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Abstract

We model a long queue of humans by a continuous-space model in
which, when a customer moves forward, they stop a random distance
behind the previous customer, but do not move at all if their distance
behind the previous customer is below a threshold. The latter assump-
tion leads to “waves” of motion in which only some random number W
of customers move. We prove that P(W > k) decreases as order k−1/2;
in other words, for large k the k’th customer moves on average only
once every order k1/2 service times. A more refined analysis relies on
a non-obvious asymptotic relation to the coalescing Brownian motion
process; we give a careful outline of such an analysis without attending
to all the technical details.

MSC 2010 subject classifications: 60K25, 60J05, 60J70.
Key words. Coalescing Brownian motion, scaling limit, spatial queue.

1 Introduction

Imagine you are the 100th person in line at an airport security checkpoint.
As people reach the front of the line they are being processed steadily, at
rate 1 per unit time. But you move less frequently, and when you do move,
you typically move several units of distance, where 1 unit distance is the
average distance between successive people standing in the line.

∗Research supported by NSF Grants DMS-106998 and 1504802.

1



This phenomenon is easy to understand qualitatively. When a person
leaves the checkpoint, the next person moves up to the checkpoint, the next
person moves up and stops behind the now-first person, and so on, but
this “wave” of motion often does not extend through the entire long line;
instead, some person will move only a short distance, and the person behind
will decide not to move at all. Intuitively, when you are around the k’th
position in line, there must be some number a(k) representing both the
average time between your moves and the average distance you move when
you do move – these are equal because you are moving forwards at average
speed 1. In other words, the number W of people who move at a typical
step has distribution P(W ≥ k) = 1/a(k). This immediately suggests the
question of how fast a(k) grows with k. In this paper we will present a
stochastic model and prove that, in the model, a(k) grows as order k1/2.

In classical queueing theory [8], randomness enters via assumed random-
ness of arrival and service times. In contrast, even though we are modeling
a literal queue, randomness in our model arises in a quite different way, via
each customer’s choice of exactly how far behind the preceding customer
they choose to stand, after each move. That is, we assume that “how far
behind” is chosen (independently for each person and time) from a given
probability measure µ on an interval [c−, c

+] where c− > 0. We interpret
this interval as a “comfort zone” for proximity to other people. By scaling
we may assume µ has mean 1, and then (excluding the deterministic case)
µ has some variance 0 < σ2 <∞.

In words, the model is

when the person in front of you moves forward to a new position,
then you move to a new position at a random distance (chosen
from distribution µ) behind them, unless their new position is
less than distance c+ in front of your existing position, in which
case you don’t move, and therefore nobody behind you moves.

For the precise mathematical setup it is easiest to consider an infinite queue.
A state x = (x0, x1, x2, . . .) of the process is a configuration

0 = x0 < x1 < x2 < x3 . . . , xi − xi−1 ∈ [c−, c
+]

representing the positions of the customers on the half-line [0,∞). The state
space X is the set of such configurations. The process we study – let us call
it the spatial queue process – is the discrete-time X-valued Markov chain
(X(t), t = 0, 1, 2, . . .) whose transitions from an arbitrary initial state x to
X(1) have the following distribution. Take i.i.d. (ξi, i ≥ 1) with distribution
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µ and define

X0(1) = 0

W (1) = min{i : ξ1 + . . .+ ξi ≥ xi+1 − c+}
Xi(1) = ξ1 + . . .+ ξi, 1 ≤ i < W (1)

= xi+1, i ≥W (1).

This simply formalizes the verbal description above. Note W (1) is the num-
ber of customers who moved (including the customer moving to the service
position 0) in that step; call W (1) the wave length at step 1. As more ter-
minology: in configuration x = (xi, i ≥ 0) the customer at position xi has
rank i. So in each step, a customer’s rank will decrease by 1 whereas their
position may stay the same or may decrease by some distance in (0,∞);
recall that the random variables ξ do not directly indicate the distance a
customer moves, but instead indicate the distance at which the customer
stops relative to the customer ahead. For a general step of the process we
take i.i.d. (ξi(t), i ≥ 1, t ≥ 1) with distribution µ and define

W (t) = min{i : ξ1(t) + . . .+ ξi(t) ≥ Xi+1(t− 1)− c+} (1)

Xi(t) = ξ1(t) + . . .+ ξi(t), 1 ≤ i < W (t) (2)

= Xi+1(t− 1), i ≥W (t). (3)

Before continuing we should point out something we cannot prove, but
strongly believe.

Conjecture 1. Under appropriate “non-lattice” conditions on µ, the spatial
queue process has a unique stationary distribution, X(∞) say, and from any
initial configuration we have X(t)→d X(∞) as t→∞.

Understanding the space-time trajectory of a typical customer far away
from the head of the queue is essentially equivalent to understanding the
large values of the induced process (W (t), t ≥ 1) of wave lengths, so that will
be our focus. Intuitively we study properties of the stationary distribution,
or of a typical customer in the stationary process, but we are forced to
phrase results in a time-averaged way. Our fundamental result concerns the
order of magnitude of long waves. Define

ρ+(j) = lim sup
τ→∞

τ−1
τ∑
t=1

P(W (t) > j), ρ−(j) = lim inf
τ→∞

τ−1
τ∑
t=1

P(W (t) > j).
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Proposition 2. There exist constants 0 < a− < a+ <∞ (depending on µ)
such that

a−j
−1/2 ≤ ρ−(j) ≤ ρ+(j) ≤ a+j−1/2, j ≥ 1. (4)

In other words for a rank-j customer, for large j, the average time be-
tween moves is order j1/2. This result is proved in sections 2 and 3 as
Proposition 11 and Corollary 15.

Building upon this order-of-magnitude result (Proposition 2), sharper
results can be obtained by exploiting a connection with the coalescing Brow-
nian motion (CBM) process, which we start to explain next.

1.1 Graphics of realizations

The graphics below not only illustrate the qualitative behavior of the process
but also, via a non-obvious representation, suggest the main result.

time t

0
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11

position x
0 2 4 6 8 10

•

Figure 1. A realization of the process, showing space-time trajectories
of alternate customers. The customer with initial rank 12 is marked by •.

Figure 1 shows a realization of the process over the time interval 0 ≤ t ≤
11 and the spatial range 0 ≤ x ≤ 10. Time increases upwards, and the head
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of the queue is on the left. The • indicate customer positions at each time,
and the lines indicate the space-time trajectories of individual customers
(for visual clarity, only alternate customers’ trajectories are shown).

Although Figure 1 seems the intuitively natural way to draw a realiza-
tion, a different graphic is more suggestive for mathematical analysis. A
configuration x = (0 = x0 < x1 < x2 < x3 . . .) can be represented by its
centered counting function

F (x) := max{k : xk ≤ x} − x, 0 ≤ x <∞. (5)

as illustrated in Figure 2.

position x
2 4 6 8 10

0

1

-1

Figure 2. The centered counting function associated with a configura-
tion •.

At each time t, let us consider the centered counting function Ft(x) and
plot the graph of the upward-translated function

x→ G(t, x) := t+ Ft(x). (6)

In other words, we draw the function starting at the point (0, t) instead of
the origin. Taking the same realization as in Figure 1, and superimposing
all these graphs, gives Figure 3.
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position x
0 2 4 6 8 10

Figure 3. A realization of the process G(t, x). The • indicate the points
associated with the moves of the customer with initial rank 12; compare with
the space-time trajectory in Figure 1.

Clearly the graphs in Figure 3 are “coalescing” in some sense. What is
precisely true is the following. The assertion

the rank k person (for some k) at time t is at position x∗ and
remains at that position x∗ at time t+ 1

is equivalent to the assertion

the graphs starting at (0, t) and at (0, t + 1) both contain the
same step of the form (x∗, s) to (x∗, s+ 1) (for some s).

The former assertion implies that customers at ranks greater than k also do
not move, and therefore the graphs in the second assertion coincide for all
x ≥ x∗. So, even though the graphs may not coalesce upon first meeting (as
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is clear from the left region of Figure 3), they do coalesce at the first point
where they make the same jump.

Many readers will immediately perceive that Figure 3 shows “something
like” coalescing random walks in one dimension. Our goal is to formalize
this as an asymptotic theorem. But note that, for a graphic of a model of
coalescing random walks which is drawn to resemble Figure 3, the horizontal
axis would be “time” and the vertical axis would be “space”. So in making
the analogy between our process and coalescing random walks, we are inter-
changing the roles of space and time. In particular, in Figure 3 our process
is (by definition) Markov in the vertical direction, whereas models of coa-
lescing random walks pictured in Figure 4 below are (by definition) Markov
in the horizontal direction. These means that in conditioning arguments we
will need to be careful, in fact somewhat obsessive, to be clear about what
exactly is being conditioned upon.

1.2 Coalescing Brownian motion on the line

Given τ > 0 and a random locally finite subset ητ ⊂ R, it is straightforward
to define a process (By(t), τ ≤ t <∞, y ∈ ητ ) which formalizes the idea

(i) at time τ , start independent Brownian motions (B0
y(t), t ≥ τ) on R from

each y ∈ ητ ;
(ii) when two of these diffusing “particles” meet, they coalesce into one
particle which continues diffusing as Brownian motion.

