph is called distance-transitive if for each 4-tuple vy, w1, v9, wo with
d(vi,wy) = d(va,wy) there exists an automorphism 7 such that y(v;) =
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wi,y(v2) = we. Associated with such a graph of diameter A are the inter-
section numbers (a;,b;,c;;0 < i < A) defined as follows. For each i choose
(v, w) with d(v,w) =4, and define

¢; = number of neighbors of w at distance i—1 from v
a; = number of neighbors of w at distance i from v

b; = number of neighbors of w at distance i+ 1 from v.

The distance-transitive property ensures that (a;,b;,¢;) does not depend
on the choice of (v,w). A graph for which such intersection numbers ex-
ist is called distance-regular, and distance-regularity turns out to be strictly
weaker than distance-transitivity. An encyclopedic treatment of such graphs
has been given by Brouwer et al [71]. The bottom line is that there is almost
a complete characterization (i.e. list of families and sporadic examples) of
distance-regular graphs. Anticipating a future completion of the character-
ization, one could seek to prove inequalities for random walks on distance-
regular graphs by simply doing explicit calculations with all the examples,
but (to quote Biggs [49]) “this would certainly not find a place in The Erdos
Book of ideal proofs”. Instead, we shall just mention some properties of
random walk which follow easily from the definitions.

Consider random walk (X;) on a distance-regular graph started at v,
and define D; = d(vg, X;). Then (D) is itself a Markov chain on states
{0,1,...,A}, and is in fact the birth-and-death chain with transition prob-
abilities

Dii—1 = Gi/T, Diji = a;/T, Diji+1 = bi/T.

xxx b-and-d with holds

Finding exact t-step transition probabilities is tantamount to finding
the orthogonal polynomials associated with the distance-regular graph —
references to the latter topic can be found in [71], but we shall not pursue
it.

7.3.1 Exact formulas

A large number of exact formulas can be derived by combining the standard
results for birth-and-death chains in Chapter 5 section yyy with the standard
renewal-theoretic identities of Chapter 2 section yyy. We present only the
basic ones.

Fix a state 0 in a distance-regular graph. Let n; be the number of states
at distance ¢ from 0. The number of edges with one end at distance ¢ and
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the other at distance ¢ + 1 is n;b; = n;11¢i41, leading to the formula

4
bj-
ni=[[ 25 0<i<A.

j=1 G

The chain D, has stationary distribution

i
bi_
e — 1 J—1. < i<
pi=ni/n=n H o 0<i<A.
j=1 J
Switching to the notation of Chapter 5 yyy, the chain D; is random walk on
a weighted linear graph, where the weight w; on edge (i — 1,1) is

wy = M ey
! 2n on’ T T T

and total weight w = 1. This graph may have self-loops, but they don’t
affect the formulas. Clearly hitting times on the graph are related to hitting
times of (D;) by

E,T, = h(d(v,z)) , where h(i) = E;T, (7.31)

and where we write ~ to refer to expectations for D;. Clearly h(-) is strictly
increasing. Chapter 5 yyy gives the formula

i A
hi)=i+2) > ww;' (7.32)

j=li=j+1

And Chapter 5 yyy gives the last equality in

A
~ 1 _
0= BxTo = E,Ty = ; > wi (> pi)? (7.33)

i=1 §>i

Finally, Chapter 5 yyy gives
} 3 A
E)TA + ExTy =Y 1/w;. (7.34)
i=1

Thus if the graph has the property that there exists a unique vertex 0* at
distance A from 0, then we can pull back to the graph to get

*

A
T 1
5 = TﬁfExTv = EoTor = 3 ; 1/w;. (7.35)

If the graph lacks that property, we can use (7.31) to calculate h(A).
The general identities of Chapter 3 yyy can now be used to give formulas
for quantities such as P,(Ty < T%) or E, (number of visits to y before 7).
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7.3.2 Examples

Many treatments of random walk on sporadic examples such as regular
polyhedra have been given, e.g. [227, 228, 275, 319, 320, 330, 331], so I shall
not repeat them here. Of infinite families, the complete graph was discussed
in Chapter 5 yyy, and the complete bipartite graph is very similar. The
d-cube also was treated in Chapter 5. Closely related to the d-cube is a
model arising in several contexts under different names,

Example 7.28 c-subsets of a d-set.

The model has parameters (c,d), where 1 < ¢ < d — 1. Formally, we
have random walk on the distance-transitive graph whose vertices are the
#ic)! c-element subsets A C {1,2,...,d}, and where (A, A") is an edge iff
|[AAA'| = 2. More vividly, d balls {1, 2, ..., d} are distributed between a left
urn and a right urn, with ¢ balls in the left urn, and at each stage one ball is
picked at random from each urn, and the two picked balls are interchanged.
The induced birth-and-death chain is often called the Bernouilli-Laplace
diffusion model. The analysis is very similar to that of the d-cube. See
[123, 127] and [112] Chapter 3F for details on convergence to equilibrium
and [110] for hitting and cover times.

7.3.3 Monotonicity properties

The one result about random walk on distance-regular graphs we wish to
highlight is the monotonicity property given in Proposition 7.29 below. Part
(i) can be viewed as a strengthening of the monotonicity property for mean
hitting times (by integrating over time and using the formula relating mean
hitting times to the fundamental matrix).

Proposition 7.29 For random walk (X;) on a distance-regular graph in
continuous time, Py(X; = w) = q(t,d(v,w)), where the function d — q(t,d)
satisfies

(i) d — q(t,d) in non-increasing, for fized t.

(ii) q(t,d)/q(t,0) in non-decreasing in t, for fized d.

xxx proof — coupling — defer to coupling Chapter 77

Proposition 7.29 is a simple example of what I call a “geometric” result
about a random walk. Corollary 7.3 gave a much weaker result in a more
general setting. It’s natural to ask for intermediate results, e.g.

Open Problem 7.30 Does random walk on an arc-transitive graph have
some monotonicity property stronger than that of Corollary 7.3%
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7.3.4 Extremal distance-regular graphs

Any brief look at examples suggests

Open Problem 7.31 Prove that, over distance-regular graphs excluding
the n-cycles, 19 = O(n).

Of course this would imply 7* = O(n) and EC = O(nlogn). As mentioned

earlier, one can try to tackle problems like this by using the list of known

distance-regular graphs in [71]. Biggs [49] considered the essentially equiv-

alent problem of the maximum value of max; ; E;T;j/(n — 1), and found the

value 195/101 taken on the cubic graph with 102 vertices, and outlined an

argument that this may be the max over known distance-regular graphs.
xxx in same setting is 5 = O(logn)?

7.3.5 Gelfand pairs and isotropic flights

On a distance-regular graph, a natural generalization of our nearest-neighbor
random walks is to isotropic random flight on the graph. Here one specifies a
probability distribution (sg, s1,...,Sa) for the step-length S, and each step
moves to a random vertex at distance S from the previous vertex. Precisely,
it is the chain with transition probabilities

Sd(v,w)

7.36
N (v,w) ( )

p(v,w) =
The notion of isotropic random flight also makes sense in continuous
space. For an isotropic random flight in R?, the steps have some arbitrary
specified random length S and a direction # which is uniform and indepen-
dent of S. A similar definition can be made on the d-dimensional sphere.
The abstract notion which captures distance-regular graphs and their con-
tinuous analogs is a Gelfand pair. Isotropic random flights on Gelfand pairs
can be studied in great detail by analytic methods. Brief accounts can be
found in Letac [224, 225] and Diaconis [112] Chapter 3F, which contains an
extensive annotated bibliography.

7.4 Notes on Chapter 7

Diaconis [112] Chapter 3 discusses random walks on groups, emphasizing
use of the upper bound lemma to establish bounds on 71 and d(t), and con-
taining extensive references to previous work using group-theoretic meth-
ods. We have only mentioned reversible examples, but many natural non-
reversible examples can also be handled by group representation methods.
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Also, in Example 7.21 and related examples, group representation methods
give stronger information about d(¢) then we have quoted.

Elementary properties of hitting and cover times on graphs with symme-
try structure have been noted by many authors, a particularly comprehen-
sive treatment being given in the Ph.D. thesis Sbihi [306]. Less extensive
treatments and specific elementary results can be found in many of the pa-
pers cited later, plus [274, 330, 331]

Section 7.1. The phrase “random flight” is classically used for R?. T have
used it (as did Takacs [319, 320]) in place of “random walk’ to emphasize it
is not necessarily a nearest-neighbor random walk.

Section 7.1.3. Other elementary facts about symmetric reversible chains
are n

E;min(T;,T;) = §(Zu + Zij).

Pi(Xot =) + Pi(Xo = j) > 2/n.

Chapter 6 yyy showed that on any regular graph, max; ; F;T; < 3n%. On
a vertex-transitive graph the constant “3” can be improved to “2”, by an
unpublished argument of the author, but this is still far from the natural
conjecture of 1/4.

Section 7.1.4. Another curious result from [12]is that for a symmetric
reversible chain the first passage time cannot be concentrated around its

mean:
var ;1) e—2 1

(BiTj)2 = e—1 ET;

Section 7.1.5. Before Matthews method was available, a result like Corol-
lary 7.5 (c) required a lot of work — see Aldous [8] for a result in the setting
of non-reversible random flight on a group. The present version of Corollary
7.5 (c) is a slight polishing of ideas in Zuckerman [343] section 6.

The fact that (7.17) implies (7.15) is a slight variation of the usual text-
book forms of the continuity theorem ([133] 2.3.4 and 2.3.11) for Fourier and
Laplace transforms. By the same argument as therein, it is enough for the
limit transform to be continuous at § = 0, which holds in our setting.

Matthews [255, 257] introduced Proposition 7.8 and used it to obtain
the limiting cover time distribution for the d-cube and for card-shuffling
examples. Devroye and Sbihi [110] applied it to generalized hypercubes and
to Example 7.28. Our implementation in Theorem 7.9 and Corollary 7.20
reduces the need for ad hoc calculations in particular examples.

Section 77 Example 7.11 has been studied in the reliability literature
(e.g. [212]) from the viewpoint of the exponential approximation for hitting
times.
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Section 7.1.7. The factor of 2 difference between the variation and sep-
aration cutoffs which appears in Lemma 7.12 is the largest possible — see
Aldous and Diaconis [22].

Section 7.1.8. xxx walk-regular example — McKay paper.

Section 7.1.9. Diaconis and Saloff-Coste [117] give many other applica-
tions of Theorem 7.16. We mention some elsewhere; others include

xxx list.

Section 7.2. The name “arc-transitive” isn’t standard: Biggs [48] writes
“symmetric” and Brouwer et al [71] write “flag-transitive”. Arc-transitivity
is not necessary for the property “FE,T,, is constant over edges”. For in-
stance, a graph which is vertex-transitive and edge-transitive (in the sense
of undirected edges) has the property, but is not necessarily arc-transitive
[182]. Gobel and Jagers [168] observed that the property

E,T,+ E,T, =2(n—1) for all edges (v, w)

(equivalently: the effective resistance across each edge is constant) holds for
arc-transitive graphs and for trees.

Section 7.2.2. Sbihi [306] and Zuckerman [343] noted that the subset ver-
sion of Matthews method could be applied to the d-torus to give Corollaries
7.24 and 7.25.

The related topic of the time taken by random walk on the infinite lattice
Z% to cover a ball centered at the origin has been studied independently —
see Revesz [288] Chapter 22 and Lawler [221], who observed that similar
arguments could be applied to the d-torus, improving the lower bound in
Corollary 7.25. It is easy to see an informal argument suggesting that,
for random walk on the 2-torus, when n® vertices are unvisited the set of
unvisited vertices has some kind of fractal structure. No rigorous results are
known, but heuristics are given in Brummelhuis and Hilhorst [75].

Section 7.3.1. Deriving these exact formulas is scarcely more than un-
dergraduate mathematics, so I am amazed to see that research papers have
continued to be published in the 1980s and 1990s claiming various special
or general cases as new or noteworthy.

Section 7.3.5. In the setting of isotropic random flight (7.36) with step-
length distribution g, it is natural to ask what conditions on ¢ and ¢’ imply
that 7(q) > 7(¢') for our parameters 7. For certain distributions on the d-
cube, detailed explicit calculations by Karlin et al [207] establish an ordering
of the entire eigenvalue sequences, which in particular implies this inequality
for 7 and 7y. Establishing results of this type for general Gelfand pairs seems
an interesting project.
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Miscellaneous. On a finite field, such as Z,, for prime p, one can consider
“random walks” with steps of the form x — az + 3, with a specified joint
distribution for (a, 8). Chung et al [94] treat one example in detail.



Chapter 8

Advanced L? Techniques for
Bounding Mixing Times
(May 19 1999)

xxx In next revision, we should change the definition [in Chapter 4,

yyy:(14)] of d(t) so that what is now 1/d(2t) becomes d(t).

This chapter concerns advanced L?-based techniques, developed mainly
by Persi Diaconis and Laurent Saloff-Coste [117, 118, 119, 120] for bounding
mixing times for (finite, irreducible) reversible Markov chains. For conve-
nience, we will work in continuous time throughout this chapter, unless
otherwise noted. Many of the results are conveniently expressed in terms of
an “L? threshold time” 7 (xxx use different notation?) defined by

7:=inf{t > 0: max |1P(X;€-) —m()]la <e '} (8.1)

xxx For NOTES: Discussion of discrete time, esp. negative eigenvalues.

Several preliminary comments are in order here. First, the definition of
the L? distance || P;(X; € -) — 7(-)||2 may be recalled from Chapter 2 section
yyy:6.2, and Chapter 3 yyy:(55) and the spectral representation give useful
reexpressions:

IP(X € ) -0} = Y (p”’“) - 1)

T

_ pii(zt) 1 (8.2)

Uy

267
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n
= ! > exp(—2Amt)u,,.

m=2

Second, from (8.2) and Chapter 4 yyy:(14) we may also write the maximum
L? distance appearing in (8.1) using
pii(2t)

max || B(X; € -) = 7()[3 = max ="~ — 1 = ma
1 7 Uy 1,] 7Tj

NI

Third, by the application of the Cauchy—Schwarz lemma in Chapter 4 Lemma
yyy:8, variation distance can be bounded by L? distance:

1d(t) = 4P(Xe)—r()P < P(Xie)—x()3  (83)
AP(t) = dmax |P(X, € ) — n()|]? < d(20); (8.4)

these inequalities are the primary motivation for studying L? distance.
As argued in Chapter 4 yyy:just following (23),

d(2t) < wte 2, (8.5)

where 7 1= Ay 1 is the relaxation time and 7, := min; ;. Thus if

1 1
t> 1y ilog——&—c ,

*

then
d(t) < L/d(2n) < L, (8.6)

which is small if ¢ is large; in particular, (8.6) gives the upper bound in

Ty <7< Ty (1log1—|—1>, (8.7)
2 Ty
and the lower bound follows easily.

For many simple chains (see Chapter 5), 72 can be computed exactly.
Typically, however, 7 can only be bounded. This can be done using the
“distinguished paths” method of Chapter 4 Section yyy:3. In Section 1 we
will see that that method may be regarded as a special case of a “comparison
method” whereby a chain with “unknown” relaxation time is compared to
a second chain with “known” relaxation time. The greater generality often
leads to improved bounds on 7. As a bonus, the comparison method also
gives bounds on the other “unknown” eigenvalues, and such bounds in turn
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can sometimes further decrease the time ¢ required to guarantee that cZ(2t),
and hence also d(t), is small.

A second set of advanced techniques, encompassing the notions of Nash
inequalities, moderate growth, and local Poincaré inequaltities, is described
in Section 3. The development there springs from the inequality

1P(Xe € ) = 7()l2 < N(s)e =/, (8.8)

established for all 0 < s <t in Section 2, where

N(t) = max || P;(X; € -)||2 = max piil ), t>0. (8.9)
? 7 v

)

Choosing s = 0 in (8.8) gives
IPA(X; € ) = m( Yo < m; Vet

and maximizing over i recaptures (8.5). The point of Section 3, however,
is that one can sometimes reduce the bound by a better choice of s and
suitable estimates of the decay rate of N(-). Such estimates can be provided
by so-called Nash inequalities, which are implied by (1) moderate growth
conditions and (2) local Poincaré inequalities. Roughly speaking, for chains
satisfying these two conditions, judicious choice of s shows that variation
mixing time and 7 are both of order A2, where A is the diameter of the
graph underlying the chain.

xxx Might not do (1) or (2), so need to modify the above.

To outline a third direction of improvement, we begin by noting that nei-
ther of the bounds in (8.7) can be much improved in general. Indeed, ignor-
ing ©(1) factors as usual, the lower bound is equality for the n-cycle (Chap-
ter 5, Example yyy:7) and the upper bound is equality for the M/M/1/n
queue (Chapter 5, Example yyy:6) with traffic intensity p € (0,1).

In Section 4 we introduce the log-Sobolev time 7; defined by

7 :=sup{L(g9)/E(g, g) : g # constant} (8.10)

where £(g) is the entropy-like quantity

ng )1og(lg(@)|/lgll2),

recalling ||g]|3 = 3, mig?(i). Notice the similarity between (8.10) and the
extremal characterization of 75 (Chapter 3 Theorem yyy:22):

2 = sup{||gl13/€(9,9) : ng =0, g#0}
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We will see that
log (7% — 1)
2(1 —2my)

and that 7 is more closely related to 7; than to 7o, in the sense that

<7 <7

. 1 1
n<7<m iloglogﬂ——l—Z . (8.11)

To illustrate the improvement over (8.7), from the knowledge for the d-
cube (Chapter 5, Example yyy:15) that 7o = d/2, one can deduce from (8.7)
that

sd <+ < 1(log2)d* + id. (8.12)

In Section 4.4 (Example 27) we will see that 7, = d/2; then from (8.11) we
can deduce the substantial improvement

1 1
d<t< dlogd+<1—4log )d (8.13)

log 2

N | =
| =

upon (8.12).

Z77!: Recall also the corrections in my notes on pages 8.2.11-12 (and
8.4.27). Continue same paragraph:

The upper bound here is remarkably tight: from Chapter 5 yyy:(65),

1 1
T = Zdlogd—l— (

Slog .
1 Oglog(1+e—2)>d+0(d) as d — o0

ZZ77): In fact, the remainder term is O(1). Continue same paragraph:

Thus log-Sobolev techniques provide another means of improving mixing
time bounds, both in L? and, because of (8.3)—(8.4), in variation. As will
be seen, these techniques can also be combined usefully with comparison
methods and Nash inequalities.

8.1 The comparison method for eigenvalues

xxx Revise Chapter 7, Sections 1.9 and 4, in light of this section?

The comparison method, introduced by Diaconis and Saloff-Coste [117,
118], generalizes the distinguished path method of Chapter 4, Section yyy:3
for bounding the relaxation time of a reversible Markov chain. As before, we
first (xxx: delete word?) work in the setting of random walks on weighted
graphs. We will proceed for given state space (vertex set) I by comparing
a collection (w;j) of weights of interest to another collection (w;;); the idea
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will be to use known results for the random walk with weights (0;;) to derive
corresponding results for the walk of interest. We assume that the graph
is connected under each set of weights. As in Chapter 4, Section yyy:4.3,
we choose (“distinguish”) paths 7., from z to y. Now, however, this need
be done only for those (z,y) with  # y and w,, > 0, but we impose the
additional constraint w, > 0 for each edge e in the path. (Here and below,
e denotes a directed edge in the graph of interest.) In other words, roughly
put, we need to construct a (w;;)-path to effect each given (10, )-edge. Recall
from Chapter 3 yyy:(71) the definition of Dirichlet form:

E(g,9) = 722“’“ 9(i))?, (8.14)

1 jFi

E(g.g) = fzzw” g(i)?.

1§

Theorem 8.1 (comparison of Dirichlet forms) For each ordered pair
(x,y) of distinct vertices with Wyy > 0, let yzy be a path from x to y with
we > 0 for every e € vyy. Then the Dirichlet forms (8.14) satisfy

E(9,9) < AE(g,9) = E(9,9) mgxwfzzwzylwyll(eem
¢ T oyFe

for every g.
Proof. For an edge e = (i,7) write Ag(e) = g(j) — g(i). Then
20€(g,9) = DD Waylgly) — g())?

T yFa
2
T y#x e€Yxy
< Z Z Way | Vayl Z (Ag(e))* by Cauchy-Schwarz
T yFx eCYaxy
<

AZwe(Ag(e))Q =A-2wE(g,g). m

Remarks. (a) Suppose the comparison weights (;;) are given by
’LZ)Z‘J' = wiwj/w fori,j7 € 1.

The corresponding discrete-time random walk is then the “trivial” walk with
w = w and
Wi = wi, Pij =Ty, Tj =T,
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for all 4,5, and

1 . ‘
&(g,9) = 9 Z Zﬁiﬁj(g(j) —g(i))? =vary g
i gt
= Jlgl3 provided 3, mig(i) = 0.

In this case the conclusion of Theorem 1 reduces to

lgll3 < (g, grwmax - > " momylvaylLieer,,)-
Tyt

This inequality was established in the proof of the distinguished path the-
orem (Chapter 4 Theorem yyy:32), and that theorem was an immediate
consequence of the inequality. Hence the comparison Theorem 1 may be
regarded as a generalization of the distinguished path theorem.

[xxx For NOTES: We've used simple Sinclair weighting. What about
other weighting in use of Cauchy—Schwarz? Hasn’t been considered, as far
as I know.]

(b) When specialized to the setting of reversible random flights on Cay-
ley graphs described in Chapter 7 Section yyy:1.9, Theorem 1 yields The-
orem yyy:14 of Chapter 7. To see this, adopt the setup in Chapter 7 Sec-
tion yyy:1.9, and observe that the word

x=gi1g2---g4 (with each g; € G) (8.15)
corresponds uniquely to a path

Ydz = (d, 91,9192, .-.,9192 - ga = ) (8.16)

in the Cayley graph corresponding to the generating set G of interest. Having
built paths 7iq, for each x € I, we then can build paths ~,, for y,z € I by
exploiting vertex-transitivity, to wit, by setting

Yye = (Y, Y91, Y9192, - - -, Y9192 - - - §d = 2)

where y 'z = x and the path Yid,z is given by (8.16). In Theorem 1 we then

have both stationary distributions m and 7 uniform,

wmy = ﬂ(x_ly)/n, w =1, |’71‘y| = |’Yid,:c—1y| = d(id7x_1y)’

and, if e = (v,vg) withv € I and g € G,

we =p(g)/n, w=1, Leey,,) = L@ tvatvgen, ,—1,)"
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Thus A of Theorem 1 equals

-1
() d(d, 27 ) (-1 s-tpoem. 1 )
I 2 i)

which reduces easily to K of Theorem yyy:14 of Chapter 7. Since w and 7
are both uniform, the extremal characterization

2 = sup{|lgl3/(g, 9) : }:ﬂw =0} (8.17)

gives Theorem yyy:14 of Chapter 7.

