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Consider the setting of sparse graphs on N vertices, where the vertices have distinct
“names”, which are strings of length O(log N) from a fixed finite alphabet. For many
natural probability models, the entropy grows as cN log N for some model-dependent rate
constant c. The mathematical content of this paper is the (often easy) calculation of c for
a variety of models, in particular for various standard random graph models adapted to
this setting. Our broader purpose is to publicize this particular setting as a natural setting
for future theoretical study of data compression for graphs, and (more speculatively) for
discussion of unorganized versus organized complexity.

1. INTRODUCTION

The concept entropy arises across a broad range of topics within the mathematical sciences,
with different nuances and applications. There is a substantial literature (see Section 2.2) on
topics linking entropy and graphs, but our focus seems different from these. In this paper,
we use the word only with its most elementary meaning: for any probability distribution
p = (ps) on any finite set S, its entropy is the number

ent(p) = −
∑

s

ps log ps. (1.1)

For an S-valued random variable X we abuse notation by writing ent(X) for the entropy
of the distribution of X.

Consider an N -vertex undirected graph. Instead of the usual conventions about vertex-
labels (unlabeled; labeled by a finite set independent of N ; labeled by integers 1, . . . , N) our
convention is that there is a fixed (i.e., independent of N) alphabet A of size 2 ≤ A < ∞ and
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that each vertex has a different “name”, which is a length-O(log N) string a = (a1, . . . , am)
of letters from A.

We will consider probability distributions over such graphs-with-vertex-names, in the
N → ∞ “sparse graph limit” where the number of edges is O(N). In other words, we
study random graphs-with-vertex-names GN whose average degree is O(1). In this particular
context (see Section 2.1 for discussion), one expects that the entropy should grow as

ent(GN ) ∼ cN log N, (1.2)

where c is thereby interpretable as an “entropy rate”. Note the intriguing curiosity that
the numerical value of the entropy rate c does not depend on the base of the logarithms,
because there is a “log” on both sides of the definition (1.2), and indeed we will mostly
avoid specifying the base.

In Section 4, we define and analyze a variety of models for which calculation of entropy
rates is straightforward. In Section 5,we study one more complicated model which is concep-
tually more interesting in our framework and for which calculating the entropy rate is less
straightforward. This is the mathematical content of the paper. Our motivation for studying
entropy in this specific setting is discussed verbally in Section 2, and this discussion is the
main conceptual contribution of the paper. The discussion is independent of the subsequent
mathematics but may be helpful in formulating interesting probability models for future
study. Section 3 gives some (elementary) technical background. Section 6 contains final
remarks and open problems.

2. REMARKS ON DATA COMPRESSION FOR GRAPHICAL STRUCTURES

The well-known textbook [9] provides an account of the classical Shannon setting of data
compression for sequential data, motivated by English language text modeled as a stationary
random sequence. What is the analog for graph-structured data?

This is plainly a vague question. Real-world data rarely consists only of the abstract
mathematical structure—unlabeled vertices and edges—of a graph; typically a considerable
amount of context-dependent extra information is also present. Two illustrative examples:

(i) Phylogenetic trees on species: here part of the data is the names of the species and
the names of clades;

(ii) Road networks: here part of the data is the names or numbers of the roads and some
indication of the locations where roads meet.

Our setting is designed as one simple abstraction of “extra information”, in which the
(only) extra information is the “names” attached to vertices. Note that in many examples
one expects some association between the names and the graph structure, in that the names
of two vertices which are adjacent will on average be “more similar” in some sense than
the names of two non-adjacent vertices. This is very clear in the phylogenetic tree example,
because of the genus–species naming convention. So, when we study toy probability models
later, we want models featuring such association.

Let us remind the reader of two fundamental facts from information theory [9].