So By(t) is the time-t position of the particle containing the particle started
at y. Call this process the CBM(ητ , τ) process. A line of research starting
with Arratia [2] (see also [10]) shows this construction can be extended to
the standard CBM (coalescing Brownian motion) process (B(y, t),−∞ <
y <∞, t ≥ 0) which is determined by the properties

(iiii) given the point process ητ = {B(y, τ), y ∈ R} of time-τ particle posi-
tions, the process subsequently evolves as CBM(ητ , τ)
(iv) limτ↓0 P(ητ ∩ I = ∅) = 0 for each open I ⊂ R.

The latter requirement formalizes the idea that the process starts at time
0 with a particle at every point y ∈ R. In particular, the point process
ηt = {B(y, t), y ∈ R} of time-t particle positions inherits the scaling and
translation-invariance properties of Brownian motion:

(v) For each t > 0, the point process ηt(·) is translation-invariant and so has
some mean density ρt.
(vi) The distribution of the family (ηt(·), 0 < t <∞) is invariant under the
scaling map (t, y)→ (ct, c1/2y).
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(vii) The distribution of ηt(·) is the push-forward of the distribution of η1(·)
under the map y → t1/2y and so

ρt = t−1/2ρ1. (7)

What will be important in this paper is an “embedding property”. If
we take the CBM(η̃0, 0) process, starting at time 0 with some translation-
invariant locally finite point process η̃0 with mean density 0 < ρ̃0 <∞, and
embed this process into standard CBM in the natural way, it is straightfor-
ward to see that the time-asymptotics of CBM(η̃0, 0) are the same as the
time-asymptotics of standard CBM.

1.3 What does the CBM limit tell us?

Figure 3 suggests an asymptotic result of the form

the spatial queue process, in the Figure 3 representation as a
process G(t, x), converges in distribution (in the usual random
walk to Brownian motion scaling limit) to the CBM process.

We formalize this in section 4 as Theorem 17, by working on a “coalescing
continuous functions” state space. Our formalization requires a double limit:
we study the process as it affects customers beyond position x, in a time
t → ∞ limit, and show the x → ∞ rescaled limit is a CBM process. And
as in our earlier statement of Theorem 3, we can only prove this for time-
averaged limits.

Now the Figure 3 representation as a process G(t, x) is a somewhat
“coded” version of the more natural Figure 1 graphic of customers’ trajec-
tories, so to interpret the CBM scaling limit we need to “decode” Figure 3.
The wave lengths, measured by position of first unmoved customer, appear
in Figure 3 as the positions x′ where two functions G(t′, ·), G(t′′, ·) coalesce.
In other words the time-asymptotic rate of waves of length > x equals the
time-asymptotic rate at which distinct functions G(t, ·) cross over x. In the
space-asymptotic limit (of rank j or position x), as a consequence of results
used to prove the order of magnitude bounds (Proposition 2) we have that
x/j → 1. Now the scaling limit identifies “distinct functions G(t, ·) crossing
over x” with CBM particles at time x, and so Theorem 17 will imply a result
for the first-order asymptotics of wave length, measured by either rank or
position, which sharpens Proposition 2. Recall σ is the s.d. of µ.
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Theorem 3. For any initial distribution,

lim sup
τ→∞

τ−1
τ∑
t=1

P(W (t) > i) ∼ ρ1σ−1i−1/2 as i→∞

lim inf
τ→∞

τ−1
τ∑
t=1

P(W (t) > i) ∼ ρ1σ−1i−1/2 as i→∞

where ρ1 is the numerical constant (7) associated with CBM.

This will be a consequence of Corollary 21. As discussed earlier, if we
knew there was convergence to stationarity we could restate this in the
simpler way

at stationarity, P(W (t) > i) ∼ ρ1σ−1i−1/2 as i→∞. (8)

Figure 4. Sketch of CBM over the time interval [0, 1].
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The implications of the CBM scaling limit for the space-time trajectory
of a typical customer are rather more subtle. As suggested by Figure 8, the
trajectory is deterministic to first order, so the CBM limit must be telling
us something about the second-order behavior.

Look at Figure 4, which shows CBM over “time” 0 ≤ x ≤ 1 and “space”
−∞ < t < ∞. There are positions (wu, u ∈ Z) of the particles at time
x = 1; and

(*) each such particle is the coalescence of the particles which
started at x = 0 in some interval (tu−1, tu).

So we have two stationary point processes on R, the processes (wu, u ∈ Z)
and (tu, u ∈ Z), which must have the same rate ρ1.

In the queue model, as Figure 3 illustrates, the motion of one particular
individual can be seen within the family of graphs as line segments within
one diagonal line, To elaborate, write (xu, su) for the coordinates of the top
end points (the •’s in Figure 3) of these segments, after the uth move of the
individual. The uth move happens at some time tu, when the individual
moves to position xu, and so su = G(tu, xu). Until the next move, that is
for tu ≤ t < tu+1, we have (from the definition of G) that G(t, xu) = su.
At the time tu+1 of the next move, the individual moves to some position
xu+1 < xu. From the definition of G we have

su+1 − su = G(tu+1, xu+1)−G(tu, xu) = −xu+1 + xu.

So the points (xu, su) lie on a diagonal line

xu + su = constant.

In fact the constant is the initial rank of the individual, or equivalently the
time at which the individual will reach the head of the queue. What is
important to note for our analysis is that the times tu of the moves are not
indicated directly by the points (xu, su), but instead are specified by

G(t, xu) = su, tu ≤ t < tu+1. (9)

In words,

(**) the tu are the end-times of the intervals of t for which the
functions G(t, ·) have coalesced before the position of the indi-
vidual.

10



So consider a customer at position approximately n, and hence with rank
approximately n, for large n. From the order-of-magnitude results for wave
lengths, the time between moves, and the distances moved, for this customer
are both order n1/2. But in the Brownian rescaling which takes Figure 3
to Figure 4, the horizontal axis is rescaled by 1/n and the vertical axis by
1/n1/2. That is, 1 unit time in the CBM model corresponds to n space
units in the queue model, and 1 space unit in the CBM model corresponds
to n1/2 time units in the queue model. So when our position-n customer
moves, in the CBM approximation the horizontal distance moved is only
O(n−1/2) whereas the vertical distance is order 1. So in the scaling limit
the Figure 3 points corresponding to that customer become the points wu
on the vertical line in Figure 4. One consequence of this limit is provided
by (*) and (**): the sequence of times of moves of that customer becomes,
in the scaling limit, the sequence (tu) in the CBM process indicating the
spatial intervals of the time-0 particles that have coalesced into the time-1
particles. Precisely, from Theorem 17 we can deduce (section 4.3 gives the
outline) the following corollary, in which the first component formalizes the
assertion above.

Let Uτ have uniform distribution on {1, 2, . . . , τ}.

Corollary 4. In the queue model, consider the individual at time Uτn nearest

to position n. Write ((t
(n)
u , w

(n)
u ), u ≥ 1) for the times t and end-positions

w of moves of that individual. If τn →∞ sufficiently fast then(
t
(n)
u − Uτn
n1/2

,
n− w(n)

u

n1/2

)
u≥1

d→
(
σtu, σwu

)
−∞<u<∞

in the sense of convergence of point processes on R2.

If we knew there was convergence to stationarity in the queue model
then we could use τn in place of Uτn .

How does the second component in Corollary 4 arise? Return to the
setting of (**), and consider the graphs G(tu+1, ·) and G(tu, ·) coding con-
figurations at successive moves of the individual under consideration. From
the definition of G, the increment G(tu+1, xu) − G(tu, xu) equals (up to
±O(1)) the number (m, say) of customers who cross position xu in the time-
(tu+1) wave. So the distance moved by the individual under consideration.
is essentially the sum of these m inter-customer spacings. These spacings
are i.i.d.(µ) subject to a certain conditioning, but the conditioning event
does not have small probability, so the distance moved by that customer is
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(1± o(1))m. The size of an increment G(tu+1, x)−G(tu, x) as a function of

x is first-order constant over the spatial interval x ∈ (xu ± O(x
1/2
u )) where

the individual will be for the next O(1) moves. So for large n and t, the
successive distances moves by a rank n customer around time t are to first
order the distances between the successive distinct values of t→ G(t, n). In
the scaling limit these become the successive increments of (wu) (Figure 4)
in the CBM process, explaining the second component in Corollary 4.

We will add some details to this outline in section 4.3.

1.4 Outline of proofs

We found it surprisingly hard to devise proofs, in part because of the sub-
tleties, mentioned earlier, arising in formalizing conditioning arguments.
Simpler proofs may well be discovered in future.

The main goal of this paper is to prove Proposition 2, that waves of
lengths> k occur at rate of order k−1/2, not faster or slower. As one method-
ology, we can analyze the distribution at a large time by looking backwards,
because the current configuration must consist of successive “blocks” of cus-
tomers, each block having moved to their current position at the same past
time. In particular, because the inter-customer distances within a block are
roughly i.i.d.(µ) (only roughly because of conditioning effects), and because
block lengths tend to grow, we expect that (in our conjectured stationary
limit) the space-asymptotic inter-customer distances should become approx-
imately i.i.d.(µ). One formalization of this idea is given in Lemma 12, and
this leads (section 3.2) to an order k−1/2 lower bound on the rate of waves
of lengths > k; but for technical reasons we first need to know the corre-
sponding upper bound. Our proof of the upper bound (outlined at the start
of section 2) is intricate, but the key starting point is the observation (sec-
tion 2.1) that, after a long wave, the inter-customer spacings of the moved
customers tend to be shorter than i.i.d.(µ); this and classical random walk
estimates lead to an order k1/2 lower bound on the mean time between suc-
cessive waves of lengths > k, which is an order k−1/2 upper bound on the
rate of such waves. Although intricate in detail, all these proofs essentially
rely only on explicit bounds, in contrast to those mentioned below.