Theorem 8.1 compares Dirichlet forms. To compare relaxation times
using the extremal characterization (8.17), we compare L?-norms using the
same “direct” technique as for Chapter 3 Lemma yyy:26. For any g,

lgll3 < H9H52IH?X(ﬂi/ﬁ0 (8.18)
where, as usual, m; := w;/w and 7; = w;/w. So if g has m-mean 0 and
w-mean b, then

2 —b 2 A —b ~2
”9”2 < Hg H2 < _ Hg HQ max(m/fri). (819)

E(g,9) ~ E(g—b,g—0b) ~ E(g—b,g—1Db)
Thus

Corollary 8.2 (comparison of relaxation times) In Theorem 1,

A
T2 < —T
a
where
w
A = — max — Z Z wxy]%yﬂ (€€vay)?
w We <
y#
a := min(7;/m;).
(]
xxx Perhaps restate as
Ty < To

where
b= et T (e2)

(and similarly for Corollaries 4 and 7)?
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xxx Remark about best if 7 = 77

Here is a simple example, taken from [117], showing the improvement in
Corollary 8.2 over Theorem yyy:32 of Chapter 4 provided by the freedom in
choice of benchmark chain.

xxx NOTE: After the fact, I realized that the following example was
already Example yyy:20 of Chapter 7; must reconcile.

Example 8.3 Consider a card shuffle which transposes the top two cards
in the deck, moves the top card to the bottom, or moves the bottom card
to the top, each with probability 1/3. This example fits the specialized
group framework of Chapter 7 Section yyy:1.9 (see also Remark (b) following
Theorem 8.1 above) with I taken to be the symmetric group on m letters
and

G={12),(mm-1m-2---1),(12 --- m)}

in cycle notation. [If the order of the deck is represented by a permutation o
in such a way that o(¢) is the position of the card with label 4, and if
permutations are composed left to right, theno-(mm —-1m—2 --- 1) is
the order resulting from o by moving the top card to the bottom.]

We obtain a representation (8.15) for any given permutation = by writing

xr = hmhm_1 s h2
in such a way that
(hy -+ b)) =27 1) fori<j<m (8.20)

(i.e., hyy - - - hy and z agree in positions 7 through m) and each h; is explicitly
represented as a product of generators. To accomplish this, we proceed
inductively. Suppose that (8.20) holds for given i € {3,...,m+1}, and that
(B - hi) (@™ (i — 1)) = 1; =1, with 1 <1 <i— 1. Then let

hig = (mm—-1m—=2 - DA 2)(mm—1m—2 - 1)1
(mm—1m—2 ... 1)m7+2

In words, beginning with h,,---h;, we repeatedly move the top card to

the bottom until card z=!(i — 1) has risen to the top; then we repeatedly

transpose and shift until the top m — i + 2 cards, in order, are (i —

1),...,2~Y(m); and finally we cut these m — i + 2 cards to the bottom.
xxx Kither revise Section 1.9 of Chapter 7 to delete requirement of

geodesic paths, or explain one can erase cycles.
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It follows that the diameter A of the Cayley graph associated with G
satisfies

m+1

A<S [(li=1)+2(i— L —1) + (m—i+2)] 53@)
i=2

and so by Chapter 7 Corollary yyy:15 that 7 < 27(”;)2 < ZImA,

To improve this bound on the relaxation time we compare the chain of
interest to the random transposition chain of Chapter 7 Example yyy:18
and employ Corollary 8.2, or rather its specialization, (yyy:Theorem 14) of
Chapter 7.

xxx Continue as in Chapter 7 Example yyy:20 to get

m 27 4

T ~
2<38, A= < S,

7 2
(11

xxx Test function on page 2139 of [117] shows this is right order.

Corollary 8.2 can be combined with the inequality

1, 1
<1 (2 log — + 1) (8.21)

*

from (8.7) to bound the L? threshold parameter 7 for the chain of interest,
but Theorem 8.1 sometimes affords a sharper result. From the Courant—
Fischer “min-max” theorem ([183], Theorem 4.2.11) it follows along the
same lines as in Chapter 3 Section yyy:6.3 that

M =inf p(hy, b, ... ho1), m=2,...,n, (8.22)
where h1 = 1 and xxx Say the conditions better!

p(hl,hg,... hm 1)
= sup{HgH2/€ Zm )=0 forj=1,...,m—1}

and the inf in (8.22) is taken over all vectors hi, ..., hy,—1 that are orthogonal
in L?(m) (or, equivalently, that are linearly independent). Using (8.19),
Corollary 8.2 now generalizes to

Corollary 8.4 (comparison of eigenvalues) In Theorem 8.1, the eigen-
values Ay, and N\, in the respective spectral representations satisfy

a m

with A and a as defined in Corollary 8.2.
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Here is a simple example [118] not possessing vertex-transitivity:
xxx NOTE: This is a DIRECT comparison!: see Chapter 3 Section 6.4.

Example 8.5 Random walk on a d-dimensonal grid.

To keep the notation simple, we let d = 2 and consider the grid I :=
{0,...,m; — 1} x {0,...,ma — 1} as an (unweighted) subgraph of Z?. The
eigenvalues \; are not known in closed form. However, if we add self-loops
to make a benchmark graph where I is regular with degree 4, then the
eigenvalues )\, for the continuous-time walk are

1—1<cosﬂ+cosm>, 0<r<mi—1, 0<s<mg—1.
2 mq mo

xxx Product chain. Add discussion of all eigenvalues to Section yyy:6.2
of Chapter 47

xxx P.S. See Chapter 5, (66).

In particular, assuming m; > mo we have

o\ -1
Ty =2 <1 — CoS ml) . (8.23)

Now we apply Corollary 8.4 to bound the eigenvalues A;. In Theorem 8.1,
the two graphs agree except for self-loops, so

A = w/w;
furthermore,
. T w .
a = min — = — min w;w;,
1 Ty w
SO

W;
a 1 Wy

Thus )\fl < 5\;1 for 1 <1 <n :=mymg; in particular,
T2 < Tp. (8.24)

Comparing the other way around gives

Afl < (max wl) )\fl = 2)\fl, 1<i<n
1 W;

and in particular

Ty 2 5T2.

N[
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The result %5\1_1 < )\l_l < ;\l_l extends to general d, for which (for example)

-1
T9 :d(l—cosﬂ>
m

where I ={0,...,m; — 1} x -+~ x {0,...,mg — 1} and m := max; m;.
Example 8.6 Random walk on a thinned grid.

As a somewhat more interesting example, suppose we modify the grid in Z?
in Example 8.5 by deleting at most one edge from each unit square.

xxx Copy picture on page 700 in [118] as example?

Again we can apply Corollary 8.4, using the same benchmark graph as
in Example 8.5. In Theorem 8.1, w0, > 0 for  # y if and only if z and y are
neighboring vertices in the (unthinned) grid {0, ...,m;—1}x{0,...,ma—1}.
We can choose 7, to have length 1 (if the edge joining = and y has not been
deleted) or 3 (if it has). For any directed edge e in the grid, there are at most
two paths of length 3 and at most one path of length 1 passing through e.
Thus A < Tw/w, and so A/a < 7Tmax;(w;/w;) < 7; comparing the other
way around is even easier (all paths have length 1), and we find

NPt <oyt 2<i<n

e

xxx REMINDER: NOTES OR ELSEWHERE?: Mention exclusion pro-
cess [149, 118].

Example 8.7 The n-path with end self-loops.

The comparison technique does not always provide results as sharp as those
in the preceding two examples, even when the two chains are “close.” For
example, let the chain of interest be the n-path, with self-loops added at each
end added to make the graph regular with degree 2, and let the benchmark
graph be the n-cycle (Chapter 5, Example yyy:7). Use of Corollary 8.2

. ~ . —1 ~
gives only 75 < n7y, whereas in fact 75 = (1 —cosZ) " ~ ﬂ%nQ and 7 =

(1 — cos 2%) ! ~ ﬁnz.

It is difficult in general to use Corollary 8.4 to improve upon (8.21).
However, when both the chain of interest and the benchmark chain are
symmetric reversible chains (as defined in Chapter 7 Section yyy:1.1), it

follows from Chapter 4 yyy:(14) by averaging over i that

N ~/a
< — >
d(t)d(At), L0,

and hence from (8.1) we obtain
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Corollary 8.8 (comparison of L? mixing times) In Theorem 8.1, if both
the graph of interest and the benchmark graph are vertez-transitive, then the
L? mizing time parameters © and 7 satisfy

>

7 <

SRS

Example 8.9 Returning to the slow card-shuffling scheme of Example 8.3
with random transpositions benchmark, it is known from group representa-
tion methods [112, 122] which make essential use of all the eigenvalues A
not just Ae, that

7~ %mlogm as m — oo.

Since a = 1 and A (= K of Chapter 7, Theorem yyy:14) < 27m?, it follows
that
7 < (1+0(1))Em* logm. (8.25)

This improves upon Example 8.3, which combines with (8.21) to give only
T<(1+ 0(1))%7’:@4 log m.

xxx Show truth is 7 = ©(m3logm)?

8.2 Improved bounds on L? distance

The central theme of the remainder of this chapter is that norms other than
the L' norm (and closely related variation distance) and L? norm can be
used to improve substantially upon the bound

IPi(Xe € ) — ()]s < 727/, (8.26)

8.2.1 L7 norms and operator norms

Our discussion here of L? norms will parallel and extend the discussion in
Chapter 2 Section yyy:6.2 of L' and L? norms. Given 1 < ¢ < oo, both
the LY norm of a function and the LY norm of a signed measure are defined
with respect to some fixed reference probability distribution 7 on I, which
for our purposes will be the stationary distribution of some irreducible but
not necessarily reversible chain under consideration. For 1 < g < oo, the L4
norm of a function f: I — R is

1/q
171l = (Zm\qu) ,
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and we define the L? norm of a signed measure v on I to be the L? norm of
its density function with respect to :

1/q
17
Ivllg == (Zﬂj qlelq) :
J

For g = oo, the corresponding definitions are

I flloe += masx (i)

and

[V]|oo := mjaX(\Vj\/Wj)-

Any matrix A := (a;; : i,j € I) operates on functions f : I — R by
left-multiplication:

(Af)@) =D aiif(5), (8.27)
J
and on signed measures v by right-multiplication:

(I/A)j = Z Viaij. (828)

For (8.27), fix 1 < ¢y < oo and 1 < g2 < oo and regard A as a linear
operator mapping L' into L. The operator norm ||A||4,—¢, is defined by

[Allgr g0 := sup{l|Afllg « [Ifllgr = 1}- (8.29)

The sup in (8.29) is always achieved, and there are many equivalent reex-
pressions, including

[Allg g = max{[[Afllg, : [|fllq <1}
= max{[[Afllg/lfllg : f # 0}

Note also that
||BAH!11—>q3 < ||AH(11—>Q2HBHQQ—>QS7 1< q1,q2,93 < 0. (8'30)

For (8.28), we may similarly regard A as a linear operator mapping signed
measures v, measured by ||v||g, , to signed measures v A, measured by |[VA||4,.
The corresponding definition of operator norm, call it |||All|4,—g., is then

[[Alllg1—q> := sup{llvAllg, : [[Vllg = 1}-
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A brief calculation shows that

H!A!qu—m = ”A*Hq1—>qaa

where A* is the matrix with (4, j) entry m;a;;/m;, that is, A* is the adjoint
operator to A (with respect to ).

Our applications in this chapter will all have A = A*, so we will not need
to distinguish between the two operator norms. In fact, all our applications
will take A to be either P; or P; — E for some ¢ > 0, where

P, = (pi(t) :i,j € 1)

xxx notation P; found elsewhere in book?
and E = lim;_,, P; is the transition matrix for the trivial discrete time
chain that jumps in one step to stationarity:

E=(nj:i,j€l),

and where we assume that the chain for (P;) is reversible. Note that E
operates on functions essentially as expectation with respect to m:

(Ef)(i) = ijf(j), i€l
J

The effect of E on signed measures is to map v to (3, v;)w, and

P.E=E=EP, t>0. (8.31)

8.2.2 A more general bound on L? distance

The following preliminary result, a close relative to Chapter 3, Lemmas
yyy:21 and 23, is used frequently enough in the sequel that we isolate it
for reference. It is the simple identity in part (b) that shows why L?-based
techniques are so useful.

Lemma 8.10 (a) For any function f,
d 9 2
%HPtsz = 26(Pf,Pif) < Ve P.f <O0.

(b)

P, —Elsmp =e ¥/, t>0.
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Proof. (a) Using the backward equations

imw—%hmww
we find d
@) =37 an[(Pef)(F)
k
and so

TIPS = 23 Y P DlaslPef) (k)
ik
= —28(P:f,Pyf) by Chapter 3 yyy:(70)

2
< ——var,; P:f by the extremal characterization of 7.
T2

(b) From (a), for any f we have

d d 2

— (P —E)f||2 = —||P:(f —Ef)|2 < —=|(P: — E)f||?
dtH( +—E)f[2 dtH t(f—Ef)lz < 72”( t— E)fll3,
which yields

[P —B)fIE < [[(Po—E)fIFe 2/ = (var fe~ 2/
< NfIBem,

Thus ||P; — E||2_,0 < e~¥/™. Taking f to be the eigenvector

—1/2 .
fi::ﬂ'i /UZ‘Q, ZEI,

of P;—E corresponding to eigenvalue exp(—t/72) demonstrates equality and
completes the proof of (b). m

The key to all further developments in this chapter is the following result.

Lemma 8.11 For an irreducible reversible chain with arbitrary initial dis-
tribution and any s,t > 0,

IP(Xsrs € ) = 7()l2 < | P(Xs € )2l Ps = Eflas = | P(Xs € ) [l e ™.
Proof. The equality is Lemma 8.10(b), and

[1P(Xstt € ) =m()ll2 = [|P(Xs € )(Pr — E)[|2 < [P(Xs € )[2[IPs — B[22
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proves the inequality. m

We have already discussed, in Section 8.1, a technique for bounding 7
when (as is usually the case) it cannot be computed exactly. To utilize
Lemma 8.11, we must also bound ||P(X; € -)||2. Since

I1P(Xs € )]z = |P(Xo € -)Psll2 (8.32)

xxx For NOTES: By Jensen’s inequality (for 1 < ¢ < o0), any transition
matrix contracts L? for any 1 < g < oo.

and each P, is contractive on L2, i.e., ||P¢]|a2 < 1 (this follows, for
example, from Lemma 8.10(a); and note that ||P¢||2—2 = 1 by considering
constant functions), it follows that

|IP(Xs € -)||2 decreases monotonically to 1 as s 1 oo, (8.33)

and the decrease is strictly monotone unless P(Xp € -) = m(-). From (8.32)
follows

[P(Xs €-)lla < |[P(Xo € )

¢ |IPsllg= 2 for any 1 < ¢* < oo,  (8.34)
and again

|Psl|¢+—2 decreases monotonically to 1 as s 1 oco. (8.35)

The norm ||Pg||+—2 decreases in ¢* (for fixed s) and is identically 1 when
*

q* > 2, but in applications we will want to take ¢* < 2. The following
duality lemma will then often prove useful. Recall that 1 < ¢q,¢* < oo are
said to be (Holder-)conjugate exponents if

11
T
¢ q

=1. (8.36)
Lemma 8.12 For any operator A, let

A* = (Wjaji/m 11,5 € I)
denote its adjoint with respect to w. Then, for any 1 < q1,q2 < 00,

[Allgi—g> = A" lg5—q5-

In particular, for a reversible chain and any 1 < g < oo and s > 0,

IPsll2—q = [[Psllgra- (8.37)
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Proof. Classical duality for L? spaces (see, e.g., Chapter 6 in [303])
asserts that, given 1 < ¢ < oo and g on I,

lgllq= = max{[{f, g)[ : | fllg = 1}

where

(f.9) = Y mif ()(i)
Thus

[A%gllg = max{|(f,A%g)|: [|fll¢ =1}

= max{[(Af,g)|: [ fllq =1},

and also
(AL, 9| < [[ASfllgallglley < A lgi—goll fllaillglles,

SO

1A%l < [1Allg—a2llg

Since this is true for every g, we conclude [|A*||gz—qr < [[Allg—q,- Reverse
roles to complete the proof. =

As a corollary, if ¢* = 1 then (8.34) and (8.37) combine to give

q5

I1P(Xs € )2 < [Psllis2 = Ps[l2-00

and then
IP(Xspt € ) = 7()ll2 < |[Psllamoc e /™

from Lemma 8.11. Thus
d(2(s + 1)) < |Py]l2s00 €. (8.38)
Here is a somewhat different derivation of (8.38):

Lemma 8.13 For 0 <s <t,

d(2t) = [Pt — El2n0c < [[Psll2m00l|Pt—s — El[2-52
= |Pllamoc e /72,
Proof. In light of (8.31), (8.30), and Lemma 8.10(b), we need only es-
tablish the first equality. Indeed, | P;(X; € -) — 7(-)||2 is the L? norm of the
function (Pi(X; € -)/m(-)) — 1 and so equals

max {

> (pis(t) — ) £(j)

J

I flle = 1} = max{[((P,—E)f)(@)] : [ fll2 = 1}.
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Taking the maximum over ¢ € I we obtain

d2e) = wax {max (P~ B))) - 1£]2 = 1]

= max{[|(P; — E)flloo : [[fl2 =1}
= [Pi = El2n00. =

Choosing s = 0 in Lemma 8.11 recaptures (8.26), and choosing s = 0
in Lemma 8.13 likewise recaptures the consequence (8.5) of (8.26). The
central theme for both Nash and log-Sobolev techniques is that one can
improve upon these results by more judicious choice of s.

8.2.3 Exact computation of N(s)

The proof of Lemma 8.13 can also be used to show that

.. 28
N(s) = [Py oo = max [ (X, € )2 = max Pi(2s) (g 30)

U

as at (8.9). In those rare instances when the spectral representation is known
explicitly, this gives the formula
xxx Also useful in conjunction with comparison method—see Section 3.
xxx If we can compute this, we can compute d(2t) = N2(t) — 1. But the
point is to test out Lemma 8.13.

n

N?(s) =1+ maxn; ' Z u3, exp(—2\ms), (8.40)

m=2

and the techniques of later sections are not needed to compute N(s). In
particular, in the vertex-transitive case

N%(s)=1+ z": exp(—2As).

m=2
The norm N (s) clearly behaves nicely under the formation of products:

N(s) = NO ()N (s). (8.41)

Example 8.14 The two-state chain and the d-cube.
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For the two-state chain, the results of Chapter 5 Example yyy:4 show

NQ(S) =14 L?X(p’ Q)e*2(p+q)s.
min(p, )

In particular, for the continuized walk on the 2-path,
N%(s) =147,
By the extension of (8.41) to higher-order products, we therefore have
N?(s) = (14 e~ */d)

for the continuized walk on the d-cube. This result is also easily derived from
the results of Chapter 5 Example yyy:15. For d > 2 and t > idlog(d - 1),
the optimal choice of s in Lemma 8.13 is therefore

s = dlog(d — 1)
and this leads in straightforward fashion to the bound
# < Ld(logd + 3).
While this is a significant improvement on the bound [cf. (8.12)]
# < Y(log2)d® + 3d

obtained by setting s = 0, i.e., obtained using only information about 7o, it
is not

xxx REWRITE!, in light of corrections to my notes.

as sharp as the upper bound

# < (1+o0(1))1dlogd
in (8.13) that will be derived using log-Sobolev techniques.
Example 8.15 The complete graph.

For this graph, the results of Chapter 5 Example yyy:9 show

2ns
N2(s) =1 -1 — .
()= 1+ (n— yexp ()
It turns out for this example that s = 0 is the optimal choice in Lemma 8.13.
This is not surprising given the sharpness of the bound in (8.7) in this case.
See Example 8.32 below for further details.
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Example 8.16 Product random walk on a d-dimensional grid.

Consider again the benchmark product chain (i.e., the “tilde chain”) in
Example 8.5. That chain has relaxation time

™ =d (1 — cos <7T>> < Edm2,
m

so choosing s = 0 in Lemma 8.13 gives

< 4 (1 logn + 1)
=1 cos(m/m) \ 2 "
< Lldm*(logn +2). (8.42)

This bound can be improved using N(-). Indeed, if we first consider
continuized random walk on the m-path with self-loops added at each end,
the stationary distribution is uniform, the eigenvalues are

N =1—cos(nr(l=1)/m), 1<1<m,
and the eigenvectors are given by
ug = (2/m) 2 cos(n(l = 1)(i — L)/m), 0<i<m—1, 2<I<m.

According to (8.40) and simple estimates, for s > 0

m m—1
N%(s)—1< ZZeXp[—Qs(l —cos(m(l—1)/m)] <2 Z exp(—4sl?/m?)
=2 =1

and

[asy

m—

exp(—4sl?/m?) < / exp(—4sz? /m?) da
1= =1

—m <L>1/2P (Z > 2(2;)1/2>

7T/42 1/2 exp(—4s/m?)
<4s/m

< (4s/m?) V2 exp(—4s/m?)

when Z is standard normal; in particular, we have used the well-known (xxx:
point to Ross book exercise) bound

P(Z>z)<kte™®2 >0,
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Thus
N2%(s) <1+ 2[1 4 (4s/m?) "/ exp(—4s/m?), s> 0.

Return now to the “tilde chain” of Example 8.5, and assume for sim-
plicity that m; = --- = mg = m. Since this chain is a slowed-down d-fold
product of the path chain, it has

4s \ /2 4s I
1+2 (1 + <dm2> ) exp <—de)] , s§>0. (8.43)

In particular, since d(2t) = N2(t) — 1, it is now easy to see that

N2(s) <

# < Km?dlogd = Kn*dlogd (8.44)

for a universal constant K.

xxx We've improved on (8.42), which gave order m?d? log m.

xxx When used to bound d(¢) at (8.4), the bound (8.44) is “right”: see
Theorem 4.1, p. 481, in [120].

The optimal choice of s in Lemma 8.13 cannot be obtained explicitly
when (8.43) is used to bound N(s) = ||Ps||2—s0c. For this reason, and for
later purposes, it is useful to use the simpler, but more restricted, bound

N2(s) < (4dm?/s)¥? for 0 < s < dm?/16. (8.45)

To verify this bound, simply notice that u+2ue" 424 <dfor0<u< %
When s = dm?/16, (8.45), and 75 < dm?/2 are used in Lemma 8.13, we find

7 < 3m?d*(log2 + 3d 7).

xxx Improvement over (8.42) by factor ©(logm), but display follow-
ing (8.43) shows still off by factor O(d/logd).

8.3 Nash inequalities

xxx For NOTES: Nash vs. Sobolev

A Nash inequality for a chain is an inequality of the form

24+5 2 1/D
lglls" ™ < CE(g.9) + lall3] gl (8.46)
that holds for some positive constants C, D, and T and for all functions g.
We connect Nash inequalities to mixing times in Section 8.3.1, and in Sec-
tion 8.3.2 we discuss a comparison method for establishing such inequalities.
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8.3.1 Nash inequalities and mixing times

A Nash inequality implies a useful bound on the quantity
N(t) = [|Pt]l2—00 (8.47)

appearing in the mixing time Lemma 8.13. This norm is continuous in ¢ and
decreases to ||E||2s00 = 1 as t T co. Here is the main result:

Theorem 8.17 If the Nash inequality (8.46) holds for a continuous-time
reversible chain, some C, D, T > 0, and all g, then the norm N(s) at (8.47)
satisfies

N(t) < e(DC/H)P  for0<t<T.

