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Abstract: A new variant of a branching process is introduced, with sufficient conditions for it to persist and to die out. The 

model is applied to discuss the asymptotic stability of a new type of queuing process. 
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Consider a system of particles evolving according to the following rules: 
(a) Particles j have random (i.i.d.) lifetimes K,; 
(b) During its lifetime, a particle has offspring at the times of a Poisson (rate h) process. 
This is a well-studied type of branching process. The populations in successive generations behave as 

the simple Galton-Walton branching process with mean offspring equal to hEK, and so the process is 
subcritical or supercritical according as this mean is less than or greater than 1. 

We study a variation in which the ‘clock’ which counts down time until a particle’s death does not start 
ticking until the particle’s parent dies. Thus each particle has an initial period of time (until its parent’s 
death) in which it may have offspring but is not at risk of dying; after its parent’s death, it lives a further 
random time K, during which it may have further offspring. While the particle lives, its offspring may have 
their own offspring, and so forth, and none of its descendants are at risk of dying. In other words a typical 
configuration of the process is a finite collection of ‘clans’, and only the current heads of clans can be 

killed (hence the term ‘assassination’). 
We wish to find conditions under which all particles are eventually removed from the system and to 

note a connection between this particle system and a queuing model for parallel processing. 

Formally, let N denote the positive integers and let Nf = lJ~=,,N” be the set of finite n-tuples of 
positive integers (with N” =B). For n E N’, let k(n) be the number of coordinates in n, and let 
u(n) = n, + . . . +nkcnj. Let k(H) = 0 = a($). 

Let { X,}, n E N’, be a family of independent Poisson processes with common arrival rate X. Let 
{K,}, n E N ‘, be a family of independent, strictly positive random variables, with common distribution 
function F. Suppose the families ( X,} and { K,} are independent. 

The particle system starts at time 0 with only the ancestor particle, indexed by 0. This particle produces 
offspring at the arrival times of X,, which enter the system with indices (1) (2). . . according to their birth 
order. Each new particle n entering the system immediately begins producing offspring at the arrival times 
of X,,; the offspring of n are indexed (n, l), (n, 2). . . also according to birth order. 
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The ancestor particle is ‘at risk’ at time 0. It continues to produce offspring until time YB = K,, when it 
isremovedfromthesystem.Letk>Oandletn=(n,,...,n,_,,n,),n’=(n,,...,n,_,).Whenaparticle 
n’ is removed from the system (at time Y,,), n then becomes ‘at risk’; it continues to produce offspring 

until time Y, = Y,, + K,,, when it is removed from the system. 
We will say that the birth-and-assassination process is stable if with probability 1 there exists some time 

t < 00 when no particles remain in the system. We will say that the process is unstable if it is not ,stable. 

Theorem. Let 9 be a birth and assassination process with offspring rate h whose killing distribution has 

moment generating junction 9. Suppose + is finite in some neighborhood of 0. If min,, aXu_‘+( u) < 1 then 

the process is stable. If min,, OXu-‘+( u) > 1 then the process is unstable. 

Remark. Such a natural model and result may have applications in various areas in which branching 
process models are used. Our particular motivation was Tsitsiklis, Papadimitreou and Humblet (1986), in 
which a queuing system with blocking was introduced to model a data base that prevents two queries from 
modifying the same entry simultaneously. In this system, the arrival times of jobs are a Poisson process 
with rate A, the service times are independent and have distribution F, and there are infinitely many 
servers. Suppose job j,,, , arrives while jobs j,, _. . , j,, are receiving or awaiting service; then for 
i=l ,..-1 n, there is a fixed probability p, 0 <p < 1, that service for jn+, cannot begin until service for j, is 

completed, and the events { j,, , is blocked by j, }, i = 1,. . . , n, are mutually independent. 
Say that j,, is a descendant of j,,, if j, is blocked by j,,, or is a descendant of a job blocked by j,,,, and let 

Y, denote the particle system of descendants of j,,. If X + cc and p -+ 0 so that Xp + C with 0 < C < co, 
it is not hard to show that Y, converges in distribution to a birth-and-assassination process with arrival 
rate C and residual lifespan distribution F. Here, convergence of processes means, as usual, convergence 
on bounded time intervals. Rigorously relating the asymptotic behaviors is a more challenging problem: it 
seems intuitively clear that the stability threshold for the Tsitsiklis-Papadimitreou process should converge 

to the stability threshold for the birth and assassination process given in our theorem. 