(a) In the general setting (1.1), there exists a coding (e.g. Huffman code) fp : S → B
such that, for X with distribution p,

ent(p) ≤ E len(fp(X)) ≤ ent(p) + 1
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and no coding can improve on the lower bound. Here B denotes the set of finite
binary strings b = b1b2 · · · bm and len(b) = m denotes the length of a string and
entropy is computed to base 2. Recall that a coding is just a 1 − 1 function.

(b) In the classical Shannon setting, one considers a stationary ergodic sequence X =
(Xi) with values in a finite alphabet. Such a sequence has an entropy rate

H := lim
k→∞

k−1ent(X1, . . . , Xk).

Moreover, there exist coding functions f (e.g., Lempel–Ziv) which are universal in
the sense that for every such stationary ergodic sequence,

lim
m→∞

m−1
E len(f(X1, . . . , Xm)) = H.

The important distinction is that in (a) the coding function fp depends on the
distribution of X but in (b) the coding function f is a function on finite sequences
which does not depend on the distribution of X.
In our setting of graphs with vertex-names, we can in principle apply (a), but it will
typically be very unrealistic to imagine that observed real-world data is a realization
from some known probability distribution on such graphs. At the other extreme, for
many reasons one cannot expect there to exist, in our setting, “universal” algorithms
analogous to (b). For instance, the vertex-names (a,a∗) across some edges might be
related by a deterministic cryptographic function. Also note it is difficult to imagine
a definition analogous to “stationary” in our setting. So it seems necessary to rely
on heuristic algorithms for compression, where heuristic means only that there is
no good theoretical guarantee on compressed length. One could of course compare
different heuristic algorithms at an empirical level by testing them on real-world
data. As a theoretical complement, one could test an algorithm’s efficiency by trying
to prove that, for some wide range of qualitatively different probability models for
GN , the algorithm behaves optimally in the sense of compressing to mean length
(c + o(1))N log N where c is the entropy rate (1.2). And the contribution of this
paper is to provide a collection of probability models for which we know the numerical
value of c.

2.1. Remarks on the Technical Setup

The discussion above did not involve two extra assumptions made in Section 1, that the
graphs are sparse and that the length of names is O(log N) (note the length must be at
least order log N to allow the names to be distinct). These extra assumptions create a more
focused setting for data compression that is mathematically interesting for two reasons.
If the entropies of the two structural components—the unlabeled graph, and the set of
names—were of different orders, then only the larger one would be important; but these
extra assumptions make both entropies be of the same order, N log N . So both of these two
structural components and their association become relevant for compression. A second,
more technical, reason is that natural models of sparse random graphs Gn invariably have a
well-defined limit G∞ in the sense of local weak convergence [3,4] of unlabeled graphs, and
the limit G∞ automatically has a property unimodularity directly analogous to stationarity
for random sequences. This addresses part of the “difficult to imagine a definition analogous
to stationary in our setting” issue raised above, but it remains difficult to extend this notion
to encompass the vertex-names.
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2.2. Related Work

We have given a verbal argument that the Section 1 setting of sparse graphs with vertex-
names is a worthwhile setting for future theoretical study of data compression in graphical
structures. It is perhaps surprising that this precise setting has apparently not been consid-
ered previously. The large literature on what is called “graph entropy”, recently surveyed in
[10], deals with statistics of a single unlabeled graph, which is quite different from our set-
ting. Data compression for graphs with a fixed alphabet is considered in [12]. In a different
direction, the case of sequences of length N with increasing-sized alphabets is considered in
[13,15]. Closest to our topic is [7], discussing entropy and explicit compression algorithms
for Erdős–Rényi random graphs. But all of this literature deals with settings that seem
“more mathematical” than ours, in the sense of being less closely related to compression of
real-world graphical structures involving extra information.

On the applied side, there is considerable discussion of heuristic compression algorithms
designed to exploit expected features of graphs arising in particular contexts, for instance
WWW links [5] and social networks [6]. What we proposed in the previous section as future
research is to try to bridge the gap between that work and mathematical theory by seeking
to devise and study general purpose heuristic algorithms.