Proof. First note N(t) = [[P¢[l1»2 by Lemma 8.12. Thus we seek a
bound on h(t) := ||P:g||3 independent of g satisfying | g||; = 1; the square
root of such a bound will also bound N (t).

Substituting P g for g in (8.46) and utilizing the identity in Lemma 8.10(a)
and the fact that P; is contractive on L', we obtain the differential inequality

h(t)F35 < O (=30 (t) + Lh(t)], t>0.

Writing .
—1/(2D
H(t) = [3Ch(t)e™/"] :

the inequality can be equivalently rearranged to
111 ¢
H'(t) > [2D(C/2)¥2p| epT, >0,
Since H(0) > 0, it follows that
-1
H(t) > T[2(C/2)" 0] (epT —1), >0,

or equivalently

—-2D

h(t) < [g (1= e-t/oD)

But
o—t/(DT) < 1 _ %(1 —e YDy for0<t<T,
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so for these same values of ¢ we have

)™

B, [é (P - 1)} P < [e(DC/t)PP2,

h(t)

IA

as desired. m

We now return to Lemma 8.13 and, for ¢ > T, set s = T. (Indeed,
using the bound on N(s) in Theorem 8.17, this is the optimal choice of s if
T < Dry.) This gives

xxx NOTE: In next theorem, only need conclusion of Theorem 8.17, not
hypothesis!

Theorem 8.18 In Theorem 8.17, if ¢ > 1 and
DC
t>T+ 1 (Dlog (T) —i—c) ,

then \/&(2t) < el=¢: in particular,

D
T<T+m (Dlog(TC) +2).

The following converse of sorts to Theorem 8.17 will be very useful in
conjunction with the comparison method.

Theorem 8.19 If a continuous time reversible chain satisfies
N@t)<Ct™P for0<t<T,
then it satisfies the Nash inequality

2445
lgll" ™ < C'[E(g.9) + Sllgl3] gy for all g
with )
C':=2(1+ 5)[(1 +2D)/2C)/P < 2%+3p CV/P.

xxx Detail in proof to be filled in (I have notes): Show £(Pg,Pg) | as
t T, or at least that it’s maximized at ¢t = 0. Stronger of two statements is
equivalent to assertion that ||P.f||3 is convex in ¢.



290CHAPTER 8. ADVANCED L? TECHNIQUES FOR BOUNDING MIXING TIMES (MAY 1¢

Proof. As in the proof of Theorem 8.17, we note N (t) = ||P¢||1—2. Hence,
for any g and any 0 <t < T,

t
I} = IPuwl3— [ #IP.gl3ds
-

t
P13 + 2/ E(Psg,Psg)ds by Lemma 8.10(a)
5=0

|Pigl|3 + 26 (g, g)t  xxx see above
28(g, g)t + C*t P lglI7.

IAINA

This gives
g9l < t12E(g, 9) + %llgll3] + C*t 2P| gll

for any t > 0. The righthand side here is convex in ¢ and minimized (for g #

0) at
— ( 2DC?|g|? )” o
26(g,9) + T~ gll3 '
Plugging in this value, raising both sides to the power 1+ % and simplifying
yields the desired Nash inequality. The upper bound for C” is derived with
a little bit of calculus. =

8.3.2 The comparison method for bounding N(-)

In Section 8.1 we compared relaxation times for two chains by comparing
Dirichlet forms and variances. The point of this subsection is that the com-
parison can be extended to the norm function N(-) of (8.47) using Nash
inequalities. Then results on N(-) like those in Section 8.2.3 can be used to
bound mixing times for other chains on the same state space.

xxx For NOTES?: Can even use different spaces. New paragraph:

To see how this goes, suppose that a benchmark chain is known to satisfy

Nit)<Ct™P foro<t<T. (8.48)

By Theorem 8.19, it then satisfies a Nash inequality. The L!- and L2-
norms appearing in this inequality can be compared in the obvious fashion
[cf. (8.18)] and the Dirichlet forms can be compared as in Theorem 8.1.
This shows that the chain of interest also satisfies a Nash inequality. But
then Theorem 8.17 gives a bound like (8.48) for the chain of interest, and
Theorem 8.18 can then be used to bound the L? threshold time 7.

Here is the precise result; the details of the proof are left to the reader.
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Theorem 8.20 (comparison of bounds on N(-)) If a reversible bench-
mark chain satisfies

N#t)<Ct™P foro<t<T

for constants C, D, T > 0, then any other reversible chain on the same state
space satisfies
N(t) < e(DC/t)P  for 0 <t <T,
where, with a and A as defined in Corollary 8.2, and with
a' := max(7;/m;),
1

we set

D = D,
C = a )P A x 21 4+ L)1 +2D)2C)VP
a7(2+%)a/1/DA % 22+%C~11/D7

2A -
WT.

IN

T

xxx Must correct this slightly. Works for any A such that £ < AE, not
just minimal one. This is important since we need a lower bound on T but
generally only have an upper bound on I3 /€. The same goes for @’ (only
need upper bound on 7;/m;): we also need an upper bound on T

Example 8.21 Random walk on a d-dimensional grid.

As in Example 8.5, consider the continuized walk on the d-dimensional grid
I =1{0,...,m—1}¥ In Example 8.5 we compared the Dirichlet form and
variance for this walk to the d-fold product of random walk on the m-path
with end self-loops to obtain

T < F=d(l—cos )" < Tdm?; (8.49)
using the simple bound 1/d(2t) < m et < (2n)~1/2 exp (—%) we
then get

# < m?d[log(2n) + 2], (8.50)

which is of order m2d?logm. Here we will see how comparing N(-), too,
gives a bound of order m?d? log d. In Example 8.43, we will bring log-Sobolev
techniques to bear, too, to lower this bound to order m?dlogd
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xxx which is correct, at least for TV. New paragraph:
Recalling (8.45), we may apply Theorem 8.20 with
D=d/4, C=(4dm®¥* T =dm?/16,
and, from the considerations in Example 8.5,
az%, A=1, d =2

xxx See xxx following Theorem 8.20. Same paragraph:
This gives

D=d/4, C<203ddm?<2%dm? T = dm?/32.
Plugging these into Theorem 8.18 yields
# < dmPd®logd + (¥ log 2)m?d® + $m?d, (8.51)

which is < 3m?2d?logd for d > 2.
Other variants of the walk, including the thinned-grid walk of Exam-
ple 8.6, can be handled in a similar fashion.

xxx Do moderate growth and local Poincaré? Probably not, to keep
length manageable. Also, will need to rewrite intro a little, since not doing
A2-stuff (in any detail).

8.4 Logarithmic Sobolev inequalities

xxx For NOTES: For history and literature, see ([119], first paragraph and
end of Section 1).
xxx For NOTES: Somewhere mention relaxing to nonreversible chains.

8.4.1 The log-Sobolev time 7

Given a probability distribution 7 on a finite set I, define
xxx For NOTES: Persi’s £(g) is double ours.

L(g) = 3 mig*(i)og(19(i)l/llgll2) (8.52)

for g # 0, recalling ||g||3 = 3=, mig%(7) and using the convention 0log0 = 0.
By Jensen’s inequality,

L(g) > 0, with equality if and only if |g| is constant.
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Given a finite, irreducible, reversible Markov chain with stationary distribu-
tion 7, define the logarithmic Sobolev (or log-Sobolev) time by

xxx For NOTES: Persi’s v is 1/(27).

xxx Note 77 < co. (Show?) See also Corollary 8.27.

7 :=sup{L(g9)/E(g,9) : g # constant}. (8.53)
Notice the similarity between (8.53) and the extremal characterization of 7
(Chapter 3, Theorem yyy:22):

7 = sup{llgll3/€(g. 9) : D_mig(i) =0, g#0}.

We discuss exact computation of 7; in Section 8.4.3, the behavior of 7; for
product chains in Section 8.4.4, and a comparison method for bounding 7;
in Section 8.4.5. In Section 8.4.2 we focus on the connection between 7; and
mixing times. A first such result asserts that the relaxation time does not
exceed the log-Sobolev time:

Lemma 8.22 r, < 7.

xxx Remarks about how “usually” equality?

xxx For NOTES: Proof from [302], via [119].

Proof. Given g # constant and e, let f := 1+ eg. Then, writing g =
> mig(i), and with all asymptotics as € — 0,

log |f]2 = 2qg—€e2¢® + 0(63),

log I3 = 265+ gl — 2% + O()
fI? ) )
o8 H’f;IQ = 2e(g— )+ €25 — llgll3 — 7 + O(€).
2
Also,
f2:1+2€g+€292;
thus

F2log(IfP/11£113) = 2¢(g — ) + €(3¢° — llgl3 — 499 +25%) + O(’)

and so
L(f) = (llglls — g°) + O(€®) = vary g + O(€°).

Furthermore, £(f, f) = €2£(g, g); therefore

n> gﬁ(f) = "I L 0(e).

(f.f)  £&(9,9)

Finish by letting ¢ — 0 and then taking the supremum over g. =
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8.4.2 7, mixing times, and hypercontractivity

In this subsection we discuss the connection between the L? threshold time
parameter

7= inf{t > 0:/d(2t) = max | Pi(X; € ) = 7()2 < 7'} (8.54)

and the log-Sobolev time 7;. As in Section 8.3, we again consider the fun-
damental quantity
N(s) = [IPsl2-00

arising in the bound on 4/d(2t) in Lemma 8.13, and recall from Section 8.3.1
that

1/

N(s) decreases strictly monotonically from m, “ats=0tolass T 0.

The function N is continuous. It would be nice (especially for use in con-
junction with the comparison technique) if we could characterize, in terms
of the Dirichlet form &, the value of s, call it s*, such that N(s) equals 2
(say), but such a characterization is not presently available.

xxx For NOTES?: A partial result is Theorem 3.9 in [119], taking ¢ = oo.

Open Problem 8.23 Characterize s* in terms of £.

To carry on along these general lines, it turns out to be somewhat more
convenient to substitute use of

IP(X; € ) =7 ()ll2 S [1P(Xo € )| _a, [Psllamge™ /™, 2< g <,
(8.55)
an immediate consequence of Lemmas 8.11 and 8.12 and (8.34), for use of

Lemma 8.13. The reason is that, like N(s), ||Ps||2—4 decreases monotoni-
cally to 1 as s 1 oo; but, unlike N(s), it turns out that

for each ¢ > 2, ||Ps||2—q equals 1 for all sufficiently large s. (8.56)

The property (8.56) is called hypercontractivity, in light of the facts that,
for fixed s, P is a contraction on L? and ||Pg||2, is increasing in q. Let

Sq = inf{s >0: HPSH2—>q < 1} = inf{s : HPSH2—>Q = 1};

then s = 0 < s4, and we will see presently that s, < oo for ¢ > 2. The
following theorem affords a connections with the log-Sobolev time 7; (and
hence with the Dirichlet form &).
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Theorem 8.24 For any finite, irreducible, reversible chain,

. 2s4
= sup —————.
2<q£oo log(q — 1)

Proof. The theorem is equivalently rephrased as follows:
[Pill2—sq < 1 forall ¢ >0 and 2 < ¢ < oo satisfying /" > ¢ —1 (8.57)

if and only if u > 7;. The proof will make use of the generalization

Ly(g) := 3 _milg(@)"1og(lg(D)/llg]l4)

of (8.52). Fixing 0 # g > 0 and u > 0, we will also employ the notation

g(t) = 1+ G(t) =Pyl Zy), (8.58)
1

F = ||P = —1

1) = [Puly = exp | 5 1o G(0)

for t > 0.
As a preliminary, we compute the derivative of F. To begin, we can
proceed as at the start of the proof of Lemma 8.10(a) to derive

(0 = ~0() (Pugs (o) T [(Pug) s ((Pig )
Then
: Gt )losG()
O P TR a0
—(q(t)— /(t) q(t)—
= F(r)~OY {Z(t)ﬁq(t)(Ptg) -£ (Pt97 (Pyg)?™ 1)} (8.59)

For the first half of the proof we suppose that (8.57) holds and must
prove 7; < u, that is, we must establish the log-Sobolev inequality

L(g) <ué&(g,qg) for every g. (8.60)

To establish (8.60) it is enough to consider 0 # g > 0,
xxx Do we actually use g > 0 here?
since for arbitrary g we have

L(g) = L(|g]) and E(g,9) > E(lgl, |g])- (8.61)
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Plugging the specific formula (8.58) for ¢(¢) into (8.59) and setting ¢ = 0
gives

F'(0) = [lglly " (™" L(g) — £(g,9))- (8.62)
Moreover, since
F(t) =Pllgwry < [Pellasgllgllz < llgllz by (8.57)
= [[Pogllz = £(0),

the (right-hand) derivative of F' at 0 must be nonpositive. The inequal-
ity (8.60) now follows from (8.62).

For the second half of the proof, we may assume u = 7; and must estab-
lish (8.57). For g > 0, (8.53) and Lemma 8.25 (to follow) give

q a/2 a/2 a/2 ¢’
§£q(9):£(g ) < &(g¥=,g77) <

< mg(g,gq_l) (8.63)

for any 1 < ¢ < co. With ¢(t) := 1+ €2/ we have ¢/(t) = T%(q(t) —1), and
replacing g by Pg in (8.63) we obtain

£y P (P, (PO ) <0

From (8.59) we then find F'(t) < 0 for all ¢ > 0. Since F(0) = ||g/|2, this
implies
IPigllqew) < llgll- (8.64)

We have assumed g > 0, but (8.64) now extends trivially to general g, and
therefore

IPellomsqge) < 1.
This gives the desired hypercontractivity assertion (8.57). m
Here is the technical Dirichlet form lemma that was used in the proof of

Theorem 8.24.

Lemma 8.25 £(g,¢997!) > 4(?1)5(9‘1/2,9‘1/2) forg>0and1l < q< .

xxx Do we somewhere have the following?:

E(f,9) =535 mai (f() — F(5))(9(d) — 9(4))- (8.65)
i jAi
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Proof. For any 0 < a <b

2 a2\ 2 ) 2
WZ—al™) 4 / 131 dt
b—a 2(b—a) Ja

2 b 2 qg—1 __  qg—1
< qi/ p2gp o T b a
4(b—a) Jq 4(g—1) b—a

This shows that

(bq—l o aq—l)(b - a) > 4(Qq; 1) (bq/2 - CLq/2)2

and the lemma follows easily from this and (8.65). =

Now we are prepared to bound 7 in terms of 7.
Theorem 8.26 (a) If ¢ > 0, then for any state i with m; < e~ !,
|P(X; € ) —m()|l2 < e'7¢ for t > 27 loglog W% + c7o.

(b)

7 < %Tl loglogﬂ% + 21 < Tl(%loglogﬂ% + 2).

Proof. Part (b) follows immediately from (8.54), part (a), and Lemma 8.22.
To prove part (a), we begin with (8.55):

|Pi(Xe € ) = w()ll2 < ) 19 Pyl|asg e,

As in the second half of the proof of Theorem 8.24, let ¢ = q(s) := 1+¢2%/7.
Then [|Pg[[a—q(s) < 1. Thus

|Pi(Xt € ) —m(-)]]2 < 7Ti_1/q(8) e,(t,s)/m’ 0<s<t.
Choosing s = 37 log log(%) we have ¢(s) =1+ log(ﬂ%_) and thus
IPi(Xy € ) —m(-)]]2 < exp(l — t;—;) fort>s. m
We have established the upper bound in the following corollary; for the
lower bound, see Corollary 3.11 in [119].

Corollary 8.27
n<#<n(3 loglog% + 2).

Examples illustrating the improvement Corollary 8.27 affords over the
similar result (8.7) in terms of o are offered in Examples 8.37 and 8.40.
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8.4.3 Exact computation of 7,

Exact computation of 7; is exceptionally difficult—so difficult, in fact, that 7
is known only for a handful of examples. We present some of these examples
in this subsection.

Example 8.28 Trivial two-state chains.

We consider a discrete-time chain on {0, 1} that jumps in one step to sta-
tionarity (or, since the value of 7; is unaffected by continuization, the cor-
responding continuized chain). Thus (poo, po1, p10,p11) = (0,1 —60,60,1 — 0)
with § = 19 = 1 — m1. We also assume 0 < 6 < 1/2. The claim is that

log[(1-6)/60] .
n={ -2 HOAL2 (8.66)
1 if 0 =1/2.

Note that this is continuous and decreasing for 6 € (0,1/2].

To prove (8.66), we need to show that £(g)/E(g,9) < 7(0) for every
nonconstant g on {0,1}, where 7(6) denotes the righthand side of (8.66),
with equality for some gg. First suppose 6 # 1/2. For the inequality, as at
(8.60)—(8.61) we may suppose g > 0 and, by homogeneity,

Erg=09(0) + (1 -0)g(1) = 1.
We will work in terms of the single variable

z:=1/(g9(0) —g(1)),

so that 1o g
0)=1+-—— )=1-->
g(0) =1+ — g(1) .

and we must consider z € (—oo, —(1 — 0)] U [6, 00). We calculate
£(g.9) = 0(1—0)(g(0) —g(1))* =06(1 —0)/*,
—H\?2 2
oy = o(1+2=2) +a-0)(1-2)

= [Blz+1-0>+(1—-0)(x—0)7/z*=1+
Ua) = Lig) =0 (1 + 1;9>210g (1 + 1;9>

+(1-90) (1 - z)2log <1 - z)

(1 — 0)

x2
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1 0(1—-0 (1 -0
—29<1+ (azQ )>10g<1+ (932 ))
= [9(3: +1—0)*log(z +1—0)*+ (1 —0)(x — 0)*log(x — 0)*
,(mz +0(1 — 0)) log(x? + 0(1 — 0))] /(22?),

(g 7 = 22°%0(x)
0)%log(z +1—60)? + (1 — 0)(z — 0)*log(z — 6)*
—(22 4 0(1 — 0))log(z? + 6(1 — 0)).

= fxz+1-

(From here, a straightforward but very tedious calculus exercise shows
that r decreases over (—oo, —(1 — )], with r(—oc0) = 26(1 — 0), and that r
is strictly unimodal over [f,00), with 7(f) = 0 and r(c0) = 20(1 — 0). It
follows that r(z) is maximized over (—oo, —(1 — 6)] U [#, 00) by taking x to
be the unique root to

0 = 7(z)=40(z+ (1 —0))log(z + (1 —10)) (8.67)
+4(1 = 0)(z — 0) log(x — 0) — 2z log(x? + 6(1 — 6))

over (6, 00).
There is on hope for solving (8.67) explicitly unless

2?2+ 01-0)=(x+1-0)(z—0),

ie,x=20(1—-6)/(1—20). Fortunately, this is a solution to (8.67), and it
falls in (6, 00). The corresponding value of r is 1(1 22) log 5%, so (8.66) fol-
lows, and we learn furthermore that the function g maxmnzlng L(g)/E(g,9)
is go, with go(0) = 55 and go(1) = ﬁ.

For § = 1/2, the major change is that now r is increasing, rather than
unimodal, over [#, 00). Thus rg,, = 26(1—6) = 1/2, and (8.66) again follows.

Example 8.29 Two-state chains.

Now consider any irreducible chain (automatically reversible) on {0, 1}, with
stationary distribution 7. Without loss of generality we may suppose my <
1. We claim that
1 log(mi /7o) -
72;01(171%(?) if mop £ 1/2
T =

1/(2p01) ifﬂ'():l/z
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The proof is easy. The functional £(g) depends only on 7 and so is un-
changed from Example 8.28, and the Dirichlet form changes from £(g,g) =
mom1(g(0) — g(1))? in Example 8.28 to (g, g) = po1(g(0) — g(1))? here.

Remark. Recall from Chapter 5, Example yyy:4 that 7o = 1/(po1+p10) =
m1/po1- It follows that
log(mi/mo) -
. S 8mgy 10 <7 <1/2

2 1 if 7m0 = 1/2

is a continuous and decreasing function of my. In particular, we have equality
in Lemma 8.22 for a two-state chain if and only if 7o = 1/2. Moreover,

/Ty ~ %log(l/wo) — 00 as mg — 0.
Example 8.30 Trivial chains.

The proof of Lemma 8.22 and the result of Example 8.28 can be combined
to prove the following result: For the “trivial” chain with p;; = m;, the
log-Sobolev time 7; is given (when 7, < 1/2) by

log(ﬂ% -1)
T o0 —2m)

We omit the details, referring the reader to Theorem 5.1 of [119].

As an immediate corollary, we get a reverse-inequality complement to
Lemma 8.22:

Corollary 8.31 For any reversible chain (with m, < 1/2, which is auto-
matic for n > 3),

log(r% - 1)

201 — 2my)

T < T

Proof. The result of Example 8.30 can be written

log(% -1)

L(g) < (vary g)m,

and var; g < 12€(g,g) by the extremal characterization of 75. =
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Example 8.32 The complete graph.

It follows readily from Example 8.30 that the continuized walk of the com-

plete graph has

(n—1)log(n —1)
2(n —2)

Since 19 = (n — 1)/n, equality holds in Corollary 8.31 for this example.

1
T = ~ ilogn.

xxx Move the following warning to follow Corollary 8.27, perhaps?
Warning. Although the ratio of the upper bound on 7 to lower bound
in Corollary 8.27 is smaller than that in (8.7), the upper bound in Corol-
lary 8.27 is sometimes of larger order of magnitude than the upper bound
in (8.7). For the complete graph, (8.7) says

and Corollary 8.27 yields
(1+ 0(1))% logn <7< (1+ o(l))%(log n)(loglogn),

while, from Chapter 5, yyy:(33) it follows that

1
?:%logn—l—O(Oin).

As another example, the product chain development in the next subsec-
tion together with Example 8.29 will give 7; exactly for the d-cube. On the
other hand, the exact value of 7; is unknown even for many of the simplest
examples in Chapter 5. For instance,

Open Problem 8.33 Calculate 7; for the n-cycle (Chapter 5 Example yyy:7)
when n > 4.

xxx For NOTES: n = 3 is complete graph K3, covered by Example 8.32.
(1 =log2 for n =3.)
Notwithstanding Open Problem 8.33, the value of 7; is known up to
multiplicative constants. Indeed, it is shown in Section 4.2 in [119] that
1, 2%
a2 =TS gt
Here is a similar result we will find useful later in dealing with our running
example of the grid.
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Example 8.34 The m-path with end self-loops.

For this example, discussed above in Example 8.16, we claim

2
—Qm2 <7 < m2.
T

The lower bound is easy, using Lemma 8.22:

2
7> 71 = (1 —cos(n/m))~t > pmz.

For the upper bound we use Corollary 8.27 and estimation of 7. Indeed, in
Example 8.16 it was shown that

d(2t) = N2(t) = 1 < |14 (4t/m?) 72| exp(~at/m?), > 0.

Substituting ¢t = m? gives \/J(2t) <V3/2e2<el som <7 <mi

xxx P.S. Persi (98/07/02) points out that H. T. Yau showed 7; = ©(nlogn)
for random transpositions by combining 7, > 75 (Lemma 8.22) and 7; <
L(g0)/E (g0, g0) with go = delta function. I have written notes generalizing
and discussing this and will incorporate them into a later version.