In section 4 we develop the CBM scaling limit results, and their im-
plications, discussed in section 1.3. Given the order of magnitude result
(Proposition 2), this further development is essentially “soft”, involving
weak convergence and compactness on an unfamiliar space (of coalescing
continuous functions), combined with basic properties of CBM and classical
weak convergence of random walks to Brownian motion. We give a careful
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outline of such an analysis without attending to all the technical details.

1.5 Remarks on the model and related work

Conceptually the model seems fairly realistic and to provide a plausible
explanation for what the reader might have observed in long queues such
as airport security lines. See section 5.1 for some data. In reality there
are other reasons why a customer might not move when the ‘wave” reaches
them – not paying attention because of talking or texting, for instance. Two
assumptions of our model – that service times are constant, and that the
successive customers in a wave move simultaneously – are unrealistic, but
these are irrelevant to the particular feature (length of waves of motion) that
we are studying. Intuitively the model behavior should also be robust to
different customers having different parameters µ, c−, c

+ – see section 5.3.
We do not know any previous work on closely related models. In one way,

our model could be regarded as a continuum, syncronous-moves analog of
the (discrete-space, asynchronous moves) TASEP which has been intensively
studied [5] owing to its connections with other statistical physics models.
The small literature on such analogs of TASEP (see [4] and citations therein)
has focused on ergodic properties for processes on the doubly-infinite line. In
another way, our phenomenon could be regarded as analogous to stop-and-
go motion in traffic jams, for which realistic models would need to consider
both positions and velocities of vehicles, although discrete-space discrete-
time synchronous models have also been studied [7]. Academic literature
such as [6] studying real world security lines does not address the specific
“wave” feature studied in this paper.

Finally, our concern in this paper is different from the usual concerns of
Stochastic Systems (evaluation or optimization of some measure of system
performance). Instead the paper seeks to articulate a plausible probabilis-
tic explanation of an observed everyday phenomenon, in the spirit of the
author’s ”probability in the real world” project [1].
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2 Upper bounding the rate of long waves

In this section we show that the rate of waves of length > j is O(j−1/2).
Informally, we do this by considering the progress of an individual from rank
j + o(j) to rank j − o(j). The individual only moves when there is a wave
of length > j ± o(j). The key idea is

If the individual moves a distance o(j1/2) then the next wave
that moves the individual is unlikely to have length > 2j.

The argument is intricate and in fact uses that idea somewhat indirectly
(Proposition 9). The remaining argument is outlined in section 2.2.

Figure 3 seems the most intuitive way to picture waves, in terms of their
spatial extent, but for proofs it is more convenient to work with ranks. To
track the progress of an individual we use the notation

X∗s (t) = Xs−t(t), 0 ≤ t ≤ s.

That is, X∗s (·) tracks the position of “individual s”, the individual who starts
at rank s and will reach the service position at time s. Write

X[s](t) = (Xi(t), 0 ≤ i ≤ s− t)

for the positions of “individual s” and the customers ahead of that individual
in the queue. Write

F(t) = σ(X(u), 0 ≤ u ≤ t)

for the natural filtration of our process, which is constructed in terms of
i.i.d(µ) random variables {ξi(t), i ≥ 1, t ≥ 1} as at (1 - 3).

2.1 Close waves coalesce quickly

The event that individual s is moved in the time-t wave is the event

{X∗s (t) < X∗s (t− 1)} = {W (t) > s− t}.

Such a wave may be a “long” wave, in that it extends at least j customers
past individual s. Our first goal is to show, roughly speaking, that after one
long wave, and before individual s moves a distance o(j1/2):

either (i) there is unlikely to be another long wave;
or (ii) there are likely to be many waves that move individual s.

This is formalized by Propositions 9 and 10, though complicated by the fact
we will need to consider “good” long waves.
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How far one wave reaches depends on the growth rate of the partial
sums

∑k
i=1 ξi associated with this new wave, relative to the partial sums

associated with the previous long wave. Because we are interested in the
difference, what is ultimately relevant is the distribution of the maximum of
the symmetrized (hence mean zero) random walk

Ssymk =

k∑
i=1

(ξ′i − ξ′′i ) (10)

where (ξ′i) and (ξ′′i ) denote independent i.i.d.(µ) sequences. Define

q(j, y) = P( max
1≤k≤j

Ssymk ≤ y). (11)

For later use, note that Donsker’s theorem and the fact that the distribution
of the maximum of Brownian motion over 0 ≤ t ≤ 1 has bounded density
imply

Lemma 5. There exists a constant C and δj ↓ 0, depending only on the
distribution µ, such that

q(j, y) ≤ Cyj−1/2 + δj , y ≥ 1, j ≥ 1.

Now consider

qj,y(x1, . . . , xj) = P

(
max
1≤k≤j

k∑
i=1

(ξ′i − xi) ≤ y

)
. (12)

Say a sequence (x1, . . . , xj) is (j, y)-good if qj,y(x1, . . . , xj) ≤ 2q(j, y), and
note that for an i.i.d.(µ) sequence (ξi)

P((ξ1, . . . , ξj) is not (j, y)-good ) = P(qj,y(ξ1, . . . , ξj) > 2q(j, y))

≤ Eqj,y(ξ1, . . . , ξj)
2q(j, y)

=
q(j, y)

2q(j, y)
=

1

2
. (13)

The proof of the next lemma exploits a certain monotonicity property: the
spacings between customers tend to be shorter than usual, for the customers
who have just moved in a long wave.
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Lemma 6. For x ∈ X, x′ < xs−t0+1(t0 − 1), 1 ≤ t0 < s, j ≥ 1,

P [(ξs−t0+1(t0), . . . , ξs−t0+j(t0)) is (j, y)-good

|X(t0 − 1) = x, Xs−t0(t0) = x′,W (t0) > s− t0 + j
]
≥ 1

2
.

Proof. Given X(t0−1) = x, the event {W (t0) > s− t0 + j} is the event
{
∑k

i=1 ξi(t0) < xk+1 − c+, 1 ≤ k ≤ s − t0 + j}. This implies that, given
X(t0 − 1) = x and Xs−t0(t0) = x′ < xs−t+1(t0 − 1) (the latter is equivalent
to X∗s (t0) = x′ < X∗s (t0 − 1)), the event {W (t0) > s− t0 + j} is the event

{x′ +
k∑
i=1

ξs−t0+i(t0) < xk+1 − c+, 1 ≤ k ≤ j}. (14)

Write (ξ̂i, 1 ≤ i ≤ j) for random variables with the conditional distribution
of (ξs−t0+i(t0), 1 ≤ i ≤ j) given event (14). Write (ξi, 1 ≤ i ≤ j) for an
independent i.i.d.(µ) sequence. The conditional probability of event (14)
given ξs−t0+1(t0) is clearly a decreasing function of ξs−t0+1(t0). From this
and Bayes rule we see that the distribution of ξ̂1 is stochastically smaller than
µ, in other words we can couple ξ̂1 and ξ1 so that ξ̂1 ≤ ξ1 a.s. Repeating this
argument inductively on i, we can couple (ξ̂i, 1 ≤ i ≤ j) and (ξi, 1 ≤ i ≤ j)
so that ξ̂i ≤ ξi, 1 ≤ i ≤ j. Now the function qj,y(x1, . . . , xj) is monotone
increasing in each argument xi, so

if (ξi, 1 ≤ i ≤ j) is (j, y)-good then (ξ̂i, 1 ≤ i ≤ j) is (j, y)-good.

Now (13) implies that (ξ̂i, 1 ≤ i ≤ j) is (j, y)-good with probability ≥ 1/2.
But this is the assertion of the lemma.

The next lemma starts to address the “key idea” stated at the start of
section 2. Given that a time-t0 wave extends at least j places past individual
s, and given that a time-t0+t wave reaches individual s, we can upper bound
the probability this time-t0+ t wave extends at least j places past individual
s, and the upper bound is small if individual s has moved only distance
o(j1/2) between times t0 and t0 + t.

Lemma 7. For t0 ≥ 1, t ≥ 1, s > t0 + t, j ≥ 1,

P(W (t0 + t) > s− t0 − t+ j|X∗[s](t0 + t),F(t0 + t− 1))

≤ qj,X∗s (t0)−X∗s (t0+t)(ξs−t0+1(t0), . . . , ξs−t0+j(t0))

on {W (t0 + t) > s− t0 − t} ∩ {W (t0) > s− t0 + j}.
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Note that the event {W (t0 + t) > s− t0 − t} is the event {X∗s (t0 + t) <
X∗s (t0 + t − 1)} and so is indeed in σ(X∗[s](t0 + t),F(t0 + t − 1)). Also on

the event {W (t0) > s − t0 + j} we have (for 1 ≤ i ≤ j) that ξs−t0+i(t0) =
Xs−t0+i(t0)−Xs−t0+i−1(t0) and so ξs−t0+i(t0) is F(t0)-measurable.

Proof. On the event {W (t0 + t) > s − t0 − t} we have {X∗s (t0 + t) <
X∗s (t0 + t− 1)}, and given this, the event {W (t0 + t) > s− t0− t+ j} is the
event

{X∗s (t0 + t) +
k∑
i=1

ξs−t0−t+i(t0 + t) < X∗s+k(t0 + t− 1)− c+, 1 ≤ k ≤ j}.