On a more speculative note, we have a lot of sympathy with the view expressed by John
Doyle and co-authors [1], who argue that the “organized complexity” one sees in real world
evolved biological and technological networks is essentially different from the “disorganized
complexity” produced by probability models of random graphs. At first sight it is unclear
how one might try to demonstrate this distinction at some statistical level. But producing
a heuristic algorithm that codes some class of real-world networks to lengths smaller than
the entropy of typical probability models of such networks would be rather convincing.

3. A LITTLE TECHNICAL BACKGROUND

Here are some elementary facts [9] about entropy, in the setting (1.1) of a S-valued r.v. X,
which we will use without comment.

ent(X) ≤ log |S|
ent(X,Y ) ≤ ent(X) + ent(Y )

ent(X) ≥ ent(h(X)) for any h : S → S′.

These inequalities are equalities if and only if, respectively,
X has uniform distribution on S
X and Y are independent
h is 1 − 1 on the essential range of X.

Also, if θ̄ =
∑

s qsθs, where q = (qs) and each θs is a probability distribution, then

ent(θ̄) ≤ ent(q) +
∑

s

qs ent(θs) (3.1)

with equality if and only if the supports of the θs are essentially disjoint. In random variable
notation,

ent(X) = ent(f(X)) + Eent(X|f(X)) (3.2)

where the random variable ent(X|Y ) denotes entropy of the conditional distribution. (Note
this is what a probabilist would call “conditional entropy”, although information theorists
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use that phrase to mean E ent(X|Y )). Write

E(p) = −p log p − (1 − p) log(1 − p)

for the entropy of the Bernoulli(p) distribution. We will often use the fact

E(p) ∼ p log 1
p as p ↓ 0. (3.3)

We will also often use the following three basic crude estimates. First,

if Km → ∞ and Km

m → 0 then log
(

m

Km

)
∼ Km log m

Km
. (3.4)

Second, for X(n, p) with Binomial(n, p) distribution, if 0 ≤ xn ≤ np and xn/n → x ∈ [0, p]
then

log P(X(n, p) ≤ xn) = −nΛp(xn/n) + O(log n), (3.5)

where Λp(x) := x log(x/p) + (1 − x) log((1 − x)/(1 − p)). The first-order term is standard
from large deviation theory and the second-order estimate follows from finer but still easy
analysis; see for example, Lemma 2.1 of [11]. Third, write G[N,M ] for the number of graphs
on vertex-set 1, . . . , N with at most M edges. It easily follows from (3.5) that

if M
N → ζ ∈ [0,∞) then

log G[N,M ]
N log N

→ ζ. (3.6)

4. EASY EXAMPLES

Standard models of random graphs on vertices labeled 1, . . . , N can be adapted to our
setting of vertex-names in several ways. In particular, one could either

(i) rewrite the integer label in binary, that is as a binary string; or
(ii) replace the labels by distinct random strings as names.

These two schemes are illustrated in the first two examples below.
We present the results in a fixed format: a name for the model as a subsection heading,

a definition of the model GN , typically involving parameters α, β, . . ., and a Proposition
giving a formula for the entropy rate c = c(α, β, . . .) such that

ent(GN ) ∼ cN log N as N → ∞.

Model descriptions and calculations sometimes implicitly assume N is sufficiently large.
These particular models are “easy” in the specific sense that independence of edges

allows us to write down an exact expression for entropy; then calculations establish the
asymptotics. We also give two general results, Lemmas 1 and 2, showing that graphs with
short edges, or with similar names between connected vertices, have entropy rate zero.

4.1. Sparse Erdős–Rényi, Default Binary Names

4.1.1. Model N vertices, whose names are the integers 1, . . . , N written as binary
strings of length 	log2 N
. Each of the

(
N
2

)
possible edges is present independently with

probability α/N , where 0 < α < ∞.