8.4.4 7, and product chains

xxx Remind reader of definition of product chain in continuous time given
in Chapter 4 Section yyy:6.2.
xxx Motivate study as providing benchmark chains for comparison method.
xxx Recall from Chapter 4, yyy:(42):

Ty = HlaX(’TQ(l), 7'2(2)). (8.68)

xxx Product chain has transition rates equal (off diagonal) to

D e, .
q7,(17)j‘1 if 11 # j1 and iz = j2

Qivio)Grd) = § dsy, ifd1 = j1 and iy # o (8.69)

0 otherwise.

xxx Dirichlet form works out very nicely for products:
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Lemma 8.35
£(g,9) = 3 7€M (g(,ia), gl i) + 3w € (g(in, ), 9, ).
iQ 7«'1
Proof. This follows easily from (8.69) and the definition of £ in Chapter 3
Section yyy:6.1 (cf. (68)). m

The analogue of (8.68) for the log-Sobolev time is also true:
xxx For NOTES?: Can give analagous proof of (8.68): see my notes,
page 8.4.24A.

Theorem 8.36 For a continuous-time product chain,

M ).

7 = max(1," "/, 7

Proof. The keys to the proof are Lemma 8.35 and the following “law
of total L-functional.” Given a function g # 0 on the product state space
I = 11 x Iy, define a function G # 0 on Is by

i1

1/2
Ga(iz) := |lg(-,i2)[l2 = (Z 7Ti192(i1ai2)) -

L(g) = Y Tiri, g (ir,ia) [log(|g(i1, i2)|/Galia)) + log(Ga(iz)/|lgll2)]

11,12

= S 7P L0 (g(-iz)) + £LO(Go),
12

where we have used

IG2113 = llgll3-
Thus, using the extremal characterization (definition) (8.53) of Tl(l) and Tl(z),
£g) <7V Y mDEW(g(-1iz), gl i2)) + 7D (G, Ga). (870)
12
But from

|G2(j2) — G2(i2)| = [llg(-, d2)ll2 — g d2)ll2] < llg(-,72) — g(-,d2) |2

follows

£ (G, G2) < S 7 VEe@ (g(ir, ), glin, ) (8.71)
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From (8.70), (8.71), Lemma 8.35, and the extremal characterization of 7; we

conclude 7; < maX(Tl(l),Tl(2)). Testing on functions that depend only on one

M ).

of the two variables shows that 7, = max (7, "/, 7 ]

Theorem 8.36 extends in the obvious fashion to higher-dimensional prod-
ucts.

Example 8.37 The d-cube.

The continuized walk on the d-cube (Chapter 5, Example yyy:15) is
simply the product of d copies of the continuized walk on the 2-path, each run
at rate 1/d. Therefore, since the log-Sobolev time for the 2-path equals 1/2
by Example 8.29, the corresponding time for the d-cube is

T — d/2 = 79.
JFrom this and the upper bound in Corollary 8.27 we can deduce
7 < tdlogd+ (1 — % log @)d.

As discussed in this chapter’s introduction, this bound is remarkably sharp
and improves significantly upon the analogous bound that uses only knowl-
edge of 7. xxx Recall corrections marked on pages 8.2.11-12 of my notes.

8.4.5 The comparison method for bounding 7;

In Section 8.1 we compared relaxation times for two chains by using the
extremal characterization and comparing Dirichlet forms and variances. For
comparing variances, we used the characterization

varr g = mit{lg — cf2.

To extend the comparison method to log-Sobolev times, we need the follow-
ing similar characterization of L.
xxx For NOTES: Cite [181].

Lemma 8.38 The functional L in (8.52) satisfies

L(g) =min} mL(g(i),c), g#0, (8.72)

with
L(g(i), ¢) == g*(i) log(lg(i)|/¢) — 3(4°(i) — ¢*) > 0. (8.73)
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Proof. We compute
flo) = 23 mL(9(i),c"?) = Ex(g*log|g|*) — |lgl3log c — |lgll3 + ¢,

filo = 1=cgl3,  f"(c)=c?|gll3 > 0.

Thus f is strictly convex and minimized by the choice ¢ = ||g||3, and so

min » S miL(g(i), ¢) = g min f(c) = 3/ (lg]3) = L(9)-

This proves (8.72). Finally, applying the inequality
xlog(z/y) — (x —y) >0 forallxz>0,y>0

to x = ¢%(i) and y = ¢? gives the inequality in (8.73). =

Now it’s easy to see how to compare log-Sobolev times, since, adopting
the notation of Section 8.1, Lemma 8.38 immediately yields the analogue

L(g) < L(g) max (7 /7;)
of (8.18). In the notation of Corollary 8.2, we therefore have

Corollary 8.39 (comparison of log-Sobolev times)
< —T.
a
Example 8.40 Random walk on a d-dimensional grid.

xxx Remarked in Example 8.34 that 7; < m? for m-path with end self-loops.
xxx So by Theorem 8.36, benchmark product chain has 7, < dm?.
Recalling A <1 and a > 1/2 from Example 8.5, we therefore find

7 < 2m?d (8.74)
for random walk on the grid. Then Theorem 8.26(b) gives
7 < m2d(loglog(2n) + 4),

which is of order m2d(log d + loglogm). This is an improvement on the 7o-

only bound O(m?2d?logm) of (8.50) and may be compared with the Nash-

based bound O(m?d?logd) of (8.51). In Example 8.43 we will combine

Nash-inequality and log-Sobolev techniques to get a bound of order m?dlogd
xxx right for TV.
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8.5 Combining the techniques

To get the maximum power out of the techniques of this chapter, it is some-
times necessary to combine the various techniques. Before proceeding to a
general result in this direction, we record a simple fact. Recall (8.36).

Lemma 8.41 If g and ¢* are conjugate exponents with 2 < q < oo, then

1—2 2
1A llg= < ILfll “MLfllz - for all f.

Proof. Apply Holder’s inequality

lghllx < llgllp I17llp-
with
g=|f|@ /D) o e = g1
Theorem 8.42 Suppose that a continuous-time reversible chain satisfies
N@t)<Ct™ foro<t<T (8.75)

for some constants C,T, D satisfying CTP >e. If ¢ > 0, then
d(2t) = max || P(X; € ) = 7(-)[|l2 < €*7°
7

for
t>T+ 3mlog {log(C’T_D) - 1} + c7,

where T is the relaxation time and 1; is the log-Sobolev time.

Proof. ;From Lemma 8.11 and a slight extension of (8.34), for any
s,t,u > 0 and any initial distribution we have

IP(Xsptru € ) =72 S IP(Xs € )lg- [IPellg sz e/

for any 1 < ¢* < co. Choose ¢ = ¢q(t) =1+ e2/7 and ¢* to be its conjugate.
Then, as in the proof of Theorem 8.26(a),

Py

q*—2 — HPt||2~>q <1

According to Lemma 8.41, (8.39), and (8.75), if 0 < s < T then

IP(X, € )lg < IP(Xs € )3 < N(s)¥7 < (Cs™ D)0,
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Now choose s = T. Combining everything so far,

\/&(Q(T +t+uw)) < (CTP)Yab) e=v/m2 for ¢ 4 >0,

The final idea is to choose t so that the first factor is bounded by e?.
JFrom the formula for ¢(t), the smallest such ¢ is

i1 log [log(C’T‘D) - 1} .
With this choice, the theorem follows readily. =
Example 8.43 Random walk on a d-dimensional grid.

Return one last time to the walk of interest in Example 8.5. Example 8.21
showed that (8.75) holds with

D=d/4, C=e2"Pm*)Y* =e(27dm)Y?, T = dm?/32.

Also recall m < %alm2 from (8.49) and 7, < 2dm? from Example 8.40.
Plugging these into Theorem 8.42 with ¢ = 2 yields

# < Bm?dlog[tdlogd + dlog 2], which is < 5m2dlogd for d > 2.

xxx Finally of right order of magnitude.

8.6 Notes on Chapter 8

xxx The chapter notes go here. Currently, they are interspersed throughout
the text.
xxx Also cite and plug [304].
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Chapter 9

A Second Look at General
Markov Chains (April 21,
1995)

In the spirit of Chapter 2, this is an unsystematic treatment of scattered
topics which are related to topics discussed for reversible chains, but where
reversibility plays no essential role. Section 9.1 treats constructions of stop-
ping times with various optimality properties. Section 9.2 discusses random
spanning trees associated with Markov chains, the probabilistic elaboration
of “the matrix-tree theorem”. Section 9.3 discusses self-verifying algorithms
for sampling from a stationary distribution. Section 9.4 discusses “reversib-
lizations” of irreversible chains. Section 9.5 gives an example to show that
the nonasymptotic interpretation of relaxation time, so useful in the re-
versible setting, may fail completely in the general case. At first sight these
topics may seem entirely unrelated, but we shall see a few subtle connections.

Throughout the chapter, our setting is a finite irreducible discrete-time
Markov chain (X,,) with transition matrix P = (p;;).

9.1 Minimal constructions and mixing times

Chapter 4 Theorem yyy involved three mixing time parameters; 7 related to

(1)

variation distance to stationarity, 7’ related to “separation” from station-
arity, and 7'1(2) related to stationary times (see below). In Chapter 4 these
parameters were defined under worst-case initial distributions, and our fo-

cus was on “equivalence” of these parameters for reversible chains. Here

309



310CHAPTER 9. A SECOND LOOK AT GENERAL MARKOV CHAINS (APRIL 21, 1995)

we discuss underlying “exact” results. Fix an initial distribution pu. Then
associated with each notion of mixing, there is a corresponding construction
of a minimal random time 7', stated in Theorems 9.1 - 9.3 below.

xxx randomized stopping times

Call a stopping time T a strong stationary time if

P,(Xy=35T=t)=n;P,(T =t) for all j,t (9.1)

i.e. if X7 has distribution 7 and is independent of T'. Call a stopping time
T a stationary time if

P,( X1 = j) = for all j. (9.2)

Call a random time T" a coupling time if we can construct a joint distribution
(X, Y);t > 0) such that (X;) is the chain with initial distribution p, (Y%)
is the stationary chain, and X; = Y;,t > T. (A coupling time need not be
a stopping time, even w.r.t. the joint process; this is the almost the only
instance of a random time which is not a stopping time that we encounter
in this book.)

Recall from yyy the notion of separation of 6 from =:

sep(f) = min{u : §; > (1 —u)m; Vj}.

Write sep,,(t) for the separation at time ¢ when the initial distribution was
%
sep,(t) = min{u : P,(X; = j) > (1 —u)m; Vj}.

Similarly write vd, () for the variation distance from stationarity at time ¢:
1 .
vu(t) = 3 3 IPu(Xe = ) — ).
J

Theorem 9.1 Let T be any strong stationary time for the u-chain. Then
sep,(t) < Pu(T > t) for allt > 0. (9.3)
Moreover there exists a minimal strong stationary time T for which
sep,(t) = Pu(T > t) for allt > 0. (9.4)
Theorem 9.2 For any coupling time T,
vd,(t) < Pu(T > t) for all t > 0.
Moreover there exists a minimal coupling time T for which

vd,(t) = Pu(T > t) for all t > 0.
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Theorem 9.3 For any stationary time T,

E,T > max(E,T; — E;Tj). (9.5)
J

Moreover there exist mean-minimal stationary times T for which

E,T = max(E,T; — E;Tj). (9.6)
J

In each case, the first assertion is immediate from the definitions, and
the issue is to carry out a construction of the required T. Despite the
similar appearance of the results, attempts to place them all in a common
framework have not been fruitful. We will prove Theorems 9.1 and 9.3
below, and illustrate with examples. These two proofs involve only rather
simple “greedy” constructions. We won’t give the proof of Theorem 9.2
(the construction is usually called the mazimal coupling: see Lindvall [233])
because the construction is a little more elaborate and the existence of the
minimal coupling time is seldom useful, but on the other hand the coupling
inequality in Theorem 9.2 will be used extensively in Chapter 14. In the
context of Theorems 9.1 and 9.2 the minimal times T are clearly unique
in distribution, but in Theorem 9.3 there will generically be many mean-
minimal stationary times T" with different distributions.

9.1.1 Strong stationary times

For any stopping time T, define

0,() = Pu(X, =, T2 1), o) = Pu(Xe =4 T=1).  (0.7)
Clearly these vectors satisfy

0<o(t)<O(t), (0(t)—c()P =0(t+1)Vt; 6y=p. (9.8)

Conversely, given (0(t),o(t);t > 0) satisfying (9.8), we can construct a ran-
domized stopping time T satisfying (9.7) by declaring that P(T = t|X; =
3, T >t,Xs,s <t) =04(t)/0;(t). The proofs of Theorems 9.1 and 9.3 use
different definitions of vectors satisfying (9.8).

Proof of Theorem 9.1. A particular sequence (6(¢),o(t);t > 0) can be
specified inductively by (9.8) and

o(t) =rym, where ry =miné;(t)/x;. (9.9)
J
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The associated stopping time satisfies
Pu(Xe =5, T =t) = 05(t) = rem;

and so is a strong stationary time with P,(T = t) = r;. One can now verify
inductively that

P(Xi€)=00t)+P,(T<t—1) -pi

and so the separation is

P(Xi=7

= P,(T>t)—r = P,(T > t).
J 4

9.1.2 Stopping times attaining a specified distribution

For comparison with the other two results, we stated Theorem 9.3 in terms
of stopping times at which the stationary distribution is attained, but the
underlying result (amplified as Theorem 9.4) holds for an arbitrary target
distribution p. So fix p as well as the initial distribution p. Call a stopping
time T admissible if P,(Xt € -) = p. Write t(p, 0) for the inf of E, T over
all admissible stopping times T'.

Theorem 9.4 (a) t(p, o) = max;(E,T; — E,T}).

(b) The “filling scheme” below defines an admissible stopping time such
that E,T = t(p,0).

(c) Any admissible stopping time T with the property

3 k such that P,(T <Tj) = 1. (9.10)
satisfies E,T = t(p, o).

Part (c) is rather remarkable, and can be rephrased as follows. Call a state
k with property (9.10) a halting state for the stopping time 7". In words, the
chain must stop if and when it hits a halting state. Then part (c) asserts
that, to verify that an admissible time T attains the minimum #(y, p), it
suffices to show that there exists some halting state. In the next section we
shall see this is very useful in simple examples.

Proof. The greedy construction used here is called a filling scheme.
Recall from (9.7) the definitions

(9j(t> :PM(Xth,TZt), Uj(t)ZPH<Xt:j,T:t).
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Write also 3;(t) = Py(X7 = j,T <t). We now define (6(t),o(t);t > 0) and
the associated stopping time 7" inductively via (9.8) and

oj(t) = 0if X;(t—1) =p;
= Qt if Ej(t—l)-i-gj(t) Spj
= pj — Xj(t — 1) otherwise.

In words, we stop at the current state (j, say) provided our “quota” p; for
the chance of stopping at j has not yet been filled. Clearly

Ej(t) < Pj \V/] Vt. (911)
We now claim that T satisfies property (9.10). To see this, consider
t; = min{t : ¥;(t) = p;} < oo.

Then (9.10) holds by construction for any k such that t; = max;t; <
co. In particular, T < T} < oo a.s. and then by (9.11) P,(X; € ) =
limt — coX(t) = p. So T is an admissible stopping time.

Remark. Generically we expect t; = oo for exactly one state j, though
other possibilities may occur, e.g. in the presence of symmetry.

Now consider an arbitrary admissible stopping time 7', and consider the
associated occupation measure x = (x;):

xj = E,(number of visits to j during times 0,1,...,7 —1).

We shall show
T j + Pj = Hj + inpij \V/] (9.12)
i

Indeed, by counting the number of visits during 0,1,...,7 — 1,7 in two
ways,

xj + pj = p; + Ey(number of visits to j during 1,2,..., 7).
Chapter 2 Lemma yyy showed the (intuitively obvious) fact
x;pij = E,( number of transitions ¢ — j starting before time T').
So summing over ¢,

Zmipij = E,(number of visits to j during 1,2,...,7T)
i
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and (9.12) follows.

Write x for the occupation measure associated with the stopping time
T produced by the filling scheme. By (9.10), ming 7, = 0. If x and x’
are solutions of (9.12) then the difference d = x — x’ satisfies d = dP and
so is a multiple of the stationary distribution 7. In particular, if x is the
occupation measure for some arbitrary admissible time 7", then

X > X, with equality iff mkin z = 0.

Since E, T = Y, x;, we have established parts (b) and (c) of the theorem,
and
t(p,o) = Z Z;.

To prove (a), choose a state k such that z; = 0, that is such that T < Tj.
Then E, Ty = E, T + E, T} and hence #(u, o) < max;(E,T; — E,T};). But for
any admissible stopping time 7" and any state j

E,T; < E,T + E,T;
giving the reverse inequality t(p, o) > max;(E,T; — E,T};). O

Corollary 9.5 The minimal strong stationary time has mean t(p, ), i.e. is
mean-minimal amongst all not-necessarily-strong stationary times, iff there
exists a state k such that

P, Xy =k)/m, = mjinPu(Xt =j)/m; Vt.

Proof. From the construction of the minimal strong stationary time, this is
the condition for k to be a halting state.

9.1.3 Examples

Example 9.6 Patterns in coin-tossing.

Recall Chapter 2 Example yyy: (X;) is the chain on the set {H,T}" of n-
tuples @ = (i1,...,i,). Start at some arbitrary initial state j = (j1,...,Jn)-
Here the deterministic stopping time “I' = n” is a strong stationary time.
Now a state k = (ki,...,ky,) will be a halting state provided it does not
overlap j, that is provided there is no 1 < u < n such that (jy,...,Jn) =
(k1,...,kpntu—1). But the number of overlapping states is at most 1 =
24224 ... 4271 =27 _ 1 s0 there exists a non-overlapping state, i.e. a
halting state. So ET attains the minimum (= n) of ¢(j, 7) over all stationary
times (and not just over all strong stationary times).
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Example 9.7 Top-to-random card shuffling.

Consider the following scheme for shuffling an n-card deck: the top card is
removed, and inserted in one of the n possible positions, chosen uniformly at
random. Start in some arbitrary order. Let T be the first time that the card
which was originally second-from-bottom has reached the top of the deck.
Then it is not hard to show (Diaconis [112] p. 177) that 7'+ 1 is a strong
stationary time. Now any configuration in which the originally-bottom card
is the top card will be a halting state, and so 17"+ 1 is mean-minimal over
all stationary times. Here E(T + 1) = 1+ >4 & = n(h, — 1).

Example 9.8 The winning streak chain.

In a series of games which you win or lose independently with chance 0 <
¢ < 1,let X; be your current “winning streak”, i.e. the number of games won
since your last loss. For fixed n, the truncated process X; = min(X;,n — 1)
is the Markov chain on states {0,1,2,...,n—1} with transition probabilities

p(i,0) =1—¢, p(i,min(i+1l,n—1)=¢ 0<i<n-1
and stationary distribution
m=(1— c)ci, 0<i<n—2; mp_q=c"%

We present this chain, started at 0, as an example where it is easy to see there
are different mean-minimal stationary times T. We’ll leave the simplest
construction until last — can you guess it now? First consider 1)y, where J
has the stationary distribution. This is a stationary time, and n — 1 is a
halting state, so it is mean-minimal. Now it is easy to show

1

1
EoT; = - — 1<i<n-1.
07 (1—c)cd 1 =J="

(Slick proof: in the not-truncated chain, Chapter 2 Lemma yyy says
1 = E;( number of visits to j before Ty) = 7;(E;Ty + EoT;) = m;(1/(1 —
c) + EoT}).) So

Tn—1 1—mo

t_(O,W)ZE()T]:Zﬂ'onTj:n—2+ - =n—1.
= (1—-c)en 1—c¢

Here is another stopping time 1" which is easily checked to attain the station-
ary distribution, for the chain started at 0. With chance 1 — ¢ stop at time



316CHAPTER 9. A SECOND LOOK AT GENERAL MARKOV CHAINS (APRIL 21, 1995)

0. Otherwise, run the chain until either hitting » — 1 (in which case, stop)
or returning to 0. In the latter case, the return to 0 occurs as a transition
to 0 from some state M > 0. Continue until first hitting M + 1, then stop.
Again n — 1 is a halting state, so this stationary time also is mean-minimal.
Of course, the simplest construction is the deterministic time 7" = n — 1.
This is a strong stationary time (the winning streak chain is a function of
the patterns in coin tossing chain), and again n — 1 is clearly a halting state.
Thus ¢(0,7) = n — 1 without needing the calculation above.

Remark. One could alternatively use Corollary 9.5 to show that the
strong stationary times in Examples 9.6 and 9.7 are mean-minimal sta-
tionary times. The previous examples are atypical: here is a more typical
example in which the hypothesis of Corollary 9.5 is not satisfied and so no
mean-optimal stationary time is a strong stationary time.

Example 9.9 zzx needs a name!

Chapter 2 Example yyy can be rewritten as follows. Let (U;) be independent
uniform on {0, 1,...,n—1} and let (A4¢) be independent events with P(A;) =
a. Define a chain X on {0,1,...,n — 1} by

Xt+l = Ut+1 on Af

= X;+ 1 modn on A;.

The stationary distribution is the uniform distribution. Take Xy = 0.
Clearly T = min{t : A; occurs } is a strong stationary time, and ET =
1/(1—a), and it is easy to see that T is the minimal strong stationary time.
But T is not a mean-minimal stationary time. The occupation measure
x associated with T is such that min;z; = z,_1 = av 4l 4=
a" /(1 — a™), and so the occupation measure X associated with a mean-

n—1 1 an—1

.. . . e a T .
minimal stationary time is X = x — T=an T and so t(0,7) = 1T=a — 1=a

9.2 Markov chains and spanning trees

9.2.1 General Chains and Directed Weighted Graphs

Let’s jump into the details and defer the discussion until later. Consider
a finite irreducible discrete-time Markov chain (X,,) with transition matrix
P = (pyw), and note we are not assuming reversibility. We can identify P
with a weighted directed graph, which has (for each (v,w) with py, > 0)
a directed edge (v,w) with weight py,. A directed spanning tree t is a
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spanning tree with one vertex distinguished as the root, and with each edge
e = (v,w) of t regarded as being directed towards the root. Write T for the
set of directed spanning trees. For t € T define

p(t) = H Pow-
(v,w)et
Normalizing gives a probability distribution p on T

__ pt)
plt) = Zt/e’]'ﬁ(t/)'

Now fix n and consider the stationary Markov chain (X, : —oo < m < n)
run from time minus infinity to time n. We now use the chain to construct a
random directed spanning tree T,,. The root of T,, is X,,. For each v # X,
there was a final time, L, say, before n that the chain visited v:

L, =max{m <n:X,, =v}.
Define T, to consist of the directed edges

(v=Xr,, Xr,+1), v # X,.

So the edges of T, are the last-exit edges from each vertex (other than the
root X,,). It is easy to check that T, is a directed spanning tree.

Now consider what happens as n changes. Clearly the process (T, :
—00 < n < 00) is a stationary Markov chain on 7, with a certain transition
matrix Q = (q(t,t’)), say. The figure below indicates a typical transition
t — t/. Here t was constructed by the chain finishing at its root v, and t’ is
the new tree obtained when the chain makes a transition v — w.

N N
- N s
|

e ]

Theorem 9.10 (The Markov chain tree theorem) The stationary dis-
tribution of (Ty,) is p.