Now X∗s+k(t0 + t − 1) ≤ X∗s+k(t0) and −c+ < 0, so the event above is a
subset of the event

{
k∑
i=1

ξs−t0−t+i(t0 + t) < X∗s+k(t0)−X∗s (t0 + t), 1 ≤ k ≤ j}. (15)

Restricting further to the event {W (t0) > s− t0 + j}, on which X∗s+k(t0)−
X∗s (t0) =

∑k
i=1 ξs−t0+i(t0), 1 ≤ k ≤ j, we can rewrite (15) as the event

{ max
1≤k≤j

k∑
i=1

(ξs−t0−t+i(t0 + t)− ξs−t0+i(t0)) < X∗s (t0)−X∗s (t0 + t)}. (16)

So the conditional probability in the statement of the lemma is bounded
by the conditional probability, given H := σ(X∗[s](t0 + t),F(t0 + t − 1)),

of event (16). The random variables ξs−t0+i(t0)), X
∗
s (t0), X

∗
s (t0 + t) are

H-measurable and the ξs−t0−t+i(t0 + t) are independent of them. So the
conditional probability of event (16) given H on the subsets specified equals
precisely the bound stated in the lemma, by definition (12) of qj,y(·).

The way we will combine these lemmas is abstracted in the next lemma,
in which S ∧ T denotes min(S, T ). Also, we rather pedantically write
σ(At,F(t− 1)) in the conditioning statement to emphasize that we are con-
ditioning on a σ-field rather than an event.

Lemma 8. Let 1 ≤ T < ∞ be a stopping time for a filtration (F(t), t =
0, 1, 2, . . .). Let At and Bt be events in Ft satisfying

Bt ⊆ At (17)

P(Bt|σ(At,F(t− 1))) ≤ δ on At ∩ {T ≥ t}, t ≥ 1. (18)
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Define

N(τ) =

τ∑
t=1

11At

S = min{t ≥ 1 : Bt occurs}.

Then P(T ≤ S) ≤ δEN(S ∧ T ).

Proof.

P(Bt|F(t− 1))11{T≥t} = E
[
P(Bt|σ(At,F(t− 1)))11{T≥t} | F(t− 1)

]
≤ E

[
δP(At|F(t− 1))11{T≥t} | F(t− 1)

]
= δP(At|F(t− 1))11{T≥t} (19)

the inequality holding by assumptions (17, 18). Now

P(S = t, S ≤ T ) = P(Bt, S ≥ t, T ≥ t)
= E

[
P(Bt|F(t− 1))11{T≥t}11{S≥t}

]
≤ δE

[
P(At|F(t− 1))11{T≥t}11{S≥t}

]
by (19)

= δP(At, S ∧ T ≥ t).

Summing over t ≥ 1 gives the result.

We will now fit together the results above to obtain a result stated as
Proposition 9 below. The statement involves substantial notation, and it is
less cumbersome to develop the notation as we proceed.

Fix even j ≥ 4 and s > j and y > 0. Start the process with X(0) = x
arbitrary. Consider events, for 1 ≤ t < s,

At = {W (t) > s− t}
Ct = {W (t) > s− t+ j}
Bt = Ct ∩ {(ξs−t+1(t), . . . , ξs−t+j) is (j, y)-good }.

In words:
At = “customer s moves at time t”
Ct = “a long wave at time t”
Bt = “the long wave at time t is good”.

Note that we are measuring wave length relative to the current position of
customer s. We study what happens between the times of good long waves,
that is the times

T1 = min{t ≥ 1 : Bt occurs } (20)

Tu = min{t > Tu−1 : Bt occurs }, u ≥ 2. (21)
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Note Tu may be infinite (if no such event occurs); this will not be an issue
because we will be conditioning on {Tu = t0} and will truncate Tu+1.

Fix u ≥ 1 and 1 ≤ t0 < j/2. Recall we previously fixed s > j ≥ 4 and
y > 0; all these variables are integers except y.

By definition, Bt0 is the event that the realization of (ξs−t0+i(t0) =
Xs−t0+i(t0)−Xs−t0+i−1(t0), 1 ≤ i ≤ j) is (j, y)-good. For each 1 ≤ t < s−t0,
Lemma 7 and the fact that qj,y(·) is monotone increasing in y imply

P(Ct0+t|X∗[s](t0 + t),F(t0 + t− 1)) ≤ 2q(j, y)

on At0+t ∩Bt0 ∩ {X∗s (t0)−X∗s (t0 + t) ≤ y} ∩ {Tu = t0}. (22)

Now write
T̂ = min{t ≥ 1 : X∗s (t0)−X∗s (t0 + t) > y}

so that the penultimate event in the intersections in (22) is the event {T̂ >
t0 + t}. Because Bt0+t ⊆ Ct0+t we now have

P(Bt0+t|X∗[s](t0+t),F(t0+t−1)) ≤ 2q(j, y) on At0+t∩Bt0∩{T̂ > t0+t}∩{Tu = t0}.

Because Bt0∩{T̂ > t0+t} ∈ F(t0+t−1) and At0+t ∈ σ(X∗[s](t0+t),F(t0+t−
1)) we can condition down from σ(X∗[s](t0+t),F(t0+t−1)) to σ(At0+t,F(t0+

t− 1)) and write

P(Bt0+t|At0+t,F(t0+t−1)) ≤ 2q(j, y) on At0+t∩Bt0∩{T̂ > t0+t}∩{Tu = t0}.
(23)

Define

NA(τ) =
τ∑
t=1

11At

and similarly for NB(τ) and NC(τ).
We can now apply Lemma 8, restated for times t0 < t < ∞. Condition

on σ({Tu = t0},F(t0 − 1), X∗s (t0)) and restrict to the event {Tu = t0}. In
the hypotheses of Lemma 8 take T = T̂ ∧ j/2, S = Tu+1, δ = 2q(j, y). So
inequality (18) holds by (23). The conclusion of that lemma is now

conditional on σ({Tu = t0},F(t0 − 1), X∗s (t0)) and restricted to
the event {Tu = t0}, we have;

P(T̂ ∧ j/2 ≤ Tu+1) ≤ 2q(j, y)E(NA(Tu+1 ∧ T̂ ∧ j/2)−NA(Tu)).

Rewriting this with all conditioning made explicit:

P(T̂ ∧ j/2 ≤ Tu+1|{Tu = t0},F(t0 − 1), X∗s (t0))
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≤ 2q(j, y)E(NA(Tu+1∧T̂∧j/2)−NA(Tu)|{Tu = t0},F(t0−1), X∗s (t0)) on {Tu = t0}.

The event {T̂ ∧j/2 ≤ Tu+1} is the event {Tu+1 ≤ j/2, X∗s (Tu)−X∗s (Tu+1) ≤
y} ∪ {Tu+1 > j/2}, and because NA(Tu+1 ∧ T̂ ∧ j/2) ≤ NA(Tu+1 ∧ j/2) we
have

P(X∗s (Tu)−X∗s (Tu+1) ≤ y, Tu+1 ≤ j/2|{Tu = t0},F(t0 − 1), X∗s (t0))

≤ 2q(j, y)E(NA(Tu+1∧j/2)−NA(Tu)|{Tu = t0},F(t0−1), X∗s (t0)) on {Tu = t0}.

The notation has become rather cumbersome; we will make it more concise
by defining the σ-field F−(Tu) as follows.

For each t0, the restriction of F−(Tu) to {Tu = t0} is the restric-
tion of σ({Tu = t0},F(t0 − 1), X∗s (t0)) to {Tu = t0}.

Here F−(Tu) is a sub-σ-field of the usual pre-Tu σ-field F(Tu). In words,
when Tu = t0 the usual F(Tu) tells us all about X(t0) whereas F−(Tu) only
tells us X∗s (t0) and the fact that a good long wave has just occured. Note
that Tu is indeed F−(Tu)-measurable, as is X∗s (Tu). Now the inequality
above can be rewritten more concisely as

Proposition 9. For u ≥ 1, even j ≥ 4, s > j, y > 0

P(X∗s (Tu)−X∗s (Tu+1) ≤ y, Tu+1 ≤ j/2|F−(Tu))

≤ 2q(j, y)E(NA(Tu+1 ∧ j/2)−NA(Tu)|F−(Tu)) on {Tu < j/2}.

In the next section we will use this result with y = o(j1/2), implying
q(j, y) is small. Note that Proposition 9 formalizes the property stated at
the start of this section

after one long wave, and before individual s moves a distance
o(j1/2):

either (i) there is unlikely to be another long wave;
or (ii) there are likely to be many waves that move individual s.

except that the Proposition refers to good long waves. However, Lemma 6
says that each long wave has probability ≥ 1/2 to be good, independently of
the past, implying that the mean number of long waves between successive
good long waves is ≤ 2, and more precisely

Lemma 10. For even j ≥ 4, s > j

ENC(j/2) ≤ 2ENB(j/2).
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2.2 The upper bound

Write

Nj(τ) =
τ∑
t=1

11{W (t)>j} (24)

for the number of waves of length > j up to time τ , and then write

ρ+(j) = lim sup
τ→∞

τ−1ENj(τ).

Proposition 11. ρ+(j) = O(j−1/2) as j →∞.