4.1.2. Entropy rate formula c(α) = α
2 .

Proof. The entropy equals
(
N
2

)
E(α/N); letting N → ∞ and using (3.3) gives the formula.
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4.2. Sparse Erdős–Rényi, Random A-ary Names

4.2.1. Model As above, N vertices, and each of the
(
N
2

)
possible edges is present inde-

pendently with probability α/N . Take LN ∼ β logA N for 1 < β < ∞ and take the vertex
names as a uniform random choice of N distinct A-ary strings of length LN .

4.2.2. Entropy rate formula c(α, β) = β − 1 + α
2 .

Proof: The entropy equals log
(
ALN

N

)
+
(
N
2

)
E(α/N). The first term ∼ (β − 1)N log N by

(3.4) and the second term ∼ α
2 N log N as in the previous model. �

Remark: One might have naively guessed that the formula would involve β instead of β − 1,
on the grounds that the entropy of the sequence of names is ∼ βN log N , but this is the
rate in a third model where a vertex name is a pair (i,a), where 1 ≤ i ≤ N and a is the
random string. This model distinction becomes more substantial for the model to be studied
in Section 5.

4.3. Small Worlds Random Graph

4.3.1. Model Start with N = n2 vertices arranged in an n × n discrete torus, where
the name of each vertex is its coordinate-pair (i, j) written as two binary strings of lengths
	log2 n
. Add the usual edges of the degree-4 nearest-neighbor torus graph. Fix parameters
0 < α, γ < ∞. For each edge (w, v) of the remaining set S of

(
N
2

)
− 2N possible edges in

the graph, add the edge independently with probability pN (||w − v||2), where pN (r) = ar−γ

and a := aN,γ is chosen such that the mean degree of the graph GN of these random edges
→ α as N → ∞ (see (4.3,4.4) for explicit expressions) and the Euclidean distance ||w − v||2
is taken using the torus convention.

4.3.2. Entropy rate formula

c(α, γ) = α/2, 0 < γ < 2

= α/4, γ = 2

= 0, 2 < γ < ∞.

Remark: The different cases arise because for γ < 2 the edge-lengths are order n whereas
for γ > 2 they are O(1).

Proof: Write ri,j =
√

i2 + j2 and pi,j = pN (ri,j). The degree D(v) of vertex v in GN

(assuming n is odd—the even case is only a minor modification) has mean

ED(v) − 4 = 4
(n−1)/2∑

i,j=1

pN (ri,j) + 4
(n−1)/2∑

i=2

pN (ri,0)

= a

⎛⎝4
(n−1)/2∑

i,j=1

(i2 + j2)−γ/2 + 4
(n−1)/2∑

i=2

i−γ

⎞⎠ . (4.1)
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Similarly, the entropy of GN is exactly

ent(GN ) =
N

2

⎛⎝4
(n−1)/2∑

i,j=1

E(pN (ri,j)) + 4
(n−1)/2∑

i=2

E(pN (ri,0))

⎞⎠ . (4.2)

One can analyze these expressions separately in the three cases. First, consider the “critical”
case γ = 2. Here, the quantity in parentheses in (4.1) is ∼

∫ (n−1)/2

1
2πr−1dr ∼ 2π log n ∼

π log N . We therefore take
a = aN,1 ∼ α

π log N (4.3)

so that GN has mean degree → 4 + α. Evaluating the entropy similarly, where in the second
line the “log a” term is asymptotically negligible,

ent(GN ) ∼ N

2

∫ (n−1)/2

1

2πr E(ar−2)dr

∼ Nπ

∫ (n−1)/2

1

r · ar−2 · (− log a + 2 log r) dr

∼ 2Nπa

∫ (n−1)/2

1

r−1 log r dr

∼ 2Nπa · 1
2 log2 n

∼ α
4 N log N

giving the asserted entropy rate formula in this case γ = 2.
In the case γ < 2, more elaborate though straightforward calculations (see the appendix)

show that to have the mean degree → α + 4, we take

a = aN,γ ∼ ακγN−1+γ/2; κγ =
2 − γ

21+γ
∫ π/4

0
sec2−γ(θ) dθ

. (4.4)

and then establish the asserted entropy rate α/2.
In the case γ > 2 the mean length of the edges of GN becomes O(1). One could repeat

calculations for this case, but the asserted zero entropy rate follows from the more general
Lemma 1 later, as explained in Section 4.6. �

Remark: The case γ < 2 suggests a general principle that models with “long edges” should
have the same entropy rates as if the edges were uniform random subject to the same
degree distribution. But there seems no general formulation of such a result without explicit
dependence assumption.

4.4. Edge-Probabilities Depending on Hamming Distance

We first describe a general model, then the specialization that we shall analyze.

4.4.1. General model Fix an alphabet A of size A. For each N choose LN such that
N ≤ ALN , and suppose LN ∼ β((log N)/(log A)) for some β ∈ [1,∞). Take N vertex-names
as a uniform random choice of distinct length-LN strings from A. Write dH(a,a′) = |{i :
ai �= a′

i}| for Hamming distance between names. For each N let w = wN be a sequence
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of decreasing weights 1 = w(1) ≥ w(2) ≥ · · · ≥ w(LN ) ≥ 0. We want the probability of an
edge between vertices (a,a′) to be proportional to w(dH(a,a′)). For each vertex a, the
expectation of the sum of w(dH(a,a′)) over other vertices a′ equals

μN :=
N − 1

1 − A−LN

LN∑
u=1

(
LN

u

)(
A − 1

A

)u( 1
A

)LN−u

w(u). (4.5)

Fix 0 < α < ∞, and make a random graph GN with mean degree α by specifying that,
conditional on the set of vertex-names, each possible edge (a,a′) is present independently
with probability αw(dH(a,a′))/μN .

Note that in order for this model to make sense, we need μN ≥ α, which is not
guaranteed by the description of the model.

Intuitively, we expect that the lengths (measured by Hamming distance) of edges will
be around the 	N maximizing

(
LN

�N

)
wN (	N ), and that for all (suitably regular) choices of

wN with 	N/LN → d ∈ [0, 1] the entropy rate will involve wN only via the limit d. Stating
and proving a general such result seems messy, so we will study only the special case

w(u) = 1, 1 ≤ u ≤ MN ; (4.6)

= 0, MN < u ≤ Ln

MN/LN → d ∈ (0, 1 − 1
A ), (4.7)

1 ≤ β <
log A

Λ1−1/A(d)
(4.8)

for Λp(d) as at (3.5). Here condition (4.8) is needed, as we will see at (4.10), to make
μN → ∞. Note that for the case d = 0, one could use Lemma 1 later and the accompany-
ing conditioning argument in Section 4.6 to show that the entropy rate of GN equals the
rate (β − 1) for the set of vertex-names. The opposite case (1 − 1/A) ≤ d ≤ 1 is essentially
the model of Section 4.2 and the rate becomes β − 1 + α/2: as expected, these rates are
the d → 0 and the d → 1 − 1/A limits of the rates in our formula below.

4.4.2. Entropy rate formula In the special case (4.6)–(4.8),

c(A,α, β, d) = β − 1 +
α

2

(
1 −

βΛ1−1/A(d)
log A

)
.