<]
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Proof. Fix a directed spanning tree t'. We have to verify

> A)alt, ) = (). (9.13)
t

Write w for the root of t’. For each vertex z # w there is a tree t, con-
structed from t’ by adding an edge (w, ) and then deleting from the result-
ing cycle the edge (v, w) (say, for some v = v(x)) leading into w. For x = w
set v(x) = x. It is easy to see that the only possible transitions into t’ are
from the trees t;, and that

pi(ta:) Pwaz /
= N t t — .
,(t,) vw’ Q( k) ) Pow

Thus the left side of (9.13) becomes
> A(ta)a(te, t') = p(E) D puw = AE).

O

The underlying chain X,, can be recovered from the tree-valued chain
T, via X,, = root(T,), so we can recover the stationary distribution of X
from the stationary distribution of 7', as follows.

Corollary 9.11 (The Markov chain tree formula) For each vertex v
define

Then m is the stationary distribution of the original chain (X,).

See the Notes for comments on this classical result.

Theorem 9.10 and the definition of Ty come close to specifying an al-
gorithm for constructing a random spanning tree with distribution p. Of
course the notion of running the chain from time —oo until time 0 doesn’t
sound very algorithmic, but we can rephrase this notion using time-reversal.
Regarding the stationary distribution 7 as known, the time-reversed chain
X* has transition matrix p},, = TypPwy/my. Here is the restatement of The-
orem 9.10 in terms of the time-reversed chain.
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Corollary 9.12 Let (X}, : 0 < m < C) be the time-reversed chain, run
until the cover time C. Define T to be the directed spanning tree with root
Xo and with edges (v = X1, X71,-1), v # Xo. If Xo has distribution m
then T has distribution p. If Xo is deterministically vo, say, then T has
distribution p conditioned on being rooted at vg.

Thus T consists of the edges by which each vertex is first visited, directed
backwards.

For a reversible chain, we can of course use the chain itself in Corollary
9.12 above, in place of the time-reversed chain. If the chain is random walk
on a unweighted graph G, then

p(t) = d(root(t H aw)

5 d(v)

where d(v) is the degree of v in G. So p, restricted to the set of spanning
trees with specified root vg, is uniform on that set. In this setting, Corollary
9.12 specializes as follows.

Corollary 9.13 Let (X, : 0 < m < C) be random walk on an unweighted
graph G, started at vy and run until the cover time C'. Define T to be the
directed spanning tree with root vy and with edges (v = Xr,, X1,-1), v # 0.
Then T is uniform on the set of all directed spanning trees of G rooted at
Q-

We can rephrase this. If we just want “plain” spanning trees without a
root and directions, then the T above, regarded as a plain spanning tree,
is uniform on the set of all plain spanning trees. On the other hand, if
we want a rooted spanning tree which is uniform on all such trees without
prespecified root, the simplest procedure is to construct T as in Corollary
9.13 with deterministic start vg, and at the end re-root T at a uniform
random vertex. (This is slightly subtle — we could alternatively start with
X uniform, which is typically not the stationary distribution 7.)

Using the bounds on cover time developed in Chapter 6, we now have
an algorithm for generating a uniform spanning tree of a n-vertex graph in
O(n?) steps (and O(n?) steps on a regular graph). No other known algorithm
achieves these bounds.

9.2.2 Electrical network theory

The ideas in this subsection (and much more) are treated in a long but very
readable survey paper by Pemantle [279], which we encourage the interested
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reader to consult. As observed above, in the reversible setting we have the
obvious simplification that we can construct uniform spanning trees using
the chain itself. Deeper results can be found using the electrical network
analogy. Consider random walk on a weighted graph G. The random span-
ning tree T constructed by Corollary 9.12, interpreted as a “plain” spanning
tree, has distribution

p(t)=c Hwe

where c¢ is the normalizing constant. If an edge e is essential, it must be
in every spanning tree, so P(e € T) = 1. If the edge is inessential, the
probability will be strictly between 0 and 1. Intuitively, P(e € T) should
provide a measure of “how nearly essential e is”. This should remind the
reader of the inessential edge inequality (yyy). Interpreting the weighted
graph as an electrical network where an edge e = (v, z) has resistance 1/we,
the effective resistance r,,; between v and x satisfies

Tor < 1/wy, with equality iff (v, z) is essential
Proposition 9.14 For each edge (v, x),
P((v,z) € T) = wypTyz-

Note that in a n-vertex graph, T has exactly n — 1 edges, so Proposition
9.14 implies Foster’s theorem (Chapter 3 yyy)

E WyzTor = N — 1.

edges (v,x)

Proof. Consider the random walk started at v and run until the time U
of the first return to v after the first visit to x. Let p be the chance that
Xp—1 =z, i.e. that the return to x is along the edge (z,v). We can calculate
p in two ways. In terms of random walk started at z, p is the chance that
the first visit to v is from z, and so by Corollary 9.12 (applied to the walk
started at ) p = P((x,v) € T). On the other hand, consider the walk
started at v and let S be the first time that the walk traverses (z,v) in that
direction. Then

ES =FEU/p.

But by yyy and yyy
ES = w/wm, EU = WTyg

and hence p = wy, Ty, as required. O
The next result indicates the usefulness of the electrical network analogy.
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Proposition 9.15 For any two edges e # ea,
P(61 €T, eq € T) < P(61 S T)P(eg S T)

Proof. Consider the “shorted” graph G in which the end-vertices (1, z2)
of e; are shorted into a single vertex x, with edge-weights wy, = Wz, +Wayo-
The natural 1 — 1 correspondence t <+ t U {e;} between spanning trees of
Gsho™t and spanning trees of G containing e; maps the distribution p*"°'t to
the conditional distribution p(-|e; € T). So, writing T for the random
spanning tree associated with Gshort,

P(ey € T5™) = P(ey € Tle; € T).
But, setting es = (21, 22), Proposition 9.14 shows

short short
Pleg € T%) = wyy 2,130 Plea € T) = way2p72 2,

short
2122

By Rayleigh’s monotonicity principle, r < 1, 2.—2, and the result follows.

9.3 Self-verifying algorithms for sampling from a
stationary distribution

To start with an analogy, we can in principle compute a mean hitting time
E;T; from the transition matrix P, but we could alternatively estimate E;T)
by “pure simulation”: simulate m times the chain started at ¢ and run until
hitting 7, and then (roughly speaking) the empirical average of these m
hitting times will be (1 = O(m~/2))E;T;. In particular, for fixed ¢ we
can (roughly speaking) estimate E;T; to within a factor (1 + ¢) in O(E;T})
steps. Analogously, consider some notion of mixing time 7 (say 7 or 7y,
in the reversible setting). The focus in this book has been on theoretical
methods for bounding 7 in terms of P, and of theoretical consequences of
such bounds. But can we bound 7 by pure simulation? More importantly,
in the practical context of Markov chain Monte Carlo, can we devise a “self-
verifying” algorithm which produces an approximately-stationary sample
from a chain in O(7) steps without having prior knowledge of 77

xxx tie up with MCMC discussion.

To say things a little more carefully, a “pure simulation” algorithm is
one in which the transition matrix P is unknown to the algorithm. Instead,
there is a list of the states, and at each step the algorithm can obtain, for any
state i, a sample from the jump distribution p(i, -), independent of previous
samples.
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In the MCMC context we typically have an exponentially large state
space and seek polynomial-time estimates. The next lemma (which we leave
to the reader to state and prove more precisely) shows that no pure simula-
tion algorithm can guarantee to do this.

Lemma 9.16 Consider a pure simulation algorithm which, given any irre-
ducible n-state chain, eventually outputs a random state whose distribution
is guaranteed to be within € of the stationary distribution in variation dis-
tance. Then the algorithm must take Q(n) steps for every P.

Outline of proof. If there is a state k with the property that 1 — p(k, k) is
extremely small, then the stationary distribution will be almost concentrated
on k; an algorithm which has some chance of terminating without sampling
a step from every state cannot possibly guarantee that no unvisited state k
has this property. O

9.3.1 Exact sampling via the Markov chain tree theorem

Lovasz and Winkler [242] observed that the Markov chain tree theorem
(Theorem 9.10) could be used to give a “pure simulation” algorithm for
generating exactly from the stationary distribution of an arbitrary n-state
chain. The algorithm takes

O(rf n%logn) (9.14)

steps, where 77 is the mixing time parameter defined as the smallest ¢ such
that

1
Pi(XUg Zj) > §7Tj foralli,jel, o>t (915)

where U, denotes a random time uniform on {0,1,...,0 — 1}, independent
of the chain.

xxx tie up with Chapter 4 discussion and [241].

The following two facts are the mathematical ingredients of the algo-
rithm. We quote as Lemma 9.17(a) a result of Ross [300] (see also [53]
Theorem XIV.37); part (b) is an immediate consequence.

Lemma 9.17 (a) Let 7 be a probability distribution on I and let (Fy;i € 1)
be independent with distribution w. Fix j, and consider the digraph with
edges { (4, F;) : i # j}. Then with probability (exactly) ;, the digraph is a
tree with edges directed toward the root j.

(b) Soif j is first chosen uniformly at random from I, then the probability
above is exactly 1/n.
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As the second ingredient, observe that the Markov chain tree formula (Corol-
lary 9.11) can be rephrased as follows.

Corollary 9.18 Let w be the stationary distribution for a transition matrix
P on 1. Let J be random, uniform on I. Let (&;i € I) be independent, with
P(& = j) = pij. Consider the digraph with edges {(i,&) : @ # J}. Then,
conditional on the digraph being a tree with edges directed toward the root
J, the probability that J = j equals ;.

So consider the special case of a chain with the property
Pl > (1/2)Y"m; i, 5. (9.16)

The probability of getting any particular digraph under the procedure of
Corollary 9.18 is at least 1/2 the probability of getting that digraph under
the procedure of Lemma 9.17, and so the probability of getting some tree is
at least 1/2n, by Lemma 9.17(b). So if the procedure of Corollary 9.18 is
repeated 7 = [2nlog4]| times, the chance that some repetition produces a
tree is at least 1 — (1 — 1/2n)?"1°84 = 3/4 and then the root J of the tree
has distribution exactly .

Now for any chain, fix o > 7. The submultiplicativity (yyy) property of
separation, applied to the chain with transition probabilities p;; = P;(Xy, =
j), shows that if V' denotes the sum of m independent copies of U,, and ¢;
is the state reached after V steps of the chain started at i, then

P& =j)=FP(Xy=j)>(1-2"")7m; Vi, .

So putting m = —logy(1 — (1/2)/") = O(logn), the set of probabilities
(P(& = 7)) satisfy (9.16).

Combining these procedures, we have (for fixed ¢ > 77) an algorithm
which, in a mean number nmor = O(on?logn) of steps, has chance >
3/4 to produce an output, and (if so) the output has distribution exactly
. Of course we initially don’t know the right o to use, but we simply
try n,2n,4n,8n, ... in turn until some output appears, and the mean total
number of steps will satisfy the asserted bound (9.14).

9.3.2 Approximate sampling via coalescing paths

A second approach involves the parameter 79 = °; m; F;T} arising in the
random target lemma (Chapter 2 yyy). Aldous [18] gives an algorithm
which, given P and € > 0, outputs a random state ¢ for which ||P(¢§ €
) — || < e, and such that the mean number of steps is at most

817p/e2. (9.17)
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The details are messy, so let us just outline the (simple) underlying idea.
Suppose we can define a procedure which terminates in some random number
Y of steps, where Y is an estimate of 7y: precisely, suppose that for any P

PY<7)<e EY<Kn (9.18)
where K is an absolute constant. We can then define an algorithm as follows.

Simulate Y’; then run the chain for Uy, steps and output the
final state £

where as above U, denotes a random time uniform on {0,1,...,0 — 1},
independent of the chain. This works because, arguing as at xxx,

|P(Xy, € ) —7|| < 7o/o

and so

||P(§ €-)—m| <FEmax(1, ) < 2e.

Yi/&'_

And the mean number of steps is (1 + 5-)EY.

So the issue is to define a procedure terminating in Y steps, where Y
satisfies (9.18). Label the states {1,2,...,n} and consider the following
coalescing paths routine.

(i) Pick a uniform random state .J.

(ii) Start the chain at state 1, run until hitting state J, and write A; for
the set of states visited along the path.

(iii) Restart the chain at state min{j : j ¢ A1}, run until hitting some
state in A7, and write Ao for the union of A; and the set of states visited
by this second path.

(iiii) Restart the chain at state min{j : j ¢ As}, and continue this
procedure until every state has been visited. Let Y be the total number of
steps.

The random target lemma says that the mean number of steps in (ii)
equals 79, making this Y a plausible candidate for a quantity satisfying
(9.18). A slightly more complicated algorithm is in fact needed — see [18].

9.3.3 Exact sampling via backwards coupling

Write U for a r.v. uniform on [0, 1], and (U;) for an independent sequence of
copies of U. Given a probability distribution on I, we can find a (far from
unique!) function f : [0,1] — I such that f(U) has the prescribed distribu-
tion. So given a transition matrix P we can find a function f: I x[0,1] — I
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such that P(f(i,U) = j) = p;j. Fix such a function. Simultaneously for
each state i, define

X =i X = O =12

xxx tie up with coupling treatment
Consider the (forwards) coupling time

C* = min{t : Xt(i) = Xt(j) Vi, j} < oo.

By considering an initial state j chosen according to the stationary distri-
bution T,

max ||P;(X; € ) — 7| < P(C > t).

This can be used as the basis for an approximate sampling algorithm. As
a simple implementation, repeat k times the procedure defining C*, suppose
we get finite values C7,...,C} each time, then run the chain from an arbi-
trary initial start for max;<;j<x C; steps and output the final state {. Then
the error ||P(¢ € -) — 7|| is bounded by a function d(k) such that §(k) — 0
as k — oo.

Propp and Wilson [286] observed that by using instead a backwards cou-
pling method (which has been exploited in other contexts — see Notes) one
could make an exact sampling algorithm. Regard our i.i.d. sequence (Uy) as
defined for —oo < t < 0. For each state ¢ and each time s < 0 define

X0 =i X" = p(xBDU) b= s+ 1,5 +2,...,0.
Consider the backwards coupling time
C = max{t: Xéi’t) = X(()j’t) Vi, j} > —o0.
Lemma 9.19 (Backwards coupling lemma) IfS is a random time such
that —o0o < S < C' a.s. then the random variable X %) does not depend on

1 and has the stationary distribution .

xxx describe algorithm

XXX poset story

xxx analysis in general setting and in poset setting.
xxx compare the 3 methods
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9.4 Making reversible chains from irreversible chains

Let P be an irreducible transition matrix on I with stationary distribution
. The following straightforward lemma records several general ways in
which to construct from P a transition matrix Q for which the associated
chain still has stationary distribution 7 but is reversible. These methods all
involve the time-reversed matrix P*

TiDij = TjPj;
and so in practice can only be used when we know 7 explicitly (as we have

observed several times previously, in general we cannot write down a useful
explicit expression for 7 in the irreversible setting).

Lemma 9.20 The following definitions each give a transition matriz Q
which is reversible with respect to .

The additive reversiblization.: QW = $(P+P¥)
The multiplicative reversiblization: Q® = pp*

The Metropolis reversiblization; Ql(?]) = min(p;j,p;;), J 7 i-

Of these three construction, only Q) is automatically irreducible. Consider
for instance the “patterns in coin tossing” example (Chapter 2 Example
yyy). Here are the distributions of a step of the chains from state (i1, ..., 1i,).

(QW). To (g, ... ,in,0) or (ig,...,in, 1) or (0,i1,...,in_1)or (1,i1,... 50 1),
with probability 1/4 each.

(Q@). To (0,is,...,4,) or (1,ia,...,i,), with probability 1/2 each. So
the state space decomposes into 2-element classes.

(Q®). Here a “typical” i is isolated.

We shall discuss two aspects of the relationship between irreversible
chains and their reversibilizations.

9.4.1 Mixing times

Because the theory of L? convergence to stationarity is nicer for reversible
chains, a natural strategy to study an irreversible chain (transition matrix
P) would be to first study a reversibilization Q and then seek some general
result relating properties of the P-chain to properties of the Q-chain. There
are (see Notes) general results relating spectra, but we don’t pursue these
because (cf. section 9.5) there seems no useful way to derive finite-time
results for irreversible chains from spectral gap estimates.
xxx Persi, Fill etc stuff
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9.4.2 Hitting times

Here are a matrix-theoretic result and conjecture, whose probabilistic sig-
nificance (loosely relating to mean hitting times and reversiblization) will
be discussed below. As usual Z is the fundamental matrix associated with
P, and P* is the time-reversal.

Proposition 9.21 trace Z(P* —P) > 0.
Conjecture 9.22 trace Z*(P* — P) > 0.

Proposition 9.21 is essentially due to Fiedler et al [147]. In fact, what
is proved in ([147], p. 91) is that, for a positive matrix V with largest
eigenvalue < 1,

trace (i vV -VvT) <o. (9.19)
m=1

/ _

Applying this to v;; = s7ril Qpijﬂj V2 for s < 1 gives

trace (3 s™(p" —m;))(P — P*) = trace (3 s"P™)(P — P*)
m=0 m=0

oo
= s Mtrace (> V™) (V-VT)<o.
m=0

Letting s 1 1 gives the Proposition as stated. O

The proof in [147] of (9.19) has no simple probabilistic interpretation,
and it would be interesting to find a probabilistic proof. It is not clear to
me whether Conjecture 9.22 could be proved in a similar way.

Here is the probabilistic interpretation of Proposition 9.21. Recall the
elementary result (yyy) that in a n-state chain

SN mapaEeTa =n — 1. (9.20)
b

a

The next result shows that replacing FyT, by E,T} gives an inequality. This
arose as an ingredient in work of Tetali [325] discussed at xxx.

Corollary 9.23 > > mapar BTy < n — 1.

Proof. We argue backwards. By (9.20), the issue is to prove

Z Z 71—apab(EbTa - EaTb) > 0.
a b



328CHAPTER 9. A SECOND LOOK AT GENERAL MARKOV CHAINS (APRIL 21, 1995)

Using Lemma yyy, the quantity in question equals

Zaa Zba be Zab
Zzﬂ-apab -— ——+
a b

Ta Ta Th )

= trace Z — trace PZ — trace Z + trace P*Z = trace (P* —P)Z > 0.

O

Here is the motivation for Conjecture 9.22. For 0 < A < 1 let P(\) =
(1-X)P+ AP*, so that P(1/2) is the “additive reversiblization” in Lemma
9.20. Consider the average hitting time parameters 79 = 79(\) from Chapter
4.

Corollary 9.24 Assuming Conjecture 9.22 is true, 1o(A) < 19(1/2) for all
0< A< 1.

In other words, making the chain “more reversible” tends to increase mean
hitting times.

Proof. This depends on results about differentiating with respect to
the transition matrix, which we present as slightly informal calculations.
Introduce a “perturbation” matrix Q such that

Zqij =0 Vi; g = 0 whenever p;; = 0. (9.21)
J

Then P + 0Q is a transition matrix, for € is some neighborhood of 0. Write
d% for the derivative at # = 0. Then, writing V;(¢) for the number of visits
to i before time ¢,

d
g BaTh = > EJNi(Ty) > qi; E;T,.
i J

This holds because the }_; term gives the effect on ET}, of a Q-step from «.
Using general identities from Chapter 2 yyy, and (9.21), this becomes

d i (Zap — 2
o7 E Ty = <(bbb) + zpi — Zai) > aijzin/m
i J

b

Now specialize to the case where 7 is the stationary distribution for each
P + 0Q, that is where

Zm‘qzj =0Vj.
i
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Then the expression above simplifies to
d% E. T, = Z Zbi — Zai) Zngzjb/ﬂb
Averaging over a, using Za TaZai = 0,
E =Ly = Zzzbzqzﬂgb/ﬂb

and then averaging over b,

d
— 79 = trace ZQZ = trace Z2Q.

de
So consider A < 1/2 in Corollary 9.24. Then
%7’0()\) = trace Z*(\)(P* — P)

= (1—2)\) "1 trace Z2(\)(P*(\) —P(\))

and Conjecture 9.22 would imply this is > 0, implying the conclusion of
Corollary 9.24.

9.5 An example concerning eigenvalues and mix-
ing times

Here is an example, adapted from Aldous [11]. Let (A, : 1 < u < n) be the
eigenvalues of P with \; = 1, and let

B =max{|\,|:2 <u<n}.
A weak quantification of “mixing” is provided by
aft) = max |Pr(Xo € A, X} € B) — w(A)m(B)|.
By definition, «(t) is less than the mazimal correlation p(t) discussed in
Chapter 4 yyy, and so by yyy
a(t) < B for a reversible chain. (9.22)

The convergence theorem (Chapter 2 yyy) says that a(t) — 0 as t — oo
provided § < 1. So one might expect some analog of (9.22) to hold in
general. But this is dramatically false: Example 9.26 shows
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Lemma 9.25 There exists a family of n-state chains, with uniform station-
ary distributions, such that sup,, B, < 1 while inf,, a,(n) > 0.

Loosely, this implies there is no reasonable hypothesis on the spectrum of a
n-state chain which implies an o(n) mixing time. There is a time-asymptotic
result

a(t) < p(t) < OB v,

for some C depending on the chain. But implicit claims in the literature
that bounding the spectrum of a general chain has some consequence for
finite-time behavior should be treated with extreme skepticism!

Example 9.26 Let (Y;) be independent r.v.’s taking values in {0, 1,...,n—
1} with distribution specified by
N J+1 .
PY<j)=2"-,0<j<n-2
Y <) T2 j
Define a Markov chain (X;) on {0,1,...,n—1} by
Xt = maX(Xt_l — 1, Yi)

This chain has the property (cf. the “patterns in coin-tossing” chain) of
attaining the stationary distribution in finite time. Precisely: for any initial
distribution o, the distribution of X,,_1 is uniform, and hence X; is uniform
for all t > n — 1. To prove this, we simply observe that for 0 < j <n —1,

PO'<X’VZ—1§j) = P(Yn—lSj)Yn—2§j+17"'7Yij+n—l)
)+ 1 |+ 2 -1
= ixix...xn x 1x...1
j+2 j+3 n
g+l
= —

If X is either 0 or 1 then X; is distributed as Y7, implying that the vector
v with v; = 1(;—0) — 1(;=1) is an eigenvector of P with eigenvalue 0. By soft
“duality” arguments it can be shown [11] that this is the largest eigenvalue,
in the sense that

R(A) <0 forall2<u<n. (9.23)

I believe it is true that

Brn = max{|A\y| : 2 <u <n}
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is bounded away from 1, but we can avoid proving this by considering the
“lazy” chain X; with transition matrix P = (I + P)/2, for which by (9.23)

B < sup{|(1+A)/2] : A < L,R(N) < 0} = \/1/2.

So the family of lazy chains has the eigenvalue property asserted in Lemma
9.25. But by construction, X; > Xo — ¢, and so P(Xy > 3n/4,Xn/2 <
n/4) = 0. For the lazy chains we get

P.(Xo>3n/4,X,, <n/4) = 0asn — oo

establishing the (non)-mixing property asserted in the lemma.

9.6 Miscellany

9.6.1 Mixing times for irreversible chains

In Chapter 4 yyy we discussed equivalences between different definitions of
“mixing time” in the 7 family. Lovasz and Winkler [241] give a detailed
treatment of analogous results in the non-reversible case.

xxx state some of this ?