Outline of proof. We track the initial rank-j customer for time j/2.
If the number of good long waves during this time is O(j1/2) then we are
done, because by Lemma 10 the number of waves of length > 2j must also
be O(j1/2) and hence their rate is O(j−1/2). So suppose the number N∗j of

good long waves is larger than O(j1/2). Then we can choose yj = o(j1/2)
such that N∗j yj grows faster than O(j). Then for most of these N∗j waves
the probability of {X∗s (Tu) − X∗s (Tu+1) ≤ yj} must be > 1/2 and so by
Proposition 9, because q(j, yj) = o(1), the mean number of waves of length
> j/2 is a large multiple of the mean number of waves of length > 2j. In
other words, writing W for typical wave length,

if P(W > j) 6= O(j−1/2) then P(W > 2j)/P(W > j/2) is small

and this easily implies that in fact P(W > j) = O(j−1/2).
Details of proof. As in the previous section we track customer s,

but we now set s = j and track the customer for time j/2. Fix y. Take
expectation in Proposition 9 over {Tu < j/2} to get

P(X∗s (Tu)−X∗s (Tu+1) ≤ y, Tu+1 ≤ j/2)

≤ 2q(j, y)E(NA(Tu+1 ∧ j/2)−NA(Tu))11(Tu<j/2). (25)

Note that the number Uj of (j, y)-good long waves before time j/2 can be
represented as

Uj = min{u : Tu+1 > j/2}.

Summing (25) over u ≥ 1 gives

E |{1 ≤ u ≤ Uj−1 : X∗s (Tu)−X∗s (Tu+1) ≤ yj}| ≤ 2q(j, y) E(NA(j/2)−NA(T1)).
(26)

21



Because the initial position of customer j is at most c+j we have

Uj−1∑
u=1

(X∗s (Tu)−X∗s (Tu+1)) ≤ c+j

and hence

|{1 ≤ u ≤ Uj − 1 : X∗s (Tu)−X∗s (Tu+1) > y}| ≤ c+j/y

implying

|{1 ≤ u ≤ Uj − 1 : X∗s (Tu)−X∗s (Tu+1) ≤ y}| ≥ Uj − 1− c+j/y.

Taking expectation and combining with (26), and noting Uj = NB(j/2), we
see

ENB(j/2)− 1− c+j/y ≤ 2q(j, y) ENA(j/2).

Now our customer s has rank decreasing from j to j/2, so a wave that moves
this customer must have length at least j/2:

NA(j/2) ≤ Nj/2(j/2)

in the notation at (24). Similarly, a wave reaching rank 2j is a long wave,
so NC(j/2) ≥ N2j(j/2), and combining with Lemma 10 shows

ENB(j/2) ≥ 1
2EN2j(j/2).

So now we have

EN2j(j/2) ≤ 2 + 2c+j/y + 4q(j, y)ENj/2(j/2).

The initial configuration is arbitrary, so by averaging over consecutive time-
intervals of length j/2 and taking time-asymptotics,

1
4ρ

+(2j) ≤ 1
j + c+

y + q(j, y)ρ+(j/2).

Now set
ψ(j) = j1/2ρ+(j).

Using the Lemma 5 bound q(j, y) ≤ Cyj−1/2 + δj , the previous inequality
becomes

1
4ψ(2j) ≤ 21/2

j1/2
+ 21/2j1/2c+

y + 2Cy
j1/2

ψ(j/2) + 2δjψ(j/2).
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Optimizing over choice of y = yj gives

1
4ψ(2j) ≤ 21/2

j1/2
+ 27/4(c+C)1/2ψ1/2(j/2) + 2δjψ(j/2).

From this it is clear that

lim sup
i→∞

ψ(4i) <∞

and then because ρ+(j) is decreasing we have lim supi→∞ ψ(j) <∞.
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3 Lower bounding the rate of long waves

3.1 The blocks argument

Here we will employ the “blocks” argument mentioned in the introduction.
Fix t0 > 1 and i ≥ 0 and consider individual s = t0 + i, who is at position
Xi(t0) = X∗s (t0) at time t0. Looking backwards in time, the time since the
last move of that individual is

Ls(t0) = max{` ≥ 0 : X∗s (t0) = X∗s (t0 − `)}

where we set Ls(t0) = t0 if s has never moved, that is if X∗s (t0) = X∗s (0).
Recall the notation

X[s](t) = (Xi(t), 0 ≤ i ≤ s− t)

for the positions of individual s and the customers ahead of that individual
in the queue. Consider the event

As+1(t0) := {Ls(t0) = Ls+1(t0) < t0} (27)

that individuals s and s+ 1 are in the same “block” of customers whose last
move before t0 was at the same time. Define

Gs(t0) = σ(X[s](t), 0 ≤ t ≤ t0;As+1(t0)).

Lemma 12. For t0 > 1 and i ≥ 0 and s = t0 + i,

P(X∗s+1(t0)−X∗s (t0) ∈ ·|Gs(t0)) = µ(·) on As+1(t0).

So by conditioning down and changing notation to Xi(t0) = X∗s (t0) we
have

P(Xi+1(t0)−Xi(t0) ∈ ·|Xj(t0), 1 ≤ j ≤ i, At0+i+1(t0)) = µ(·) on At0+i+1(t0).
(28)

We will later show that 1 − P(At0+i+1(t0)) becomes small for large i, and
then Lemma 12 provides one formalization of the idea, mentioned earlier,
that the inter-customer distances within the queue are roughly i.i.d. (µ).

Proof of Lemma 12. The history of the individual s, that is (X∗s (t), 0 ≤
t ≤ t0), tells us the value ` = Ls(t0). Consider that history and the history
of individual s + 1 up to time t0 − ` − 1. Individual s + 1 moved at time
t0 − ` if and only if the event

B` := {X∗s (t0 − `) < X∗s+1(t0 − `− 1)− c+}
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happened. On the eventB`, by construction (1 - 3)X∗s+1(t0−`)−X∗s (t0−`) =
ξi+`+1(t0 − `). But time t0 − ` was the time of the last move of individual
s, so individual s+ 1 cannot subsequently move; the spacing is unchanged.
See Figure 5.

ξ = ξi+`+1(t0 − `)

t0

t0 − `

t0 − `− 1

0

time

individuals s s+ 1

Figure 5. Individual s+ 1 moves at time t0 − ` on event B`.

So
X∗s+1(t0)−X∗s (t0) = ξi+`+1(t0 − `) on B` ∩ {Ls(t0) = `}.

Now the event B` ∩ {Ls(t0) = `} and the random variables (X[s](t), 0 ≤ t ≤
t0, Xs+1(t), 0 ≤ t ≤ t0−`−1) are determined by members of the constructing
family (ξj(t), j, t ≥ 1) not including ξi+`+1(t0 − `). So by independence of
the constructing family,

P(X∗s+1(t0)−X∗s (t0) ∈ ·|X[s](t), 0 ≤ t ≤ t0, Xs+1(t), 0 ≤ t ≤ t0 − `− 1)

= µ(·) on B` ∩ {Ls(t0) = `}.

Now As+1(t0) is the disjoint union ∪0≤`<t0 [B`∩{Ls(t0) = `}] and the result
follows easily.

Remark. Using Lemma 12 and (28) to deduce properties of the distri-
bution of X(t0) = (Xi(t0), i ≥ 0) requires some care, because there is some
complicated dependence between the event At0+i+1(t0) and the tail sequence
(Xj(t0), j ≥ i+ 1) which we are unable to analyze. This is the obstacle to a
“coupling from the past” proof that for large t0 the configuration X(t0) can
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be defined in terms of the past ξ’s with vanishing dependence on the ini-
tial configuration X(0), and thereby proving weak convergence to a unique
stationary distribution.

The following argument is unaffected by such dependence. Fix t0 and
inductively on i ≥ 0 construct ξ∗i+1(t0) by
on At0+i+1(t0) let ξ∗i+1(t0) = Xi+1(t0)−Xi(t0)
on Act0+i+1(t0) take ξ∗i+1(t0) to have distribution µ independent of all previously-

defined random variables.
Then using (28) the sequence (ξ∗i (t0), i ≥ 1) is i.i.d.(µ). Write Sk(t0) =∑k
i=1 ξ

∗
i (t0). By construction we immediately have

Lemma 13.

|Xk(t0)− Sk(t0)| ≤ (c+ − c−)

k∑
i=1

11Act0+i(t0)
.

3.2 The lower bound

We can now outline the proof that waves of length > k occur at rate no less
than order k−1/2. By showing that the bound in Lemma 13 is sufficiently
small (Lemma 16), we will see that the rank-k individual at time t0, for
typical large k and t0, is at position k ± O(k1/2). By the considering the
same estimate for the same individual a time Dk1/2 later (for large D), the
individual must likely have moved during that time interval. In other words,
there is likely to have been a wave of length > k during this O(k1/2) time
interval.

In section 3.3 we will prove the bound in the following form. Let Uτ have
uniform distribution on {1, 2, . . . , τ},

Proposition 14.

lim sup
τ→∞

P
(

max
Uτ<t≤Uτ+j

W (s) ≤ k
)
≤ Bk1/2/j, j < k

for constant B not depending on j, k.

To translate this into the same format as Proposition 11, write

ρ−(j) = lim inf
τ→∞

τ−1ENj(τ)

where as before

Nj(τ) =
τ∑
t=1

11{W (t)>j}

is the number of waves of length > j up to time τ .

26



Corollary 15. ρ−(k) ≥ 1
2(1+Bk1/2)

, for the constant B in Proposition 14.