To establish this formula, first observe that for Binomial X(·, ·) as at (3.5)

μN =
N − 1

1 − A−LN
P(1 ≤ X(LN , 1 − 1/A) ≤ MN ), (4.9)

and so by (3.5)
log μN

log N
→ 1 −

β Λ1−1/A(d)
log A

. (4.10)

So condition (4.8) ensures that μN → ∞ and therefore the model makes sense. Write Names
(to avoid overburdening the reader with symbols) for the random unordered set of vertex-
names, and use (3.2) to write

ent(GN ) = ent(Names) + E ent(GN |Names).
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As in Section 4.2 the contribution to the entropy rate from the first term is β − 1. For the
second term, write

ent(GN |Names) =
∑
a �=a′

E
(

α
μN

)
11(a∈Names,a′∈Names)11(dH(a,a′)≤MN )

where the sum is over unordered pairs {a,a′} in ALN . Take expectation to get

E ent(GN |Names) =

(
N
2

)
1 − A−LN

MN∑
u=1

(
LN

u

)(
A − 1

A

)u( 1
A

)LN−u

E
(

α

μN

)
.

But from definition (4.5) of μN this simplifies to N
2 μNE(α/μN ), and then from (3.3)

E ent(GN |Names) ∼ αN

2
log μN .

Appealing to (4.10) establishes the entropy rate formula.

4.5. Non-Uniform and Uniform Random Trees

4.5.1. Model Construct a random tree TN on vertices 1, . . . , N as follows. Take
V3, V4, . . . , VN independent uniform on {1, . . . , N}. Link vertex 2 to vertex 1. For k =
3, 4, . . . , N link vertex k to vertex min(k − 1, Vk).

4.5.2. Entropy rate formula c = 1/2.

Proof:

ent(TN ) =
N∑

k=3

ent(Wk)

where Wk = min(k − 1, Vk) has entropy

ent(Wk) = k−2
N log N + N−k+2

N log N
N−k+2

The sum of the first term ∼ 1
2N log N and the sum of the second term is of smaller order. �

Remark: This tree arose in [2], where it was shown (by an indirect argument) that if one
first constructs TN , then applies a uniform random permutation to the vertex-labels, the
resulting random tree T ∗

N is uniform on the set of all labeled trees. Cayley’s formula tells us
there are NN−2 labeled trees, so ent(T ∗

N ) = log NN−2and so (T ∗
N ) has entropy rate c = 1.

4.6. Conditions for Zero Entropy Rate

Here, we will give two complementary conditions under which the entropy rate is zero.
Lemma 1 concerns the case where we start with deterministic vertex-names, and add random
edges which mostly link a vertex to some of the “closest” vertices, specifically to vertices
amongst the (o(Nε) for all ε > 0) closest vertices. Lemma 2 concerns the case where we
start with a deterministic graph on unlabeled vertices, and add random vertex-labels such
that vertices linked by an edge mostly have names that differ in only o(log N) places. Note
that these lemmas may then be applied conditionally. That is, if we start with a random
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unordered set of names, and then (conditional on the set of names) add random edges in
a way satisfying the assumptions of Lemma 1, then the entropy rate of the resulting GN

will equal the entropy rate of the original random unordered set of names. Similarly, if
we start with a random graph on unlabeled vertices, then (conditional on the graph) add
random names in a way satisfying the assumptions of Lemma 2, then the entropy rate of
the resulting GN will equal the entropy rate of the original random unlabeled graph.

Lemma 1: For each N , suppose we take N vertices with deterministic names (w.l.o.g. 1 ≤
i ≤ N written as binary strings, to fit our setup) and suppose for each i we are given an
ordering j(i, 1), j(i, 2), . . . , j(i,N − 1) of the other vertices. Say that an edge (i, j = j(i, 	))
with i < j has length 	. Consider a sequence of random graphs GN whose distribution is
arbitrary subject to

(i) The number EN of edges satisfies P(EN > Nβ) = o(N−1 log N) for some constant
β < ∞;

(ii) For some MN such that log(MN ) = o(log N), the r.v.

XN := number of edges with length greater than MN

satisfies P(XN > Nδ) = o(1) for all δ > 0.
Then the entropy rate is c = 0.

Remark: The lemma applies to the γ > 2 case of the “small worlds” model in Section 4.3.
Take the ordering induced by the natural distance between vertices. In this case, EN is a
sum of independent indicators with EEN ∼ cN for some constant c. Standard concentration
results (e.g. [8] Theorem 2.15) imply (i) for any β > c, and (ii) follows since for any sequence
MN → ∞ we have EXN = O(NM

1−γ/2
N ) = o(N).