9.6.2 Balanced directed graphs

Any Markov chain can be viewed as random walk on a weighted directed
graph, but even on unweighted digraphs it is hard to relate properties on
the walk to graph-theoretic properties, because (as we have often observed)
it is in general hard to get useful information about the stationary distribu-
tion. An exception is the case of a balanced digraph, i.e. when the in-degree
equals the out-degree (= ry, say) at each vertex v. Random walk on a bal-
anced digraph clearly retains the “undirected” property that the stationary
probabilities 7, are proportional to r,. Now the proofs of Theorems yyy
and yyy in Chapter 6 extend unchanged to the balanced digraph setting,
showing that the cover-and-return time C'T satisfies

max E,CT < n? in general; max E,C" < 6n? on a regular balanced digraph.
v v

(The proofs rely on the edge-commute inequality (Chapter 3 yyy), rather
than any “resistance” property).
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9.6.3 An absorption time problem

Consider a Markov chain on states {1,2,...,n} for which the only possible
transitions are downward, i.e. for ¢ > 2 we have

p(i,j) =0, j >i

and p(1,1) = 1. The chain is ultimately absorbed in state 1. A question
posed by Gil Kalai is whether there is a bound on the mean absorption time
involving a parameter similar to that appearing in Cheeger’s inequality. For
each proper subset A of {1,...,n} with 1 ¢ A define

| AllA]

) = S e Soenpd)

and then define
K = max c(A).

Open Problem 9.27 Prove that max; E;T7 is bounded by a polynomial
function of klogn.

9.7 Notes on Chapter 9

Section 9.1. The idea of a maximal coupling goes back to Goldstein [169]:
see Lindvall [233] for further history. Strong stationary times were studied
in detail by Diaconis - Fill [115, 114] and Fill [150, 151], with particular at-
tention to the case of one-dimensional stochastically monotone chains where
there is some interesting “duality” theory. The special case of random walks
on groups had previously been studied in Aldous - Diaconis [21, 22|, and the
idea is implicit in the regenerative approach to time-asymptotics for gen-
eral state space chains, discussed at xxx. The theory surrounding Theorem
9.4 goes back to Rost [301]. This is normally regarded as part of the po-
tential theory of Markov chains, which emphasizes analogous results in the
transient setting, and the recurrent case is rather a sideline in that setting.
See Revuz [289] sec. 2.5 or Dellacherie - Meyer [108] Chapter 9 sec. 3 for
textbook treatments in the general-space setting. The observation that the
theory applied in simple finite examples such as those in section 9.1.3 was
made in Lovasz - Winkler [241], from whom we borrowed the phrase halt-
ing state. Monotonicity properties like that in the statement of Corollary
9.5 were studied in detail by Brown [73] from the viewpoint of approximate
exponentiality of hitting times.
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Section 9.2. A slightly more sophisticated and extensive textbook treat-
ment of these topics is in Lyons [250]. The nomenclature reflects my taste:
Theorem 9.10 is “the underlying theorem” which implies “the formula” for
the stationary distribution in terms of weighted spanning trees. Different
textbooks (e.g. [178] p. 340 xxx more refs) give rather different historical
citations for the Markov chain tree formula, and in talks I often call it “the
most often rediscovered result in probability theory”: it would be an inter-
esting project to track down the earliest explicit statement. Of course it can
be viewed as part of a circle of ideas (including the matrix-tree theorem for
the number of spanning trees in a graph) which is often traced back to Kir-
choff. The fact that Theorem 9.10 underlies the formula was undoubtably
folklore for many years (Diaconis attributes it to Peter Doyle, and indeed
it appears in an undergraduate thesis [317] of one of his students), but was
apparently not published until the paper of Anantharam and Tsoucas [30].
The fact that the Markov chain tree theorem can be interpreted as an algo-
rithm for generating uniform random spanning trees was observed by Aldous
[13] and Broder [65], both deriving from conversations with Diaconis. [13]
initiated study of theoretical properties of uniform random spanning trees,
proving e.g. the following bounds on the diameter A of the random tree in
a regular n-vertex graph.

nl/2

<EAL K2721/2n1/2 logn (9.24)

Kimlogn
where K7 and K5 are absolute constants. Loosely, “in an expander, a ran-
1/2%0(1)» " Results on asymptotic Poisson
distribution for the degrees in a random spanning tree are given in Aldous
[13], Pemantle [279] and Pemantle and Burton [83]. Pemantle [278] discusses
the analog of uniform random spanning trees on the infinite d-dimensional
lattice, and Aldous and Larget [23] give simulation results on quantitative
behavior on the d-dimensional torus.

Section 9.2.2. As described in Pemantle [279] and Burton and Pemantle
[83], the key to deeper study of random spanning trees is

dom spanning tree has diameter n

Theorem 9.28 (Transfer-impedance theorem) Fiz a graph G. There
is a symmetric function H(ey,ez) on pairs of edges in G such that for any
edges (e1,...,er)

P(e; €T foralll <i<r)=det M(ey,...,e)

where M (e, ..., e;) is the matriz with entries H(e;,e;),1 <i,j5 <.
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Section 9.3. The first “pure simulation” algorithm for sampling exactly
from the stationary distribution was given by Asmussen et al [35], using a
quite different idea, and lacking explicit time bounds.

Section 9.3.1. In our discussion of these algorithms, we are assuming
that we have a list of all states. Lovasz - Winkler [242] gave the argument in
a slightly different setting, where the algorithm can only “address” a single
state, and their bound involved max;; £;T; in place of 7{.

Section 9.53.3. Letac [226] gives a survey of the “backwards coupling”
method for establishing convergence of continuous-space chains: it suffices
to show there exists a r.x. X~°° such that X(gz’s) — X7 a.ss. as s = —00,
for each state x. This method is especially useful in treating matrix-valued
chains of the form X; = Ay X; 1+ By, where (A4, By),t > 1 are i.i.d. random
matrices. See Barnsley and Elton [43] for a popular application.

Section 9.4.1. One result on spectra and reversibilizations is the follow-
ing. For a transition matrix P write

7(P) = sup{

1
Y : A # 1 an eigenvalue of P}.
Then for the additive reversibilization Q") = $(P+P*) we have (e.g. [316]
Proposition 1)
7(P) < 27(QW).



Chapter 10

Some Graph Theory and
Randomized Algorithms
(September 1 1999)

Much of the theory of algorithms deals with algorithms on graphs; con-
versely, much of the last twenty years of graph theory research pays atten-
tion to algorithmic issues. Within these large fields random walks play a
comparatively small role, but they do enter in various quite interesting and
diverse ways, some of which are described in this chapter. One theme of
this chapter is properties of random walks on expander graphs, introduced
in sections 10.1.1 and 10.1.2. Some non-probabilistic properties of graphs
can be explained naturally (to a probabilist, anyway!) in terms of random
walk: see section 10.2. Section 10.3 reviews the general idea of randomized
algorithms, and in section 10.4 we treat a diverse sample of randomized
algorithms based on random walks. Section 10.5 describes the particular
setting of approrimate counting, giving details of the case of self-avoiding
walks. (xxx details not written in this version).

For simplicity let’s work in the setting of regular graphs. Except where
otherwise stated, G is an n-vertex r-regular connected graph,

R |

Pow =T L, ) is an edge)
is the transition matrix for discrete-time random walk on G (so P = r~tA
for the adjacency matrix A) and 1 = Ay > Ao > ... > A, > —1 are its

eigenvalues, and 72 = 1/(1 — Ag).

335
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10.1 Expanders

10.1.1 Definitions

The Cheeger time constant 7. discussed in Chapter 4 section 5.1 (yyy 10/11/94
version) becomes, for a r-regular n-vertex graph,
r 4] A°
Te = SU
¢ TP R IE(A, A0
where £(A, A°) is the set of edges from a proper subset A of vertices to its
complement A°. Our version of Cheeger’s inequality is (Chapter 4 Corollary
37 and Theorem 40) (yyy 10/11/94 version)

7o <13 < 877 (10.1)

Definition. An expander family is a sequence G,, of r-regular graphs (for
some fixed r > 2), with n — oo through some subsequence of integers, such
that
sup 7.(Gp) < o0
n

or equivalently (by Cheeger’s inequality)

sup 72(Gy,) < 0.
n

One informally says “expander” for a generic graph G,, in the family. The
expander property is stronger than the rapid mizing property exemplified
by the d-cube (Chapter 5 Example 15) (yyy 4/23/96 version). None of the
examples in Chapter 5 is an expander family, and indeed there are no known
elementary examples. Certain random constructions of regular graphs yield
expanders: see Chapter 30 Proposition 1 (yyy 7/9/96 version). Explicit
constructions of expander families, in particular the celebrated Ramanujan
graphs, depend on group- and number-theoretic ideas outside our scope: see
the elegant monograph of Lubotzky [243].

Graph parameters like 7. are more commonly presented in inverted form
(i.e. like 1/7.) as coefficients of expansion such as

£(A, A%)]

h:= .
A r min(]A], |A¢)

(10.2)

A more familiar version ([93] page 26) of Cheeger’s inequality in graph theory
becomes, on regular graphs,

h%/2 <1 — Xy < 2h. (10.3)
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Since trivially 7. < 1/h < 27, the two versions agree up to factors of 2.
Inequalities involving coefficients of expansion are often called isoperimetric
inequalities. Expanders and isoperimetric inequalities have been studied
extensively in graph theory and the theory of algorithms, e.g. Chung [93]
Chapters 2 and 6, the conference proceedings [156], and the introduction of
Lubotzky [243].

One algorithmic motivation for Cheeger-type inequalities concerns com-
putational complexity of calculating parameters like 7. amd h. Using the
definition directly requires exponential (in n) time; but because eigenvalues
can be calculated in polynomial time, these general inequalities imply that
at least crude bounds can be computed in polynomial time.

10.1.2 Random walk on expanders

If we don’t pay attention to numerical constants, then general results about
reversible chains easily give us the orders of magnitude of other hitting and
mixing time parameters for random walks on expanders.

Theorem 10.1 For random walk on an expander family, as n — oo

71 = O(logn) (10.4)
7 = ©O(n) (10.5)
™ = 0O(n) (10.6)
sup E,C = O(nlogn) (10.7)

Proof. Recall the general inequality between 71 and 75 (Chapter 4 Lemma
23) (yyy 10/11/94 version), which on a regular graph becomes

71 < (1 + 1logn). (10.8)

This immediately gives the upper bound 71 = O(logn). For the lower bound,
having bounded degree obviously implies that the diameter A of the graph
satisfies A = Q(logn). And since the mean distance between an initial
vertex v and the position X of the walk at a stopping time 7' is at most
ET, the definition of 7'1(2) implies d(v,w) < 271(2) for any pair of vertices,
that is 7'1(2) > A/2. This establishes (10.4). The general Markov chain fact
70 = Q(n) is Chapter 3 Proposition 14 (yyy 1/26/93 version). Chapter 4
Lemma 25 gives 19 < 2n7o. Combining these and the obvious inequality 79 <
7*/2 establishes (10.5,10.6). Finally, the lower bound in (10.7) follows from
the general lower bound in Chapter 6 Theorem 31 (yyy 10/31/94 version),
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while the upper bound follows from the upper bound on 7* combined with
Chapter 2 Theorem 36 (yyy 8/18/94 version). m

In many ways the important aspect of Theorem 10.1 is that 71-type
mixing times are of order logn. We spell out some implications below.
These hold for arbitrary regular graphs, though the virtue of expanders is
that 7 is bounded.

Proposition 10.2 There exists constants K1, Ko such that the following
inequalities hold on any reqular graph.

(i) For each vertex v there exists a stopping time T, such that P,(X (T,) €
-) is uniform and E,T, < K119 logn.

(ii) For lazy random walk X; (with hold-probability 1/2)

Py(X; = w) > 11— 2%) for all t > jKamologn and all vertices v, w.

Proof. Part (i) is just the definition of 71(2), combined with (10.8) and the
fact 71(2) =0(n).

yyy relate (ii) to Chapter 4 section 3.3 =

Repeated use of (i) shows that we can get independent samples from
by sampling at random times 17,75, T3, ... with E(Tj11 —T;) < Ky logn.
Alternatively, repeated use of (ii) shows that we can get almost indepen-
dent samples from 7 by examining the lazy chain at deterministic times, as

follows.

Corollary 10.3 Fiz j and let tg > jKomlogn. Write (Y1,...,Yr) =
(—Xt07"'7XLt0)' Then

PYi=w,...,.YL=yr) > n_L(l — 2%), for all Ly, ..., 9L
the variation distance between dist(Y1,...,Yr) and wx...xm is at most L/27.

Examining the lazy chain at deterministic times means sampling the original
walk at random times, but at bounded random times. Thus we can get L
precisely independent samples using (i) in mean number K L7y log n of steps,
but without a deterministic upper bound on the number of steps. Using
Corollary 10.3 we get almost independent samples (up to variation distance
€) in a number of steps deterministically bounded by KyL log(L/e)7 logn.

10.1.3 Counter-example constructions

Constructions with expanders are often useful in providing counter-examples
to conjectures suggested by inspecting properties of random walk on the



10.2. EIGENVALUES AND GRAPH THEORY 339

elementary examples of graphs in Chapter 5. For example, consider upper
bounds on 7y in terms of 7 and n, in our setting of regular graphs. From
general results for reversible chains in Chapter 4 (10/11/94 version: Lemma
24 and below (9))

max(7o, (";1)2) <7< (n—1)7.
The examples in Chapter 5 are consistent with a conjecture
70 =" O(max(n, 72) logn) (10.9)

where the logn term is needed for the 2-dimensional torus. We now outline
a counter-example.

Take m copies on the complete graph on m vertices. Distinguish one
vertex v; from each copy i. Add edges to make the (v;) the vertices of a
r-regular expander. For this graph G, we have, as m — oo with fixed r,

n=m? = 0(m?); o =6(m’)

contradicting conjecture (10.9). We leave the details to the reader: the key
point is that random walk on G, may be decomposed as random walk on
the expander, with successive steps in the expander separated by sojourns
of times ©(m?) within a clique.

10.2 Eigenvalues and graph theory

Our treatment of the relaxation time 7o in Chapter 4 emphasized prob-
abilistic interpretations in the broad setting of reversible Markov chains.
Specializing to random walk on unweighted graphs, there are a range of
non-probabilistic connections between eigenvalues of the adjacency matrix
and other graph-theoretic properties. Such spectral graph theory is the sub-
ject of Chung [93]: we shall just give a few results with clear probabilistic
interpretations.

10.2.1 Diameter of a graph

Implicit in the proof of Theorem 10.1 is that, on a regular graph, the diam-
eter A satisfies A = O(7) = O(m2logn). By being a little careful we can
produce numerical constants.

1
1
Proposition 10.4 A/2 < {H%fi:—‘ :
log W
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Proof. The discrete analog 7{15¢ of variation threshold satisfies
rlise > A /2, (10.10)
because obviously
if d(v,w) = A and t < A/2 then ||P,(X; € -) — Py(X: € )| = 1. (10.11)
Chapter 4 Lemma 26 (yyy 10/11/94 version) specializes to
1+ % logn
log1/p

We can remove dependence on A, by the trick of introducing artificial holds.
(yyy tie up with Chapter 4 section 3.3). The chain with transition matrix
P’ := 0I + (1 — 0)P has eigenvalues X, = 6 + (1 — 0)\;. Choosing § =
(1 —X2)/(3 — A2), (this being the value making A, = —\/, in the worst case
0, = —1), we have

disc
1 >

—‘ . B:=max(\y, —\p). (10.12)

1+Xo _ o _ v/ /
3,)\2 —6 _)‘2 2 _/\n'

Since (10.10) still holds for the Markov chain P’, combining (10.10) and
(10.12) with ' establishes the Proposition.

10.2.2 Paths avoiding congestion

Upper bounding 7 via the distinguished paths technique (Chapter 4 section
4.3) (yyy 10/11/94 version) is a valuable theoreticial technique: the essence
is to choose paths which “avoid congestion”. In the opposite direction, one
can use upper bounds on mixing times to show existence of paths which
avoid congestion. Here’s the simplest result of this type. The first part
of the proof repeats an idea from Chapter 4 Lemma 21 (yyy new part of
Lemma to be added).

Proposition 10.5 Let v(1),v(2),...,v(n) be any ordering of the vertices
1,2,...,n of a r-regular graph. Then there exists, for each 1 <1 < n, a path
from i to v(i) such that, writing Ny, for the number of times the directed
edge (v, w) is traversed in all the paths,

max Ny < 7max (67’1(2)/7“, log n) )
(v,w)

So on an expander the bound is O(logn), using (10.4).

Proof. By definition of 7'1(2), for each vertex i there is a segment of the

chain i = X(()Z),sz), . ,X[(]? such that EU; < 71(2) and X[(;) has uniform

(3
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distribution. Take these segments independent as i varies. Write va for
the (random) number of times that (v, w) is traversed by all these random
paths. By considering a uniform random start, by (yyy tie up with Chapter
2 Proposition 3)
lpn 1 1
LENyy = - Z LEU;.
(2

In particular, ENy, < 71(2) /T := k. By erasing loops we may contract each
path to a path in which no directed edge is traversed twice. For fixed (v, w)
let p; be the chance that (v,w) is traversed by the contracted path from
vertex i and let ], be the total number of traversals. By independence of
paths as ¢ varies,

P(N],>m) < (sz> /m!  (expand the sum)
< K"/m! < (ek/m)™.

Choosing m = [3max(e, logn)] makes the bound less that 1/(2n?) and so

(v,w)

P (maxN{,w > m) < 1/2.

Now repeat the entire construction to define another copy (Yt(i), 0<t<V)
)

of chain segments with traversal counts N)),. Since X SZ and ngu(i)) have the
same uniform distribution, for each i we can construct the chain segments
jointly such that X ((]:) = Y‘SZ_U(Z)). Concatenating paths gives a (non-Markov)

random path from ¢ to v(i). Then

P <max N, + Ny, > 2m> <1

(v,w)

and so paths with the maximum < 2m — 1 must exist. =

Broder et al. [69] give a more elaborate algorithm for constructing edge-
disjoint paths between specified pairs {(a;, b;), 1 < i < k}) of distinct vertices
on an expander, for k = n'=°(), The essential idea is to first pick a set S of
4k vertices at random, then use a greedy algorithm to construct (as in the
proof above) paths from each a; and b; to some a; and b; in S, then for each
i construct a bundle of random walk paths from @; to b;, and finally show
that one path may be selected from each bundle so that the set of paths is
edge-disjoint.
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10.3 Randomized algorithms

10.3.1 Background

Here we give some background for the mathematician with no knowledge
of the theory of algorithms. Typically there are many different possible
algorithms for a particular problem; the theory of algorithms seeks “optimal”
algorithms according to some notion of “cost”. Cost is usually “time”,
i.e. number of computational steps, but sometimes involves criteria such
as (storage) space or simplicity of coding. The phrase randomized algorithm
refers to settings where the problem itself does not involve randomness but
where randomness is introduced into the running of the algorithm. Why this
is useful is best seen by example; the textbook of Motwani and Raghavan
[265] provides a comprehensive range of examples and classifications of types
of problems where randomized algorithms have proved useful. We give three
standard examples below (not using Markov chains) and then proceed to talk
about algorithms using random walks on graphs.

Example 10.6 Statistical sampling.

Consider a population of n individuals. Suppose we wish to know the pro-
portion ¢ of the population with some attribute, i.e. who answer “Yes” to
some Yes/No question. To calculate ¢ exactly we need to question all n
individuals. But if we can sample uniformly at random from the popula-
tion, then we can estimate ¢ approximately and can bound the size of error
in probability. To do this, we sample independently & random individuals,
question them, and calculate the empirical proportion ¢ of Yes answers. Use
q as our estimate of ¢, and theory gives error probabilities

P(|g—q| > 2(q(1 — 7))"?k/?) = 5%.

Such 95% confidence intervals are discussed in every freshman statistics
course. Classical statististical sampling is conceptually a bit different from
algorithms, in that the “cost” k here refers to real-world costs of interviewing
human individuals (or experimenting on individual rats or whatever) rather
than to computational cost. However, the key insight in the formula above
is that, for prescribed allowable error &, the cost of this simple random
sampling is O(¢~?) and this cost does not depend on the “problem size”
(i.e. population size) n. The next example is a slightly more subtle use of
sampling in a slightly more algorithmic context.

Example 10.7 Size of a union of sets.
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It’s fun to say this as a word problem in the spirit of Chapter 1. Suppose
your new cyberpunk novel has been rejected by all publishers, so you have
published it privately, and seek to sell copies by mailing advertizements to
individuals. So you need to buy mailing lists (from e.g. magazines and
specialist bookshops catering to science fiction). Your problem is that such
mailing lists might have much overlap. So before buying L lists Ay,..., A
(where A; is a set of |A;| names and addresses) you would like to know
roughly the size |U; A;| of their union. How can you do this without knowing
what the sets A; are (the vendors won’t give them to you for free)? Statistical
sampling can be used here. Suppose the vendors will allow you to randomly
sample a few names (so you can check accuracy) and will allow you to
“probe” whether a few specified names are on their list. Then you can
sample k£ times from each list, and for each sampled name X;; probe the
other lists to count the number m(X;;) > 1 of lists containing that name.
Consider the identity

Ui Al = DA x A7 Y 1/moa)
7 CIEA,'

= > |Ail BE(/M;)

(2

where M; is the number of lists containing a uniform random name from
A;. You can estimate E(1/M;) by k=1 Z?:l 1/m(X;;), and the error has

1/2

standard deviation < k~"/*, and the resulting estimate of | U; A;| has error

LO((Y [ A2 /1)) = £O(k™/> L max| Ay)).

As in the previous example, the key point is that the cost of “approximately
counting” U; A; to within a small relative error does not depend on the size
of the sets.

Example 10.8 Solovay-Strassen test of primality [312].

We can’t improve on the concise description given by Babai [37].

Let n > 1 be an odd integer. Call an integer w a Solovay-
Strassen witness (of compositeness of n) if 1 < w < n —1 and
either g.c.d.(w,n) > 1 or w»1/2 £ (2) mod n, where (%) is
the Jacobi symbol (computed via quadratic reciprocity as easily
as g.c.d.’s are computed via Euclid’s algorithm). Note that no
S-S witness exists if n is prime. On the other hand (this is
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the theorem) if n is composite, then at least half of the integers
1,2,...,n —1 are S-S witnesses.

Suppose now that we want to decide whether or not a given
odd 200-digit integer n is prime. Pick k integers wi, ..., w; inde-
pendently at random from {1,2,...,n—1}. If any one of the w;
turns out to be a witness, we know that n is composite. If none
of them are, let us conclude that n is prime. Here we may err,
but for any n, the probability that we draw the wrong conclu-
sion is at most e = 27%. Setting k = 500 is perfectly realistic, so
we shall have proven the mathematical statement “n is prime”
beyond the shade of doubt.