Proof of Corollary 15. The event in Proposition 14 is the event
{Nk(Uτ + j) = Nk(Uτ )}, so choosing j = d2Bk1/2e we have

lim inf
τ→∞

P(Nk(Uτ + j)−Nk(Uτ ) ≥ 1) ≥ 1
2

implying
lim inf
τ→∞

E(Nk(Uτ + j)−Nk(Uτ )) ≥ 1
2 .

For 1 ≤ t ≤ τ + j we have P(Uτ < t ≤ Uτ + j) ≤ j/τ ; applying this to the
times t counted by Nk(τ + j) gives

E(Nk(Uτ + j)−Nk(Uτ )) ≤ j
τENk(τ + j).

So
lim inf
τ→∞

1
τENk(τ + j) ≥ 1

2j

establishing the Corollary.

3.3 Proof of Proposition 14

In order to apply Lemma 13 we need to upper bound the probability of the
complement of events As+1(t0) of the form (27). From the definition

Acs+1(t0) = {Ls(t0) = ` < Ls+1(t0) for some 0 ≤ ` < t0} ∪ {Ls(t0) = t0}.

In order that event {Ls(t0) = ` < Ls+1(t0)} occurs it is necessary (but not
sufficient – see remark below Lemma 16) that the wave at time t0− ` moves
individual s but not individual s + 1, which is saying that W (t0 − `) =
s − t0 + ` + 1. And the event {Ls(t0) = t0} can be rewritten as the event
{M(t0) ≤ s} for

M(t0) := min{s : X∗s (t0) = X∗s (0)}.

So

P(Acs+1(t0)) ≤ P(M(t0) ≤ s) +

t0−1∑
`=0

P(W (t0 − `) = s− t0 + `+ 1).

Setting s = t0 + i− 1 for i ≥ 1 and ` = t0 − j, this becomes

P(Act0+i(t0)) ≤ P(M(t0) ≤ t0 + i− 1) +

t0∑
j=1

P(W (j) = t0 + i− j).
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Now note that if individual s is at the same position x at times 0 and t0 we
must have

c−s ≤ x ≤ c+(s− t0)

implying that s ≥ t0c+

c+−c− . So there is a deterministic bound M(t) ≥ t0c+

c+−c−
which implies that, in the limit we will take at (29), the contribution from
the term P(M(t0) ≤ t0 + i − 1) is negligible, so we ignore that term in the
next calculation. We now average over 1 ≤ t0 ≤ τ :

τ−1
τ∑

t0=1

P(Act0+i(t0)) ≤ τ−1
τ∑

t0=1

t0∑
j=1

P(W (j) = t0 + i− j)

= τ−1
τ∑
j=1

P(i ≤W (j) ≤ τ + i− j)

≤ τ−1
τ∑
j=1

P(W (j) ≥ i)

and take limits

lim sup
τ→∞

τ−1
τ∑

t0=1

P(Act0+i(t0)) ≤ lim sup
τ→∞

τ−1
τ∑
j=1

P(W (j) ≥ i). (29)

Proposition 11 bounds the right side as O(i−1/2). Now we fix k, sum over
1 ≤ i ≤ k and apply Lemma 13 to deduce

Lemma 16. There exists a constant C such that, for each k ≥ 1,

lim sup
τ→∞

E|Xk(Uτ )− Sk(Uτ )| ≤ Ck1/2. (30)

Recall that Uτ has uniform distribution on {1, 2, . . . , τ}, and that Sk(t0),
and hence Sk(Uτ ), is distributed as the sum of k i.i.d.(µ) random variables.

Remark. Heuristics suggest that in fact P(Act0+i(t0)) decreases as order

i−1 log i. Our order i−1/2 bound is crude because, in order for event As+1(t0)
to occur, we need not only that Ls(t0) = ` < Ls+1(t0) for some 0 ≤ ` < t0,
but also that no subsequent wave during time (t0−`, t0] moves individual s+
1, and we ignored the latter condition. However a better estimate would not
help our subsequent arguments, because we use (30) to deduce an O(k1/2)
bound on the spread of Xk(Uτ ) from the same order bound on the spread of
Sk(Uτ ), and this deduced bound would not be improved by a better bound
on the difference.
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We can now continue with the argument outlined at the start of section 3.2.
We already fixed k, and now fix j < k. Consider the individual of rank k at
time t0, and therefore of rank k + j at time t0 − j. We have

P( max
t0−j<t≤t0

W (t) ≤ k) ≤ P(Xk(t0) = Xk+j(t0 − j)) (31)

because if there was no wave of length > k during the time interval (t0−j, t0]
then the individual under consideration does not move. Write

Xk+j(t0 − j)− j −Xk(t0) = Sk+j(t0 − j)− (k + j)

− (Sk(t0)− k)

+ (Xk+j(t0 − j)− Sk+j(t0 − j))
− (Xk(t0)− Sk(t0)).

Now Sk(t0) has mean k and variance kσ2, and Sk+j(t0 − j) has mean k + j
and variance (k+ j)σ2, so by bounding the expectation of absolute value of
each of the four terms in the sum above,

E |Xk+j(t0 − j)− j −Xk(t0)| ≤

(k1/2 + (k+ j)1/2)σ + E |Xk+j(t0 − j)− Sk+j(t0 − j)|+ E |Xk(t0)− Sk(t0)| .

The limit assertion in (30) remains true if Uτ is replaced therein by Uτ + j,
and so substituting Uτ + j for t0 in the inequality above and applying (30)

lim sup
τ→∞

E |Xk+j(Uτ )− j −Xk(Uτ + j)| ≤ 2(σ + C)(k + j)1/2.

Then by Markov’s inequality,

lim sup
τ→∞

P(Xk+j(Uτ ) = Xk(Uτ + j)) ≤ 2(σ + C)(k + j)1/2

j
.

Now substitute Uτ + j for t0 in (31) and combine with the inequality above:

lim sup
τ→∞

P
(

max
Uτ<t≤Uτ+j

W (t) ≤ k
)
≤ 2(σ + C)(k + j)1/2

j
.

establishing Proposition 14.
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4 The CBM limit

Here we develop the idea, outlined in section 1.2, that the representation
of the spatial queue via the process G(t, x) in Figure 3, suitably rescaled,
converges in some sense to CBM. The notation needed to state carefully
the result, Theorem 17, is provided in section 4.1. Given the results and
techniques from sections 2 and 3, the proof of Theorem 17 (section 4.2)
is conceptually straightforward, and we will not provide all the details of
checking various intuitively clear assertions, for instance those involving the
topology of our space F. A technical discussion of topologies in more general
contexts of this kind can be found in [9], but here we set out a bare minimum
required to formulate the result. Finally in section 4.3 we outline how the
results concerning customers’ space-time trajectories follow from the CBM
limit.

4.1 Notation and statement of result

• C[1,∞) is the space of continuous functions f : [1,∞) → R, and d0
is a metrization of the usual topology of uniform convergence on compact
intervals.

• f = {f ∈ I(f)} denotes a “coalescing family” of functions f ∈ C[1,∞)
with some index set I(f), satisfying the conditions (i, ii) following.

(i) init(f) := {f(1), f ∈ I(f)} is a distinct locally finite set;
so if f ∈ I(f) is such that f(1) is not maximal in init(f), then there is a
“next” f∗ ∈ I(f), the function such that f∗(1) is the next largest in init(f).
For such a pair (f, f∗)

(ii) f∗(t) ≥ f(t) ∀t ≥ 1, and there is a “coalescing time” γ(f, f∗) < ∞
such that f∗(t) = f(t) ∀t ≥ γ(f, f∗).
Note this implies that each pair (f1, f2) of functions in f will eventually
coalesce at some time γ(f1, f2).

• F is the space of such families f , equipped with the “natural” topology
in which f (n) → f means the following:

for each finite interval I ⊂ R such that init(f) contains neither endpoint
of I, for all large n there is an “onto” map ι(n) from {f (n) ∈ f (n) : f (n)(1) ∈
I} to {f ∈ f : f(1) ∈ I} such that, for all choices of f (n) ∈ f (n), we
have that f (n) − ι(n)(f (n)) converges to the zero function in C[1,∞); and

also there is convergence of the coalescing times, in that γ(n)(f
(n)
1 , f

(n)
2 ) −

γ(ι(n)(f
(n)
1 ), ι(n)(f

(n)
2 ))→ 0.
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(Note that this definition is designed to allow there to be two functions
in f (n) converging to the same function in f , provided their coalescence time
→ 1.)

• For f ∈ F and t0 > 1, write f[t0] for the time-shifted and rescaled family
in which each f ∈ f is replaced by f ′ defined by

f ′(t) = t
−1/2
0 f(t0t), t ≥ 1. (32)

• Write F for a random family, that is a random element of F, and F[t0]

for the time-shifted and rescaled family.

• Write CB for the specific random family consisting of the standard
CBM process observed from time 1 onwards. That is, the family of distinct
functions (t → B(y, t), t ≥ 1) as y varies. The scale-invariance property of
standard CBM implies that CB[t0] has the same distribution as CB.