ProofofTheorem.Let{B,,},v,i=1,2 ,..., be independent exponential random variables with parameter 

A. Let {K, } be independent random variables with distribution function F and moment generating 
function G(u). 

Certainly, the process .3? is stable if the expected total number of offspring is finite. 

E [ number of particles created] = c P [ n is born]. (1) 
n 

For the particle (n,, . . . , nk) to be born, its ancestor in generation i must have had at least n, offspring for 

each i less than k. Thus, 

iK,, j=l,..., k(n) 1 i 
k(n) n, k(n) f p c c 4, < c K, . 1 i=l r=l v=l I=1 

(2) 
Simple computations show 
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The second and third equations in the preceding sequence follow from the independence of {K, } and 
{ ByI } and from properties of exponential distributions, respectively. We now calculate 

so, 

E [number of particles created] < f i $I ( U) p j ’ 
k=l 

If min U>0X~-‘+(~) < 1, th en the expected number of particles created is finite. This proves the first part 

of the theorem. 

To prove the second part of the theorem, we use a large deviation estimate for P[n is born]. The 
following result and argument are well-known, but we cannot supply a citation, so we sketch the proof. 

Lemma 1. Let X,, X2.. . . , be i.i.d. random variables with EX < 0 and P[ X > 0] > 0. Let EeUX = G(u) be 

finite in some neighborhood of 0, and let p = min, , “$J (u). Then 

lim n-’ 
n+OO 

k 

CX,>O,k=l,..., n =logp. I 1 
(7) 

Sketch of Proof. Chernoff’s theorem for large deviations gives this limit for n--’ log P[C;X, > 01. 

Conditioning on 1:X, and considering cyclic shifts of the X,‘s gives 

k 

CX,>O,k=l,..., n ]/P[$X,>O] >n-‘. Cl 
1 

(8) 

Lemma 2. If min u, ,XK’$( u) > 1, then there exists k such that CkCnjzk P[n is born] > 1. 

Proof. Let N,, N2,. . . , be i.i.d. shifted geometric random variables, with P[ N =j] = pqJ_ ‘, j = 1, 2,. . . , 
where p > 0, q = 1 -p, and let N,, N,, . . . , {K, } and {B,,} be mutually independent. For n = 1, 2,. . . , 
define Z, = K, - xf:,B,,,. {Z,,} is a sequence of i.i.d. random variables. An easy calculation shows that 
Ee uZ=~(u)hp/(hp+u).Conditioningon(N,,...,Nk)=(n,,...,nk)gives 

J 

> CK,, j=l,..., k 
r=l 1 

(9) 

Multiply by P[(N,, . . ., Nk) = (n,,. . ., nk)] and sum over n such that k(n) = k, giving 

j=l,..., k = c P i iB,,z CK,, j=l,..., k 1 [ k(n)=k r=l v=l r=l 

I 
I pkq”‘+ ... +“r (10) 

=pk c P[n is born]q”(“). 
k(n)=k 

(11) 
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If min,,, Au-‘$( u) = 1 + E, choose p sufficiently small that p-l min,,,, EeUZ = min,,, +(u)X/(h, + 

u) > 1 + +E. By applying Lemma 1 to the sequence {Z,}, we see that for k sufficiently large, 

I 

i 
pk c P[nisborn]q”‘“‘=P cZ,>O, j=l,...,k >p’(l+s~)~. 1 (12) 

k(n)=k 1 

Divide by pk and let p - 0. The Lebesgue monotone convergence theorem gives 

c P[nisborn]>(l+t~)~>l. q (13) 
k(n)=k 

Proof of Theorem (continued). Say that a particle in the process is special if it is the ancestor particle, of if 
it is a particle in generation nk that is descended from a special particle in generation (n - 1)k with no 
living ancestors. The expected number of special particles in generation nk is greater than (1 + +E)“~, so 

the process of special particles is a supercritical branching process. 
With positive probability, this process never terminates, implying that there is a positive probability 

that the birth-and-assassination process’ main process never terminates. 0 

Acknowledgement 

We wish to thank the referee for his helpful comments and for suggesting an improvement in the statement 
of the main theorem. 

References 

Tsitsiklis, J., C. Papadimitreou and P. Humblet (1986), The 

performance of a precedence based queueing discipline, J. 

Assoc. of Compur. Mach. 33(3), 593-602. 

430 