10.3.2 Overview of randomized algorithms using random walks
or Markov chains

Our focus is of course on randomized algorithms using random walks or
Markov chains. We will loosely divide these into three categories. Markov
chain Monte Carlo seeks to simulate a random sample from a (usually non-
uniform) given probability distribution on a given set. This is the central
topic of Chapter 11. In section 10.4 below we give a selection of miscella-
neous graph algorithms. Into this category also falls the idea (Chapter 6
section 8.2) (yyy 10/31/94 version; details to be written) of using random
walk as a “undirected graph connectivity” algorithm, and the idea (end of
section 10.2.2) of using random walk paths as an ingredient in constructing
edge-disjoint paths in an expander graph. A third, intermediate category is
the specific topic of approximate counting via Markov chains, to be discussed
in section 10.5.

10.4 Miscellaneous graph algorithms

10.4.1 Amplification of randomness

In practice, Monte Carlo simulations are done using deterministic pseudo-
random number generators. Ideally one would prefer some physical device
which generated “truly random” bits. Presumably any such physical random
number generator would be rather slow compared to the speed of arithmeti-
cal calculations. This thinking has led to an area of theory in which the cost
of a randomized algorithm is taken to be the number of truly random bits
used.
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Recall the Solovay-Strassen test of primality in Example 10.8. Philo-
sophically, there is something unsettling about using a deterministic pseudo-
random number generator in this context, so we regard this as a prototype
example where one might want to use a hypothetical source of truly random
bits. To pick a uniform random integer from {1,2,...,n} requires about
logy n random bits, so the cost of the algorithm as presented above is about
klogyn = (logy 1/e) (logym) bits, where € is the prescribed allowable error
probability. But one can use the existence of explicit expanders and results
like Lemma 10.12 to devise an algorithm which requires fewer truly random
bits. Suppose we have a n-vertex r-regular expander, and label the vertices
{1,2,...,n}. To simulate a uniform random starting vertex and ¢ steps
of the random walk requires about log, n + tlogy r bits. The chance that
such a walk never hits the set A of witnesses is, by Lemma 10.12, at most
exp(—%). To make this chance < ¢ we take t = 21, log(1/e), and the
cost becomes logyn + 279(logy ) log(1/¢). Thus granted the existence of
expanders on which we can efficiently list neighbors of any specified vertex
in order to simulate the random walk, the method of simulating (depen-
dent) integers (w;) via the random walk (instead of independently) reduces
the number of truly random bits required from O((logn) x (logl/e)) to
O(max(logn, log1/e)).

The idea of using random walks on expanders for such algorithmic pur-
poses is due to Ajtai et al [4]. Following Impagliazzo and Zuckerman [188§]
one can abstract the idea to rather general randomized algorithms. Suppose
we are given a randomized algorithm, intended to show whether an object
x € X has a property P by outputting “Yes” or “No”, and that for each z
the algorithm is correct with probability > 2/3 and uses at most b random
bits. Formally, the algorithm is a function A : X x {0,1}® — {Yes,No} such
that

if z € P then 27°{i € {0,1}° : A(x,i) = YES}| > 2/3

if 2 ¢ P then 27°|{i € {0,1}": A(x,i) = YES}| < 1/3

where P C X is the subset of all objects possessing the property. To make
the probability of incorrect classification be < & we may simply repeat the
algorithm m times, where m = ©(log 1/¢) is chosen to make

P(Binomial(m,2/3) <m/2) <,

and output Yes or No according to the majority of the m individual outputs.
This requires bm = ©(blog1/e) random bits. But instead we may take
{0, 1}b as the vertices of a degree-r expander, and simulate a uniform random
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starting vertex and m steps of random walk on the expander, using about
b+ mlog, r random bits. For each of the m + 1 vertices of {0, 1} visited by
the walk (Y;,0 < i < m), compute A(z,Y;), and output Yes or No according
to the majority of the m + 1 individual outputs. The error probability is at
most
Nont1(B

1rn]§3bXP7T (77):1(1 ) m(B) > %)
where N,,11(B) is the number of visits to B by the walk (Y;,0 < i < m).
By the large deviation bound for occupation measures (Theorem 10.11, yyy
to be moved to other chapter) this error probability is at most

(14 c1m/19) exp(—com/T2)

for constants ¢; and cp. To reduce this below ¢ requires m = 0(72 log(1/¢)).
Thus the existence of (bounded-degree) expanders implies that the number
of random bits required is only

b+ mlogyr = O(max(b, logl/e))

compared to O(blog(1/¢)) using independent sampling.

10.4.2 Using random walk to define an objective function

In Chapter 6 section 8.2 (yyy currently at end of this Chapter; to be moved)
we gave a standard use of the probabilistic method Here is a less standard
use, from Aldous [7], where we use the sample path of a random walk to
make a construction.

Consider a function h defined on the vertices of a n-vertex graph G.
Constrain h to have no local minima except the global minimum (for sim-
plicity, suppose the values of h are distinct). We seek algorithms to find
the vertex v at which A(v) is minimized. Any deterministic “descent” al-
gorithm will work, but it might work slowly. Could there be some more
sophisticated algorithm which always works quickly? One idea is multi-start
descent. Pick n'/? vertices uniformly at random; from these, choose the
vertex with minimum h-value, and follow the greedy descent algorithm. On
a degree-d graph, the mean time is O(dnl/Q). Now specialize to the case
where G is the d-cube. One can give examples where single-start (from a
uniform random start) descent has mean time Q(2(!1=9)%), so from a worst-
case mean-time viewpoint, multi-start is better. The next theorem shows
that (again from a worst-case mean-time viewpoint), one cannot essentially
improve on multi-start descent. Consider random walk on the d-cube started
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at a uniform random vertex U and let H(v) be the first hitting time on v.
Then H is a random function satisfying the constraint, minimized at v = U,
but

Theorem 10.9 ([6]) Every algorithm for locating U by examining values
H(v) requires examining a mean number Q(2%272) of vertices.

The argument is simple in outline. As a preliminary calculation, consider
random walk on the d-cube of length tg = O(24/27¢), started at 0, and let
L, be the time of the last visit to v, with L, = 0 if v is not visited. Then
to
EL, <) tPy(X(t) =v) = O(1) (10.13)
t=1
where the O(1) bound holds because the worst-case v for the sum is v = 0
and, switching to continuous time,

2d/2 B 2d/2 —Qt/d d
/ tPo(X(t) = 0) dt:/ ¢ (1“2) dt = O(1).
0 0

Now consider an algorithm which has evaluated H(v1),..., H(v,,) and
write tg = min;<,,, H(v;) = H(v*) say. It does no harm to suppose ty =
O(2%/2-¢). Conditional on the information revealed by H(v1), ..., H(vm),
the distribution of the walk (X (¢);0 <t < tp) is specified by
(a) take a random walk from a uniform random start U, and condition on
X(tg) = v*;

(b) condition further on the walk not hitting {v;} before time ty.

The key point, which of course is technically hard to deal with, is that the
conditioning in (b) has little effect. If we ignore the conditioning in (b), then
by reversing time we see that the random variables (H(v*) — H(v))™ have
the same distribution as the random variables L, (up to vertex relabeling).
So whatever vertex v the algorithm chooses to evaluate next, inequality
(10.13) shows that the mean improvement E(H (v*) — H(v))" in objective
value is O(1), and so it takes Q(2427¢) steps to reduce the objective value
from 2%/27¢ to 0.

10.4.3 Embedding trees into the d-cube

Consider again the d-cube I = {0,1}¢ with Hamming distance d(i,j). Let
B be the vertices of a M-vertex binary tree. For an embedding, i.e. an
arbitrary function p : B — I, define

load = max {v € B:p(v) =1i}|
1€
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dilation edges (mv?ij) of B d(p(v), p(w)).

How can we choose an embedding which makes both load and dilation small?
This was studied by Bhatt and Cai [47], as a toy model for parallel com-
putation. In the model I represents the set of processors, B represents the
set of tasks being done at a particular time, the tree structure indicating
tasks being split into sub-tasks. To assign tasks to processors, we desire
no one processor to have many tasks (small load) and we desire processors
working on tasks and their sub-tasks to be close (small dilation) to facil-
itate communication. As the computation proceeds the tree will undergo
local changes, as tasks are completed and new tasks started and split into
sub-tasks, and we desire to be able to update the embedding “locally” in
response to local changes in the tree. Bhatt and Cai [47] investigated the
natural random walk embedding, where the root of B is embedded at 0, and
recursively each child w of v is embedded at the vertex p(w) found at step L
(for even L) of a random walk started at p(v). So by construction, dilation
< L, and the mathematical issue is to estimate load. As before, the de-
tails are technically complicated, but let us outline one calculation. Clearly
load = Q(max(1, M/2%)), so we would like the mean number of vertices of
B embedded at any particular vertex i to be O(max(1, M/2%)). In bound-
ing this mean, because p;i(t) < poo(t) for even ¢ (Chapter 7 Corollary 3)
(yyy 1/31/94 version) we see that the worst-case i is 0, and then because
poo(t) is decreasing in t we see that the worst-case M-vertex binary tree is
a maximally balanced tree. Thus we want

logy M
> 2Fpoo(kL) = O(max(1, M/2%)). (10.14)
k=0

From the analysis of random walk on the d-cube (Chapter 5 Example 15)
(yyy 4/23/96 version) one can show

poo(klogd) = O(max(d—*,27%)), uniformly in k,d > 1.

It follows that (10.14) holds if we take L = [log d].

Of course to bound the load we need to consider the maximally-loaded
vertex, rather than a typical vertex. Considering M = 2¢ for definiteness, if
the M vertices were assigned independently and uniformly, the mean load
at a typical vertex would be 1 and classical arguments show the maximal
load would be @(%). We have shown that with tree-embedding the mean
load at a typical vertex is O(1), so analogously one can show the maximal



10.4. MISCELLANEOUS GRAPH ALGORITHMS 349

load is O(d/logd). However, [47] shows that by locally redistributing tasks
assigned to the same processor, one can reduce the maximal load to O(1)
while maintaining the dilation at O(log d).

10.4.4 Comparing on-line and off-line algorithms

Here we describe work of Coppersmith et al [99]. As in Chapter 3 section 2
(vyy 9/2/94 version) consider a weighted graph on n vertices, but now write
the edge-weights as ¢;; = ¢j; > 0 and regard them as a matrix C of costs.
Let P be the transition matrix of an irreducible Markov chain whose only
transitions are along edges of the graph. For each i and j let m(i, j) be the
mean cost of the random walk from 4 to j, when traversing an edge (v, w)
incurs cost ¢yy,. Define the stretch s(P, C) to be the smallest s such that
there exists a < oo such that, for arbitrary vg,v1,..., v

k—1 k—1

Zm(vz-,viﬂ) < a—i—schwiH. (10.15)
=0 =0

Note that ¢(P, C) is invariant under scaling of C.

Proposition 10.10 ([99]) (a) s(P,C) >n — 1.

(b) If P is reversible and C is the matriz of mean commute times E;T; +
E;T; then s(P,C) =n — 1.

(¢) For any cost matriz C there exists a reversible transition matriz P
with matriz C of mean commute times such that, for some constant «,

Cij < QCij
Cij = Ozéij when Dij > 0.
So from (b) and invariance under scaling, s(P,C) =n — 1.

We shall prove (a) and (b), which are just variations of the standard theory
of mean hitting times developed in Chapters 2 and 3. The proof of part
(c) involves “convex programming” and is rather outside our scope. The
algorithmic interpretations are also rather too lengthy to give in detail, but
are easy to say in outline. Imagine a problem where it is required to pick a
minimum-cost path, where the cost of a path consists of costs of traversing
edges, together with extra costs and constraints. There is some optimal
off-line solution, which may be hard to calculate. In such a problem, one
may be able to use Proposition 10.10(c) to show that the algorithm which
simply picks a random sample path (with transition matrix P from (c)) has
mean cost not more than n — 1 times the cost of the optimal path.
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Proof. Write m for the stationary distribution of P. Write m™ (v, v) for
the mean cost of an excursion from v to v, and write ¢ = >, Y., TpDowCow-
Then m* (v, v) = ¢/m, by the ergodic argument (Chapter 2 Lemma 30) (yyy
8/18/94 version). and so

nc = meﬂv,v)
v
= Zﬁvzpvw(cv,w+m(wav))
v w
= E—l—ZZm,pvwm(w,v).
v w

In other words,

Z Z TwPwoem(v,w) = (n — 1)c. (10.16)

Now apply the definition (10.15) of s(P, C) to the sequence of states visited
by the stationary time-reversed chain P*; by considering the mean of each
step,

SN wphem(v,w) < s(P,C) S0 S muphycon. (10.17)

But the left sides of (10.16) and (10.17) are equal by definition of P*, and
the sum in the right of (10.17) equals ¢ by symmetry of C, establishing (a).
For (b), first note that the definition (10.15) of stretch is equivalent to

s(P,C) = max —ZZ m(vi, Vi)

10.18
i > Cu;,vi41 ( )

where o denotes a cycle (v, ve,...,Un,v1). Write t(v,w) = E,T,. Fix
a cycle o and write p = >, t(vi, vi+1) for the mean time to complete the
cyclic tour. By the ergodic argument (Chapter 2 Lemma 30) (yyy 8/18/94
version). the mean number of traversals of an edge (v, w) during the tour is
WUTTyPyw, and hence the ratio in (10.18) can be written as

(vs . s
2it(vi Vi) SO TP (10.19)
Zi cUi7Ui+l voow

Now the hypothesis of (b) is that P is reversible and ¢, = t(v, w) +t(w, v).
So the second term of (10.19) equals 2(n — 1) by Chapter 3 Lemma 6 (yyy
9/2/94 version) and the first term equals 1/2 by the cyclic tour property
Chapter 3 Lemma 1 (yyy 9/2/94 version). So for each cycle o the ratio in
(10.18) equals n — 1, establishing (b).
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10.5 Approximate counting via Markov chains

For a finite set S, there is a close connection between

(a) having an explicit formula for the size |S)|

(b) having a bounded-time algorithm for generating a uniform random

element of S.
As an elementary illustration, we all know that there are n! permutations of
n objects. From a proof of this fact, we could write down an explicit 1 — 1
mapping f between the set of permutations and the set A = {(a1,az,...,ay) :
1 < a; <i}. Then we could simulate a uniform random permutation by
first simulating a uniform random element a of A and then computing f(a).
Conversely, given an algorithm which was guaranteed to produce a uniform
random permutation after k(n) calls to a random number generator, we
could (in principle) analyze the working of the algorithm in order to calcu-
late the chance p of getting the identity permutation. Then we can say that
number of permutations equals 1/p.

A more subtle observation is that, in certain settings, having an algo-
rithm for generating an approximately uniform random element of S can
be used to estimate approzimately the size |S|. The idea is to estimate
successive ratios by sampling. Suppose we can relate S to smaller sets

S=S,D28,_1D...08>25 (10.20)

where |Si| is known, the ratios p; := |S;41|/]Si| are bounded away from 0,
and where we can sample uniformly from each S;. Then take k& uniform
random samples from each S; and find the sample proportion W; which fall
into S;_1. Because |S| = |S1| T1X,|S:|/|Si—1|, we use

L
=2

as an estimate of |S|. To study its accuracy, it is simpler to consider |S|/N =
-, W;/p;. Clearly E(|S|/N) =1, and we can calculate the variance by

L .
var < ‘5:‘ ) = var H %
N i—o Di

L

= H(l—i—var(Wi/pi)) -1
i=2
L

= [Ia+58) -1

=2
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The simplest case is where we know a theoretical lower bound p, for the p;.
Then by taking k = O(¢2L/p,) we get

S
var CN’) < exp(pfk) —1=0(?).
In other words, with a total number
Lk =0 2L%/p,) (10.21)

of random samples, we can statistically estimate |S| to within a factor 1 +
O(e).

The conceptual point of invoking intermediate sets .S; is that the overall
ratio |S1|/|S| may be exponentially small in some size parameter, so that
trying to estimate this ratio directly by sampling from S would involve order
|S]/|S1], i-e. exponentially many, samples. If we can specify the intermediate
sets with ratios p; bounded away from 0 and 1 then L = O(log(|S|/|S1]))
and so the number of samples required in (10.21) depends on log(|S|/|S1|)
instead of |S|/]S1].

The discussion so far has not involved Markov chains. From our view-
point, the interesting setting is where we cannot directly get uniform ran-
dom samples from a typical .S;, but instead need to use Markov chain Monte
Carlo. That is, on each S; we set up a reversible Markov chain with uniform
stationary distribution (i.e. a chain whose transition matrix is symmetric
in the sense pyy = pwy) Assume we have a bound 71 on the 7j-values of all
these chains. Then as a small modification of Corollary 10.3, one can get
m samples from the combined chains whose joint distribution is close (in
variation distance) to the the distribution of independent samples from the
uniform distributions in O(mmlogm) steps. As above, if we can specify the
intermediate sets with ratios p; bounded away from 0 and 1 then we need
m = O(c~2log?(|S|/|S1|)) samples, and so (ignoring dependence on ¢) the
total number of steps in all the chains is O (7 log? () (|S]/[S1]).

In summary, to implement this method of approximate counting via
Markov chains, one needs

e a way to specify the intermediate sets (10.20)

e a way to specify Markov chains on the S; whose mixing times can be
rigorously bounded.

Two particular examples have been studied in detail, and historically these
examples provided major impetus for the development of technical tools to



10.5. APPROXIMATE COUNTING VIA MARKOV CHAINS 353

estimate mixing times. Though the details are too technical for this book,
we outline these examples in the next two sections, and then consider in
detail the setting of self-avoiding walks.

10.5.1 Volume of a convex set

Given a closed convex set K in R?, for large d, how can we algorithmically
calculate the volume of K7 Regard K as being described by an oracle, that
is for any z € R? we can determine in one step whether or not = € K.
Perhaps surprisingly, there is no known deterministic algorithm which finds
vol(K) approximately (i.e. to within a factor 1 + ¢) in a polynomial in d
number of steps. But this problem is amenable to “approximate counting
via Markov chains” technique. This line of research was initiated by Dyer
et al [135, 136] who produced an algorithm requiring O(d**t°()) steps. A
long sequence of papers (see the Notes) studied variants of both the Markov
chains and the analytic techniques in order to reduce the polynomial degree.
Currently the best bound is O(d°t°(), due to Kannan et al [206].

To outline the procedure in this example, suppose we know B(1) C
K C B(r), where B(r) is the ball of radius r = r(d). (It turns out that
one can transform any convex set into one satisfying these constraints with
r = O(d®?).) We specify an increasing sequence of convex subsets

B(l)=KoCK,C...CK,=K

by setting K; := B(2"/%) N K. This makes the ratios of successive volumes
bounded by 2 and requires L = O(dlogd) intermediate sets. So the issue
is to design and analyze a chain on a typical convex set K; whose station-
ary distribution is uniform. Various Markov chains have been used: simple
random walk on a fine discrete lattice restricted to K, or spherically sym-
metric walks. The analysis of the chains has used Cheeger inequalities for
chains and the refinement of classical isoperimetric inequalities for convex
sets. Recent work of Bubley et al [80] has successfully introduced coupling
methods, and it is a challenging problem to refine these coupling methods.
There is a suggestive analogy with theoretical study of Brownian motion in
a convex set — see Chapter 13 section 1.3 (yyy 7/29/99 version).

10.5.2 Matchings in a graph

For a finite, not necessarily regular, graph Gy let M(Gy) be the set of all
matchings in Gg, where a matching M is a subset of edges such that no vertex
is in more than one edge of M. Suppose we want to count | M(Gy)| (for the
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harder setting of counting perfect matchings see the Notes). Enumerate the
edges of Gy as eq,e9,...,er, where L is the number of edges of Gg. Write
G; for the graph G with edges eq,...,e; deleted. A matching of G; can be
identified with a matching of G;_1 which does not contain e;, so we can
write

M(Gp-1) C M(Gp—2) C ... C M(G1) C M(Gy).

Since G1,—1 has one edge, we know |[M(G_1)| = 2. The ratio |M(G;+1)|/IM(G;)]
is the probability that a uniform random matching of GG; does not contain
the edge e;11. So the issue is to design and analyze a chain on a typical
set M(G;) of matchings whose stationary distribution is uniform. Here is a
natural such chain. From a matching My, pick a uniform random edge e of
Gy, and construct a new matching M; from My and e as follows.

If e € My then set My = My \ {e}.

If neither end-vertex of e is in an edge of My then set My = My U {e}.

If exactly one end-vertex of e is in an edge (¢’ say) of My then set
My ={e} UM\ {¢}.
This construction (the idea goes back to Broder [64]) yields a chain with
symmetric transition matrix, because each possible transition has chance
1/L. An elegant analysis by Jerrum and Sinclair [199], outlined in Jerrum
[197] section 5.1, used the distinguished paths technique to prove that on a
n-vertex L-edge graph

T2 — O(Ln)

Since the number of matchings can be bounded crudely by n!,

1 = O(mzlogn!) = O(Ln*logn). (10.22)

10.5.3 Simulating self-avoiding walks

xxx to be written
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10.6 Notes on Chapter 9

Section 10.1.1. Modern interest in expanders and their algorithmic uses goes
back to the early 1980s, e.g. their use in parallel sorting networks by Ajtai
et al [3], and was increased by Alon’s [26] graph-theoretic formulation of
Cheeger’s inequality. The conference proceedings [156] provides an overview.

Edge-expansion, measured by parameters like h at (10.2), is more rele-
vant to random walk than vertex-expansion. Walters [334] compares defini-
tions. What we call “expander” is often called bounded-degree expander.

Section 10.1.2. Ajtai et al [4], studying the “amplification of random-
ness” problems in section 10.4.1, was perhaps the first explicit use of random
walk on expanders. In Theorem 10.1, the upper bounds on 7* and EC' go
back to Chandra et al [85].

Section 10.1.3. With the failure of conjecture (10.9), the next natural
conjecture is: on a r-regular graph

7o =" O(max(n, 72) max(logn,7)).

It’s not clear whether such conjectures are worth pursuing.

Section 10.2. More classical accounts of spectral graph theory are in
Cvetkovic et al [107, 106].

On a not-necessarily-regular graph, Chung [93] studies the eigenvalues
of the matrix £ defined by

Low = 1, w=w
= —(dydy) /2 for an edge (v, w) (10.23)
= 0 else.

In the regular case, — L is the -matrix of transition rates for the continuous-
time random walk, and so Chung’s eigenvalues are identical to our continuous-
time eigenvalues. In the non-regular case there is no simple probabilistic in-
terpretation of £ and hence no simple probabilistic interpretation of results
involving the relaxation time 1/\y associated with L.

Section 10.2.1. Chung [93] Chapter 3 gives more detailed results about
diameter and eigenvalues. One can slightly sharpen the argument for Propo-
sition 10.4 by using (10.11) and the analog of Chapter 4 Lemma 26 (yyy
10/11/94 version) in which the threshold for 7{*¢ is set at 1 —¢. Such argu-
ments give bounds closer to that of [93] Corollary 3.2: if G is not complete

then
A< Fog(n - 1)-‘ .

3—Xo
log 3752
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Section 10.2.2. Chung [93] section 4.4 analyzes a somewhat related rout-
ing problem. Broder et al [70] analyze a dynamic version of path selection
in expanders.

Section 10.3.1. Example 10.7 (union of sets) and the more general DNF
counting problem were studied systematically by Karp et al [210]; see also
[265] section 11.2.

The Solovay-Strassen test of primality depends on a certain property of
the Jacobi symbol: see [265] section 14.6 for a proof of this property.