Recall the discussion surrounding the Figure 3 graphic. When this graphic
represents the spatial queue, the horizontal axis is “space” x and the vertical
axis is “time” t. To compare the spatial queue process with CBM we need
to reconsider the horizontal axis as “time” t and the vertical axis as “space”
y. That is, we rewrite the function G(t, x) at (6) as G̃(y, t), so we have

G̃(y, t) = G(y, t) = y + Fy(t), where Fy(t) = max{k : Xk(y) ≤ t}

where y = 0, 1, 2, . . . and 0 ≤ t < ∞. To study this process for large y we
rescale as follows: for each n define

H̃(n)(y, t) =
G̃(σn1/2y + Uτn , nt) − Uτn

n1/2
, 1 ≤ t <∞. (33)

This is defined for y such that σn1/2y + Uτn ∈ Z+; also τn →∞ is specified
below and Uτn is uniform random on {1, . . . , τn}. We now define the random
family F(n) to consist of the distinct functions

t→ H̃(n)(y, t), 1 ≤ t <∞

as y varies. This rescaling construction is illustrated in Figure 6.
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Figure 6. The rescaling that defines F(n) (small axes) in terms of G(t, x)
(large axes), assuming σ = 1.

We can now state the convergence theorem, in which we are considering
F(n) and CB as random elements of the space F.

Theorem 17. If τn →∞ sufficiently fast, then F(n) d→ CB.

We conjecture this remains true without time-averaging, that is if we
replace Uτn by τn in the definition of F(n).

4.2 Outline proof of Theorem 17

Step 1. Propositions 11 and 14 refer to wave lengths in terms of rank j
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instead of position (which we are now calling t). But for any individual at
any time these are related by t/j ∈ [c−, c

+], so the “order of magnitude”
bounds in those Propositions remain true when we measure wave length by
position. By choosing τn → ∞ sufficiently fast, those Propositions provide
information about the point processes (init(F(n)), n ≥ 1), as follows.

Corollary 18. There exist constants β1, β2 and ζn → −∞ such that for all
sufficiently large n

P(init(F(n)) ∩ [a, b] = ∅) ≤ β1/(b− a), ζn ≤ a < b <∞. (34)

E|init(F(n)) ∩ [a, b]| ≤ β2(b− a), −∞ < a < b <∞. (35)

Step 2. Modify the usual topology on simple point processes on R to allow
two distinct points in the sequence to converge to the same point in the limit.
In this topology, (35) is a sufficient condition for tightness of the sequence
(init(F(n)), n ≥ 1), and so by passing to a subsequence we may assume

init(F(n))
d→ some η̃0 (36)

where the limit point process η̃0 inherits properties (34, 35):

P(η̃0 ∩ [a, b] = ∅) ≤ β1/(b− a), −∞ < a < b <∞.

E|η̃0 ∩ [a, b]| ≤ β2(b− a), −∞ < a < b <∞. (37)

Now η̃0 has translation-invariant distribution because we use the uniform
random variable Uτn with τn → ∞ to define F(n). The central part of the
proof of Theorem 17 is now to show

Proposition 19. If τn →∞ sufficiently fast then

F(n) d→ F(∞) := CBM(η̃0, 0) (38)

where the limit is the coalescing Brownian motion process started with par-
ticle positions distributed as η̃0.

Granted (38), we can fix t0 > 0 and apply our “time-shift and rescale”
operation f → f[t0] at (32) to deduce

F
(n)
[t0]

d→ F
(∞)
[t0]

as n→∞. (39)
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Now F(n) depends on τn, so to make that dependence explicit let us rewrite
(39) as

F
(n,τn)
[t0]

d→ F
(∞)
[t0]

as n→∞.

But F
(n,τn)
[t0]

is just F(nt0) with a different shift; precisely

F
(n,τn)
[t0]

= F(nt0,τnt0 ).

So we have
F(nt0,τnt0 )

d→ F
(∞)
[t0]

as n→∞.

But the scaling and embedding properties of CBM imply that

F
(∞)
[t0]

d→ CB as t0 →∞ .

So by taking t0 = t0(n)→∞ sufficiently slowly and setting m = nt0(n),

F(m,.τ ′m) d→ CB as m→∞

for some τ ′m → ∞, and this remains true for any larger τ ′′m. This is the
assertion of Theorem 17.

Step 3. To start the proof of (38), fix Y0 and T0, and define a modified pro-
cess modiY0(F(∞)) as CBM started with particles at positions η̃0 ∩ [−Y0, Y0]
only. Define modiY0(F(n)) as follows. Consider the construction (1 - 3) of
the spatial queue process. There is a smallest t (in the notation of (1 - 3))
such that the corresponding value y in init(F(n)), that is

σn1/2(y + Uτn) = t,

satisfies y ≥ −Y0. We now modify (in Step 4 we will argue that this modi-
fication has no effect in our asymptotic regime) the construction (1 - 3) of
the spatial queue process by saying that, for this particular t, we set

Xi(t) = ξ1(t) + . . .+ ξi(t), 1 ≤ i <∞.

That is, we replace all the inter-customer distances to the right of position
n by an i.i.d. sequence. For subsequent times t+1, t+2, . . . we continue the
inductive construction (1 - 3). The effect of this change on the behavior of
the queue process to the left of position n, in particular the effect on the pro-
cess init(F(n)), is negligible for our purposes in this argument. Now by (37)
there are a bounded (in expectation) number of functions in modiY0(F(n));
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each function behaves essentially as the rescaled renewal process associated
with i.i.d.(µ) summands, until the wave ends, which happens within O(1)
steps when the function approaches the previous function. We can apply
the classical invariance principle for renewal processes ([3] Theorem 17.3) to
show that (as n→∞) these functions behave as Brownian motion

This argument is sufficient to imply

modiY0(F(n))
d→ modiY0(F(∞)). (40)

Step 4. To deduce (38) from (40) we need to show

modiY0(F(∞))
d→ F(∞) as Y0 →∞ (41)

and the following analogous result for the sequence (F(n)). Take 0 < Y1 <
Y0 <∞ and T0 > 0. Define an event A(n, Y1, Y0, T0) as

the random family modiY0(F(n)) and the random family F(n)

do not coincide as regards functions f with f(0) ∈ [−Y1, Y1]
considered only on 0 ≤ t ≤ T0.

We then need to show: for each Y1, T0

lim
Y0→∞

lim sup
n→∞

P(A(n, Y1, Y0, T0)) = 0. (42)

It is easy to prove (41) directly from basic properties of standard CBM.
Fix Y1, T0. As in Figure 4, the particle positions of standard CBM at time
T0 determine a point process (tu, u ∈ Z) on R, each time-T0 particle being
the coalescence of all the initially in the interval (tu−1, tu). So there are
some random −∞ < uL < uR < ∞ such that [−Y1, Y1] ⊂ [tuL , tuR ], and
then on the event [tuL , tuR ] ⊂ [−Y0, Y0] we have, using the natural coupling
of CBM processes, that the behavior of the particles of CBM(η̃0, 0) started
within [−Y1, Y1] is unaffected by the behavior of the particles started outside
[−Y0, Y0]. This is enough to prove (41).

Unfortunately the simple argument above does not work for the analo-
gous result (42). But there is a more crude argument which does work; for
notational simplicity we will say this argument in the context of CBM but
it then readily extends to the family F(n). We can construct CBM started
with particles at positions η̃0 by first taking independent Brownian motions
over 0 ≤ t < ∞ started at each point of η̃0 (call these virtual paths) and
then, when two particles meet, we implement the coalescent by saying that
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the future path follows the virtual path of the particle with lower starting
position. See the top panel of Figure 7, showing (lighter lines) the virtual
paths of particles a, b, . . . , j and (darker lines) the coalescing process. In
words, we want to show the following.

(*) Fix T0. Consider CBM started with particles at positions
η̃0 ∩ [0,∞] only. Then, in the natural coupling (induced by the
construction above) with CBM started with particles at all po-
sitions η̃0, the two process coincide, over 0 ≤ t ≤ T0, for the
particles started on some random interval [Z,∞).

The argument is illustrated in Figure 7, where particle d is the first par-
ticle whose initial position is in [0,∞). The top panel shows CBM started
with particles at all positions η̃0, and the middle panel shows “the modi-
fication” of CBM started with particles at positions η̃0 ∩ [0,∞] only. The
“modification” affects (over the time interval shown) particles d, e, f, g, h
but not subsequent particles. We can upper bound the range of “affects”
as follows. Consider only the “virtual paths”, as shown in the top panel,
and color path segments according to the following rule, illustrated in the
bottom panel. Start to color the virtual path of particle d; when that path
meets another virtual path, start coloring that path too; whenever a colored
path meets an uncolored path, start coloring that path also. This produces
a branching network, and at time T0 the paths associated with some set of
particles have been colored. It is easy to check that any particle not in that
colored set is unaffected by the modification. One can now check that only
a finite mean number of particles will be colored (note this will include some
particles started below 0, for instance b, c in the figure) and then that (*)
holds with EZ <∞.

The point is that the calculation of a bound on EZ carries over to the
rescaled family (F(n)) because the “virtual paths” are just the centered
renewal processes, which behave like Brownian motion; and we can use (35)
to show that only a bounded (in expectation) number of functions enter the
picture.
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Figure 7. The construction in Step 4.
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4.3 Consequences for wave lengths and space-time trajecto-
ries

Here we show what Theorem 17 implies about the queue process, outlining
proofs of Theorem 3 and Corollary 4 stated in section 1.3.

Wave lengths. First let us switch from measuring wave length by rank
to measuring it by position. That is, the length of the wave that creates
X(t) from X(t− 1) was defined implicitly at (3) as the rank

W (t) := min{i : Xi(t) = Xi−1(t− 1)}

of the first unmoved customer, whereas now we want to consider it as the
position of that customer:

L(t) := XW (t)(t).

Directly from the section 1.1 discussion we see that the length of wave at
time t is the position x where G(t, ·) coalesces with G(t− 1, ·), that is where
they first make the same jump. Define a point process ζ(n) to be the set of
points {

t−Uτn
σn1/2 : L(t) > n

}
.

Then, if τn →∞ sufficiently fast, we have from Theorem 17

Corollary 20. As n→∞ the point processes ζ(n) converge in distribution
to the spatial point process (B(y, 1), y ∈ R) of time-1 positions of particles
in the standard CBM process.

Now Lemma 16 tells us that at a typical time in the queue process, the
rank-n customer is at position n±O(n1/2). Combining that result with the
fact that, between waves of that length, the customer’s position does not
change and their rank decreases only by O(n1/2), it is not hard to deduce
the same result for wave lengths measured by rank: if τn → ∞ sufficiently
fast, then

Corollary 21. As n → ∞ the point processes
{
t−Uτn
σn1/2 : W (t) > n

}
con-

verge in distribution to the spatial point process {B(y, 1), y ∈ R} of time-1
positions of particles in the standard CBM process.

This easily implies the “rate” result stated as Theorem 3.
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Space-time trajectories. As defined, F(n) consists of the functions

t→ H̃(n)(y, t), 1 ≤ t <∞

as y varies. The same such function f ∈ F(n) arises from all y in some
interval, say the interval [y−(f), y+(f)]. Similarly, a function f ∈ CB is
the function t → B(y, t), t ≥ 1 for all y in some interval, which again we
may write as the interval [y−(f), y+(f)]. Now note that the definition (33) of
H̃(n)(y, t) makes sense for 0 ≤ t ≤ 1 also. For any fixed small δ > 0, Theorem
17 extends to showing convergence in distribution of (t → H̃(n)(y, t), δ ≤
t < ∞) to standard CBM over the interval [δ,∞). This procedure enables
us, by taking δ ↓ 0 ultimately, to show that the Theorem 17 convergence

F(n) d→ CB extends to the “augmented” setting where the functions are
marked by the intervals [y−(f), y+(f)]. (At the technical level, this argument
allows us to work within the space F of locally finite collections of functions,
instead of some more complicated space needed to handle standard CBM
on (0,∞)).

We can now add some details to the verbal argument in section 1.3
for Corollary 4. Regarding the first component, the central point is as

follows. Take lines `n through (1, 0) of slope −n1/2. Write (f
(n)
u , u ∈ Z)

for the distinct functions in F(n) intercepted by line `n, at some points

(xu, su), and write (y−(f
(n)
u ), y+(f

(n)
u )) for the interval of initial values of

functions which coalesce with f
(n)
u before xu. These represent the normalized

move times of an individual chosen as being at position n at time Uτn We

know F(n) d→ CB in the “augmented” sense above. This implies that the

associated interval endpoints (y+(f
(n)
u ), u ∈ Z) (that is, the normalized move

times above) converge in distribution as point processes to (wu, u ∈ Z), the
time-1 positions of particles in CBM. That is the assertion of Corollary 4,
as regards the first component.

Regarding the second component, the verbal argument in section 1.3
can be formalized to show that for the process (wu, u ∈ Z) of positions of
time-1 particles in CBM, the inter-particle distances are the rescaled limit of
the numbers of customers who cross the starting position of the individual
under consideration when that individual moves. To then derive the stated
result, the central issue is to identify “numbers of customers who cross”
with “distance the distinguished individual moves”, which will follow from
the lemma below. Consider a typical wave which extends past position n
at some large time t. For each position x in the spatial interval [n±Bn1/2]
there is some number M (n)(x) of customers who cross position x in the wave,
and each individual ι in the spatial interval moves some distance D(n)(ι).
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From the CBM limit we know these quantities are order n1/2. It is enough
to show that all these customers move the same distance (to first order), in
the following sense.

Lemma 22. There exist random variables M (n) such that, for each fixed B,

max
x
|n−1/2M (n)(x)−M (n)| →p 0, max

ι
|n−1/2D(n)(ι)−M (n)| →p 0 as n→∞

where the maxima are over the spatial interval [n±Bn1/2].

Consider the inter-customer distances (ξi(t−1), ξi(t), i ≥ 1) immediately
before and after the wave at time t. If, over the interval [n± Bn1/2] under
consideration, these were i.i.d.(µ) then the assertion of the lemma would be
clear, using (for instance) large deviation bounds for i.i.d. sums. Analyzing
wave lengths in sections 2 and 3 was complicated because we did not know
orders of magnitude. Now we know the power law P(W > w) ∼ cw−1/2

for wave length, so conditional on a wave entering the interval [n ± Bn1/2]
the probability it goes only o(n) further is o(1). From the CBM limit we
know that the first customer in the interval moves a distance M (n) of order
n1/2. Given that distance, the subsequent inter-customer distances ξi(t)
over the interval are i.i.d.(µ) conditioned on a event of probability 1− o(1).
The same was true for the previous wave that created the inter-customer
distances ξi(t − 1). So the conclusion of the lemma follows from the i.i.d.
case.
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5 Final remarks

5.1 Some data

Spending 17 minutes in line at security at Oakland airport enabled collection
of the data in Figure 8, whose points show rank and time after each move.
The approximate straight line reflects the fact that people are being served
at an approximately constant rate. The initially larger gaps between points
indicate the “wave” phenomenon studied in this paper.
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rank in line

time
(min.)

Figure 8. Data: progress in a long queue.

5.2 Stationarity

As mentioned earlier, it is possible that continuing the argument for Lemma
12 would give a “coupling from the past” proof of convergence to a stationary
distribution (Conjecture 1). Assuming existence of a stationary distribution,
a stronger version of Lemma 12 would be

Open Problem 23. Suppose µ has a density that is bounded below on
[c−, c

+] and suppose the stationary distribution X(∞) exists. Is it true that
the joint distribution of all inter-customer distances (Xi(∞)−Xi−1(∞), i ≥
1) is absolutely continuous with respect to infinite product measure µ∞.

Heuristics based on the the Kakutani equivalence theorem suggest the
answer is “no”.
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Other questions involve mixing or “burn in”: how long does it take,
from an arbitrary start, for the distribution of the process restricted to the
first k positions be close to the stationary distribution? From the initial
configuration with all inter-customer distances equal to c−, the time must
be at least order k: is this the correct worst-case-start order?

5.3 Robustness to model generalizations

Let us amplify an earlier statement “intuitively the model behavior should
also be robust to different customers having different parameters µ, c−, c

+”.
What we have in mind is a prior distribution over these parameters, and
the initial time-0 queue of customers having parameters sampled i.i.d. from
the prior. The key issue is that the analog of the symmetrized random walk
at (10), representing the same block of customers at different times, is still
(even conditioned on the realization of parameters) a sum of independent
mean-zero increments having (under mild assumptions) the same asymptotic
behavior as given in Lemma 5. The proof should carry over without essential
changes.

5.4 Finite queues

A natural alternative to our infinite-queue setup would be to take Poisson
arrivals with (subcritical) rate ρ < 1. Because such a M/D/1 queue is empty
for a non-vanishing proportion of time, a stationary distribution clearly ex-
ists. However, to state the analog of Theorem 17 for the stationary process
one still needs a double limit (rank j → ∞ and traffic intensity ρ ↑ 1); the
infinite-queue setup should, if one can prove Conjecture 1, allow a single
limit statement of form (8).

5.5 Other possible proof techniques

As mentioned earlier we suspect there may be simpler proofs using other
techniques. Here are brief comments on possible proof techniques we did
think about but did not use.

Forwards coupling. The classical notion of (forwards) Markov chain cou-
pling – showing that versions of the process from two different initial states
can be coupled so that they eventually coincide in some useful sense – does
not seem to work for our process.
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Feller property. A Feller process (X(t)) on a compact space always has
at least one stationary distribution, by considering subsequential weak limits
of X(Uτ ). Our spatial queue process does have a compact state space X;
it is not precisely Feller, because of the discontinuity in the construction
(1 - 3), but Feller continuity holds a.e. with respect to product uniform
measure, so under mild conditions (e.g. that µ has a density component)
the same argument applies to prove existence of at least one stationary
distribution. However, such “soft” arguments cannot establish uniqueness of
stationary distribution or convergence thereto. One could rephrase our limit
results in terms of stationary processes with such subsequential stationary
distributions, but that hardly seems a simpler reformulation.

CBM as a space-indexed Markov process. A conceptually different
starting point for an analysis of our spatial queue model is to observe that
the standard CBM process (By(s), 0 ≤ s < ∞, y ∈ R) with By(0) = y
of section 1.2, with “time s” and “space” y, can in fact be viewed in the
opposite way. Define

Xy = (By(s)− y, 0 ≤ s <∞)

so that Xy takes values in the space C0(R+) of continuous functions f
with f(0) = 0. Now the process (Xy,−∞ < y < ∞) with “time” y is
a continuous-time C0(R+)-valued Markov process. Apparently CBM has
not been studied explicitly in this way. In principle one could determine
its generator and seek to apply general techniques for weak convergence of
discrete-time Markov chains to continuous-time limits. But we have not
attempted this approach.

5.6 Generalizations of CBM

Finally we mention that the extensions of CBM to the Brownian web and
Brownian net have been shown to arise as scaling limits of various one-
dimensional models [9]. But our queue model seems to be a novel addition
to this collection of CBM-related models.
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