Section 10.4.1. Several other uses of random walks on expanders can
be found in Ajtai et al [4], Cohen and Wigderson [97], Impagliazzo and
Zuckerman [188].

Section 10.4.4. Tetali [325] discussions extensions of parts (a,b) of Propo-
sition 10.10 to nonsymmetric cost matrices.

Section 10.5. More extensive treatments of approximate counting are in
Sinclair [309] and Motwani and Raghavan [265] Chapter 12.

Jerrum et al [201] formalize a notion of self-reducibility and show that,
under this condition, approximate counting can be performed in polynomial
time iff approximately uniform sampling can. See Sinclair [309] section 1.4
for a nice exposition.

Abstractly, we are studying randomized algorithms which produce a ran-
dom estimate a(d) of a numerical quantity a(d) (where d measures the “size”
of the problem) together with a rigorous bound of the form

P((1 - e)a(d) < a(d) < (1+€)a(d)) > 1 — 6.

Such a scheme is a FPRAS (fully polynomial randomized approximation
scheme) if the cost of the algorithm is bounded by a polynomial in d, 1/e
and log1/6. Here the conclusion involving log1/d is what emerges from
proofs using large deviation techniques.

Section 10.5.1. Other papers on the volume problem and the related
problem of sampling from a log-concave distribution are Lovédsz and Si-
monovits [238], Applegate and Kannan [32], Dyer and Frieze [134], Lovész
and Simonovits [239] and Frieze et al [158].

Section 10.5.2. In the background is the problem of approximating the
permanent

n
perA = Z H Aio (i)
o i=1
of a n X m non-negative matrix, where the sum is over all permutations o.
When A is the adjacency matrix of a n + n bipartite graph, per(A) is the
number of perfect matchings. Approximate counting of perfect matchings is
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in principle similar to approximate counting of all matchings; one seeks to
use the chain in section 10.5.2 restricted to M; U M,_1, where M, is the
set of matchings with exactly 7 edges. But successful analysis of this chain
requires that we have a dense graph, with minimum degree > n/2. Jerrum
and Sinclair [198] gave the first analysis, using the Cheeger inequality and
estimating expansion via distinguished paths. Sinclair [309] Chapter 3 and
Motwani and Raghavan [265] Chapter 11 give more detailed expositions.
Subsequently it was realized that using the distinguished paths technique
directly to bound 79 was more efficient. A more general setting is to seek to
sample from the non-uniform distribution on matchings M

(M) o< AMI

for a parameter A > 1. The distinguished paths technique [199, 197] giving
(10.22) works in this setting to give

1 = O(Ln*Xlog(n\)).
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10.7 Material belonging in other chapters

10.7.1 Large deviation bounds

yyy Somewhere in the book we need to discuss the results on explicit large
deviation bounds for occupation measure / empirical averages: [167, 125,
204, 229]. In section 10.4.1 we used the following bound from Gillman [167]
Theorem 2.1.

Theorem 10.11

Py (Nu(B)/n —m(B) > 7) < (1+) I exp(2g§>.

10.7.2 The probabilistic method in combinatorics

yyy This is to be moved to Chapter 6, where we do the “universal traversal
sequences” example.

Suppose one wants to show the existence of a combinatorial object with
specified properties. The most natural way is to give an explicit construc-
tion of an example. There are a variety of settings where, instead of a
giving an explicit construction, it is easier to argue that a randomly-chosen
object has a non-zero chance of having the required properties. The mono-
graph by Alon and Spencer [29] is devoted to this topic, under the name the
probabilistic method. One use of this method is below. Two more example
occur later in the book: random construction of expander graphs (Chapter
30 Proposition 1) (yyy 7/9/96 version), and the random construction of an
objective function in an optimization problem (Chapter 9 section 4.2) (yyy
this version).

10.7.3 copied to Chapter 4 section 6.5

(yyy 10/11/94 version) Combining Corollary 31 with (62) gives the contin-
uous time result below. Recasting the underlying theory in discrete time
establishes the discrete-time version.

Lemma 10.12

(continuous time) Prp(Ta > t)
(discrete time) Pr(Ta >t)

p(—tm(A)/72), =0

< ex
< (1—n(A)/m), t>0.

Notes on this section. In studying bounds on T4 such as Lemma 10.12
we usually have in mind that w(A) is small. One is sometimes interested
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in exit times from a set A with 7m(A) small, i.e. hitting times on A° where
m(A°) is near 1. In this setting one can replace inequalities using 75 or 7,
(which parameters involve the whole chain) by inequalities involving analo-
gous parameters for the chain restricted to A and its boundary. See Babai
[36] for uses of such bounds.

On several occasions we have remarked that for most properties of ran-
dom walk, the possibility of an eigenvalue near —1 (i.e. an almost-bipartite
graph) is irrelevant. An obvious exception arises when we consider lower
bounds for P.(T4 > t) in terms of |A|, because in a bipartite graph with
bipartition {A, A°} we have P(T4 > 1) = 0. It turns out (Alon et al
[27] Proposition 2.4) that a corresponding lower bound holds in terms of
™ =1/(An +1).

Pr(Ta > t) > (maX(O, 1— ﬂ))t.

NTn
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Chapter 11

Markov Chain Monte Carlo
(January 8 2001)

This book is intended primarily as “theoretical mathematics”, focusing on
ideas that can be encapsulated in theorems. Markov Chain Monte Carlo
(MCMC), which has grown explosively since the early 1990s, is in a sense
more of an “engineering mathematics” field — a suite of techniques which
attempt to solve applied problems, the design of the techniques being based
on intuition and physical analogies, and their analysis being based on ex-
perimental evaluation. In such a field, the key insights do not correspond
well to theorems.

In section 11.1 we give a verbal overview of the field. Section 11.2 de-
scribes the two basic schemes (Metropolis and line-sampling), and section
11.3 describes a few of the many more complex chains which have been sug-
gested. The subsequent sections are fragments of theory, indicating places
where MCMC interfaces with topics treated elsewhere in this book. Liu
[235] gives a comprehensive textbook treatment of the field.

11.1 Overview of Applied MCMC

11.1.1 Summary

We give a brisk summary here, and expand upon some main ideas (the
boldface phrases) in section 11.1.2.
Abstractly, we start with the following type of problem.

Given a probability distribution 7 on a space S, and a numer-
ical quantity associated with 7 (for instance, the mean g :=

361
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S 7m(z)g(x) or := [ g dm, for specified g : S — R), how can one
estimate the numerical quantity using Monte Carlo (i.e. ran-
domized algorithm) methods?

Asking such a question implicitly assumes we do not have a solution using
mathematical analysis or efficient deterministic numerical methods. Ezxact
Monte Carlo sampling presumes the ability to sample exactly from the target
distribution 7, enabling one to simulate an i.i.d. sequence (X;) and then use
classical statistical estimation, e.g. estimate g by n=1 3" | g(X;). Where
implementable, such exact sampling will typically be the best randomized
algorithm. For one-dimensional distributions and a host of special dis-
tributions on higher-dimensional space or combinatorial structures, exact
sampling methods have been devised. But it is unrealistic to expect there
to be any exact sampling method which is effective in all settings. Markov
Chain Monte Carlo sampling is based on the following idea.

First devise a Markov chain on S whose stationary distribu-
tion is w. Simulate n steps Xi,...,X, of the chain. Treat
Xy Xro41, ..., Xy as dependent samples from 7 (where 7* is
some estimate of some mixing time) and then use these samples
in a statistical estimator of the desired numerical quantity, where

the confidence interval takes the dependence into account.

Variations of this basic idea include running multiple chains and introducing
auxiliary variables (i.e. defining a chain on some product space S x A). The
basic scheme and variations are what make up the field of MCMC. Though
there is no a priori reason why one must use reversible chains, in practice
the need to achieve a target distribution 7 as stationary distribution makes
general constructions using reversibility very useful.

MCMC originated in statistical physics, but mathematical analysis of
its uses there are too sophisticated for this book, so let us think instead of
Bayesian statistics with high-dimensional data as the prototype setting for
MCMC. So imagine a point & € R¢ as recording d numerical characteristics
of an individual. So data on n individuals is represented as a n X d matrix
x = (z4;). Asamodel, we first take a parametric family ¢(6, ) of probability
densities; that is, # € RP is a p-dimensional parameter and for each 6 the
function  — ¢(#,x) is a probability density on R?. Finally, to make a
Bayes model we take 6 to have some probability density h(f) on RP. So
the probability model for the data is: first choose 6 according to h(-), then
choose (z;.) i.i.d. with density ¢(0,z). So there is a posterior distribution
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on 6 specified by .
fx(g) = h(e) =1 ¢(9’ J:Z')
ZX

where zx is the normalizing constant. Our goal is to sample from fx(-),
for purposes of e.g. estimating posterior means of real-valued parameters.
An explicit instance of (11.1) is the hierarchical Normal model, but the
general form of (11.1) exhibits features that circumscribe the type of chains
it is feasible to implement in MCMC, as follows.

(i) Though the underlying functions ¢(-,-), h(-) which define the model
may be mathematically simple, our target distribution fx(-) depends on
actual numerical data (the data matrix x), so it is hard to predict, and
dangerous to assume, global regularity properties of fx(-).

(ii) The normalizing constant zx is hard to compute, so we want to define
chains which can be implemented without calculating zx.

(11.1)

The wide range of issues arising in MCMC can loosely be classified as “de-
sign” or “analysis” issues. Here “design” refers to deciding which chain to
simulate, and “analysis” involves the interpretation of results. Let us start
by discussing design issues. The most famous general-purpose method is
the Metropolis scheme, of which the following is a simple implementation in
setting (11.1). Fix a length scale parameter I. Define a step § — () of a
chain as follows.

Pick 4 uniformly from {1,2,...,p}.

Pick U uniformly from [0; —1,6; +].

Let 6 be the p-vector obtained from 6 by changing the ’th co-
ordinate to U.

With probability min(1, fx(6")/fx(0)) set ) = ¢';  else set
o) = 0.

The target density enters the definition only via the ratios fx(6')/fx(9),
so the value of zx is not needed. The essence of a Metropolis scheme is
that there is a proposal chain which proposes a move 6 — ', and then
an acceptance/rejection step which accepts or rejects the proposed move.
See section 11.2.1 for the general definition, and proof that the stationary
distribution is indeed the target distribution. There is considerable flexibility
in the choice of proposal chain. One might replace the uniform proposal
step by a Normal or symmetrized exponential or Cauchy jump; one might
instead choose a random (i.e. isotropic) direction and propose to step some
random distance in that direction (to make an isotropic Normal step, or a
step uniform within a ball, for instance). There is no convincing theory to
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say which of these choices is better in general. However, in each proposal
chain there is some length scale parameter [: there is a trade-off between
making [ too small (proposals mostly accepted, but small steps imply slow
mixing) and making [ too large (proposals rarely accepted), and in section
11.5 we give some theory (admittedly in an artificial setting) which does
give guidance on choice of [.

The other well-known general MCMC method is exemplified by the Gibbs
sampler. In the setting of (11.1), for 6 = (61,...,6,) and 1 < j < p write

fx7j79(v) = fx(el, e 70j—17 v, 0j+17 . ,Qp).
A step 8 — 00 of the Gibbs sampler is defined as follows.

Pick j uniformly from {1,2,...,p}.
Pick V from the density on R! proportional to fx jg(v).
Let 0N be 0 with its j’th coordinate replaced by V.

The heuristic appeal of the Gibbs sampler, compared to a Metropolis scheme,
is that in the latter one typically considers only small proposal moves (lest
proposals be almost always rejected) whereas in the Gibbs sampler one sam-
ples over an infinite line, which may permit larger moves. The disadvantage
is that sampling along the desired one-dimensional line may not be easy to
implement (see section 11.1.2). Closely related to the Gibbs sampler is the
hit-and-run sampler, where one takes a random (isotropic) direction line in-
stead of a coordinate line; section 11.2.2 abstracts the properties of such line
samplers, and section 11.3 continues this design topic to discuss more com-
plex designs of chains which attain a specified target distribution as their
stationary distribution.

We now turn to analysis issues, and focus on the simplest type of prob-
lem, obtaining an estimate for an expectation g = Y g(x)7(x) using an
irreducible chain (X;) designed to have stationary distribution 7. How do
we obtain an estimate, and how accurate is it? The most straightforward
approach is single-run estimation. The asymptotic variance rate is

o

o? := lim ¢t 'var <Zg(X5)> = Z covr(9(Xo), 9(Xs)). (11.2)
s=1

t—o00
s§=—00

So simulate a single run of the chain, from some initial state, for some large
number ¢ of steps. Estimate g by

> g% (11.3)
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and estimate the variance of § by (¢t —to) 62, and report a confidence inter-
val for § by assuming g has Normal distribution with mean g and the esti-
mated variance. Here 62 is an estimate of o2 obtained by treating the sample
covariances 75 (i.e. the covariance of the data-set (g(X;), g(Xi1s));0 <i <
t — s) as estimators of v5 = cov(9(Xp), 9(Xs)). And the burn-in time ¢y is
chosen as a time after which the 45 become small.

Though the practical relevance of theoretical mixing time pa-
rameters is debatable, one can say loosely that single-run estimates based
on t steps will work fine if ¢ is large compared to the relaxation time 7o.
The difficulty is that in practical MCMC problems we do not know, or have
reasonable upper bounds on, 7, nor can we estimate 79 rigorously from sim-
ulations. The difficulty in diagnosing convergence from simulations is the
possibility of metastability error caused by multimodality. Using statisti-
cal physics imagery, the region around each mode is a potential well, and
the stationary distribution conditioned to a potential well is a metastable
distribution. Believing that a simulation reaches the stationary distribution
when in fact it only reaches a metastable distribution is the metastability
error.

The simplest way to try to guard against metastability error is the mul-
tiple trials diagnostic. Here we run k independent copies of the chain from
different starting states, each for t steps. One diagnostic is to calculate the
k sample averages gj, and check that the empirical s.d. of these k averages
is consistent with the estimated s.d. (t — to)~1/26. Intuitively, one chooses
the initial states to be “overdispersed”, i.e. more spread out than we expect
the target distribution to be; passing the diagnostic test gives us some re-
assurance against metastability error (if there were different potential wells,
we hope our runs would find more than one well, and that different behavior
of g on different wells would be manifest).

Of course, if one intends to perform such diagnostics it makes sense to
start out doing the k multiple runs. A more elaborate procedure is to divide
[0,¢] into L successive blocks, and seek to check whether the kL blocks “look
similar”. This can be treated as a classical topic in statistics (“analysis of
variance”). In brief, we compute the sample mean g; ; and sample variance
&z‘z,j for the j’th block of the ¢’th simulation, and see if this data (perhaps
after deleting the first few blocks of each simulation) is consistent with the
blocks being i.i.d.. If so, we use the overall average as an estimator of g,
and estimate the accuracy of this estimator by assuming the blocks were
independent.

If a multiple-runs diagnostic fails, or if one lacks confidence in one’s abil-
ity to choose a small number of starting points which might be attracted to
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different nodes (if such existed), then one can seek schemes specially adapted
to multimodal target densities. Because it is easy to find local maxima of a
target density f, e.g. by a deterministic hill-climbing algorithm, one can find
modes by repeating such an algorithm from many initial states, to try to
find an exhaustive list of modes with relatively high f-values. This is mode-
hunting; one can then design a chain tailored to jump between the wells
with non-vanishing probabilities. Such methods are highly problem-specific;
more general methods (such as the multi-level or multi-particle schemes of
sections 11.3.3 and 11.3.4) seek to automate the search for relevant modes
within MCMC instead of having a separate mode-hunting stage.

In seeking theoretical analysis of MCMC one faces an intrinsic difficulty:
MCMC is only needed on “hard” problems, but such problems are difficult
to study. In comparing effectiveness of different variants of MCMC it is
natural to say “forget about theory — just see what works best on real
examples”. But such experimental evaluation is itself conceptually difficult:
pragmatism is easier in theory than in practice!

11.1.2 Further aspects of applied MCMC

Sampling from one-dimensional distributions. Consider a probability distri-
bution p on R' with density function f and and distribution function F.
In one sense, sampling from p is easy, because of the elementary result that
F~YU) has distribution u, where U is uniform on [0,1] and # = F~!(u)
is the inverse function of u = F(z). In cases where we have an explicit
formula for F~!, we are done. Many other cases can be done using rejection
sampling. Suppose there is some other density g from which we can sample
by the inverse distribution function method, and suppose we know a bound
¢ > sup, f(z)/g(x). Then the algorithm

propose a sample x from g(-);

accept x with probability %; else propose a new sample from

g

produces an output with density f(-) after mean ¢ steps. By combining these

two methods, libraries of algorithms for often-encountered one-dimensional

distributions can be built, and indeed exist in statistical software packages.
But what about a general density f(x)? If we need to sample many times

from the same density, it is natural to use deterministic numerical methods.

First probe f at many values of z. Then either

(a) build up a numerical approximation to F and thence to F~!; or
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(b) choose from a library a suitable density g and use rejection sampling.
The remaining case, which is thus the only “hard” aspect of sampling from
one-dimensional distributions, is where we only need one sample from a
general distribution. In other words, where we want many samples which
are all from different distributions. This is exactly the setting of the Gibbs
sampler where the target multidimensional density is complicated, and thus
motivates some of the variants we discuss in section 11.3.

Practical relevance of theoretical mizing time parameters. Standard theory
from Chapter 4 (yyy cross-refs) relates 7o to the asymptotic variance rate
02(g) at (11.2) for the “worst-case” g:

1 1+ A 02(9)
= =~ = su .
1— )Xo 1— )Xo g var pg

T (11.4)
Moreover Proposition 29 of Chapter 4 (yyy 10/11/94 version) shows that
02(9) also appears in an upper bound on variances of finite-time averages
from the stationary chain. So in asking how long to run MCMC simulations,
a natural principle (not practical, of course, because we typically don’t know
7’2) is

base estimates on t steps, where ¢ is a reasonable large multiple
of T2.

But this principle can be attacked from opposite directions. It is sometimes
argued that worrying about 75 (corresponding to the worst-case g) is overly
pessimistic in the context of studying some specific g. For instance, Sokal
[311] p. 8 remarks that in natural statistical physics models on the infinite
lattice near a phase transition in a parameter 6, as 6 tends to the critical
point the growth exponent of o2(g) for “interesting” g is typically different
from the growth exponent of 75. Madras and Slade [252] p. 326 make similar
remarks in the context of the pivot algorithm for self-avoiding walk. But we
do not know similar examples in the statistical R¢ setting. In particular, in
the presence of multimodality such counterexamples would require that g
be essentially “orthogonal” to the differences between modes, which seems
implausible.

Burn-in, the time ¢y excluded from the estimator (11.3) to avoid undue
influence of initial state, is conceptually more problematic. Theory says that
taking ¢y as a suitable multiple of 71 would guarantee reliable estimates. The
general fact 71 > 7o then suggests that allowing sufficient burn-in time is a
stronger requirement than allowing enough “mixing” for the stationary chain
— so the principle above is overly optimistic. On the other hand, because it
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refers to worst-case initial state, requiring a burn-in time of 7; seems far too
conservative in practice. The bottom line is that one cannot eliminate the
possibility of metastability error; in general, all one gets from multiple-runs
and diagnostics is confidence that one is sampling from a single potential
well, in the imagery below (though section 11.6.2 indicates a special setting
where we can do better).

Statistical physics imagery. Any probability distribution 7 can be written
as

m(x) o exp(—H(x)).

One can call H a potential function; note that a mode (local maximum) of 7
is a local minimum of H. One can envisage a realization of a Markov chain
as a particle moving under the influence of both a potential function (the
particle responds to some “force” pushing it towards lower values of H) and
random noise. Associated with each local minimum y of H is a potential
well, which we envisage as the set of points which under the influence of the
potential only (without noise) the particle would move to y (in terms of m,
states from which a “steepest ascent” path leads to y).

A fundamental intuitive picture is that the main reason why a reversible
chain may relax slowly is that there is more than one potential well, and the
chain takes a long time to move from one well to another. In such a case,
7 conditioned to a single potential well will be a metastable (i.e. almost-
stationary) distribution. One expects the chain’s distribution, from any
initial state, to reach fairly quickly one (or a mixture) of these metastable
distributions, and then the actual relaxation time to stationarity is domi-
nated by the times taken to move between wells. In more detail, if there are
w wells then one can consider, as a coarse-grained approximation, a w-state
continuous-time chain where the transition rates w; — w9 are the rates of
moving from well wy to well wy. Then 7 for the original chain should be
closely approximated by 75 for the coarse-grained chain.

The hierarchical Normal model. As a very simple instance of (11.1), take
d=1,p=2and x — ¢(u,0?, z) the Normal(y, 0?) density. Then let (i, o)
be chosen independently for each individual from some joint density h(u, o)
on R x RT. The data is an n-vector x = (x1,...,x,) and the full posterior
distribution is

n
fX(Mla ceey Mn, 01, - 7071) = 2;1 H h(uh O—Z)(b(ulv 02'2,1'7;)-
i=1
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Typically we are interested in a posterior mean of u; for fixed ¢, that is g for

g(ulu"'vunuglv'”y()—n) = -

Pragmatism is easier in theory than in practice. In comparing MCMC meth-
ods experimentally, one obvious issue is the choice of example to study. An-
other issue is that, if we measure “time” as “number of steps”, then a step of
one chain may not be comparable with a step of another chain. For instance,
a Metropolis step is typically easier to implement than a Gibbs step. More
subtlely, in combinatorial examples there may be different ways to set up
a data structure to represent the current state in a way that permits easy
computation of w-values. The alternative of measuring “time” as CPU time
introduces different problems — details of coding matter.

11.2 The two basic schemes

We will present general definitions and discussion in the context of finite-
state chains on a state space S; translating to continuous state space such
as R? involves slightly different notation without any change of substance.

11.2.1 Metropolis schemes

Write K = (kgy) for a proposal transition matrix on S. The simplest case is
where K is symmetric (kgy = kyz). In this case, given 7 on S we define a
step z — 2’ of the associated Metropolis chain in words by

e pick y from k(z,-) and propose a move to y;

e accept the move (i.e. set ' = y) with probability min(1,m,/m,), oth-
erwise stay (z/ = z).

This recipe defines the transition matrix P of the Metropolis chain to be

Day = kyymin(1, m,/m,), Yy # .

Assuming K is irreducible and m strictly positive, then clearly P is irre-
ducible. Then since mypgy = kgy min(m,, 7,), symmetry of K implies P
satisfies the detailed balance equations and so is reversible with stationary
distribution 7.

The general case is where K is an arbitrary transition matrix, and the
acceptance rule becomes
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e accept a proposed move x — y with probability min(1, %)

The transition matrix of the Metropolis chain becomes

kya
Pay = kzy min (1, ﬂ-yky> , Y Fx. (11.5)
Tig Ry

To ensure irreducibility, we now need to assume connectivity of the graph
on S whose edges are the (z,y) such that min(k,y, kyz) > 0. Again detailed
balance holds, because

TgPry = min('ﬂmkxya Wyky:v)v Yy 7& Zz.

The general case is often called Metropolis-Hastings — see Notes for termi-
nological comments.

11.2.2 Line-sampling schemes

The abstract setup described below comes from Diaconis [113]. Think of
each S; as a 