Proof: We first show that the result holds with (i) replaced by

(i′) P(EN > Nβ) = 0,

and then use this modified statement to prove the lemma.
Assume now that GN satisfies (i′) and (ii) and write GN , considered as an edge-set,

as a disjoint union G′
N ∪ G′′

N , where G′
N consists of the edges of length ≤ MN . Because G′

N

contains at most βN edges out of a set of at most NMN edges,

ent(G′
N ) ≤ log(βN) + log

(
NMN

βN

)
= o(N log N) by (3.4).

Now fix δ > 0 and condition on whether the number XN of edges of G′′
N is bigger or smaller

than δN . Using (3.1) we obtain

ent(G′′
N ) ≤ log 2 + log G[N, δN ] + P(XN > δN) log G[N,βN ].

Now P(XN > δN) → 0 by assumption (ii), and then using (3.6) we obtain

ent(G′′
N ) ≤ (δ + o(1))N log N.

Because δ > 0 is arbitrary we conclude

ent(GN ) ≤ ent(G′
N ) + ent(G′′

N ) = o(N log N).

Now assume that GN satisfies the weaker hypotheses (i) and (ii). Defining ĜN to have
the conditional distribution of GN given EN ≤ βN , it is clear that ĜN satisfies (i′). We will
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show that it also satisfies (ii), implying (by the previous result) that the entropy rate of ĜN

is zero. Let δ > 0. Conditioning on the event (AN , say) that EN ≤ βN ,

P(XN > δN) = P(XN > δN |AN )P(AN ) + P(XN > δN |Ac
N )P(Ac

N ). (4.11)

By (ii), the term on the left-hand side of (4.11) is o(1), and by (i), P(Ac
N ) = o(1), and so

also P(AN ) → 1. Thus, P(XN > δN |AN ) must be o(1), as desired.
To complete the proof, use (3.1) to write

ent(GN ) ≤ E(P(AN )) + ent(GN |AN )P(AN ) + ent(GN |Ac
N )P(Ac

N )

≤ log 2 + ent(ĜN ) + P(Ac
N )
(

N

2

)
log 2.

The entropy rate of ĜN is zero, and assumption (i) is exactly that P(Ac
N ) = o(N−1 log N),

so ent(GN ) = o(N log N), as desired. �

Lemma 2: Take a deterministic graph on N unlabeled vertices, and let cN denote the
number of components and eN the number of edges. Construct GN by assigning random
distinct vertex-names a(v) of length O(log N) to vertices v, their distribution being arbitrary
subject to ∑

edges(a,a′)

dH(a,a′) = o(N log N) in probability.

If eN = O(N) and cN = o(N) then GN has entropy rate zero.

Proof: By a straightforward truncation argument we may assume there is a deterministic
bound ∑

edges (a,a′)

dH(a,a′) ≤ sN = o(N log N).

The name-lengths are ≤ β log N for some β. Consider first the case where there is a single
component. Take an arbitrary spanning tree with arbitrary root, and write the edges of the
tree in breadth-first order as e1, . . . , eN−1. We can specify GN by specifying first the name of
the root; then for each edge ei = (v, v′) directed away from the root, specify the coordinates
where a(v′) differs from a(v) and specify the values of a(v′) at those coordinates. Write S
for the random set of all these differing coordinates. Conditional on S = S the entropy of
GN is at most (|S| + β log N) log A, where the β log N term arises from the root name. So
using (3.1)

ent(GN ) ≤ ent(S) + (sN + β log N) log A.

With cN components the same argument shows

ent(GN ) ≤ ent(S) + (sN + cNβ log N) log A.

The second term is o(N log N) by assumption, and

ent(S) ≤ log

⎛⎝∑
i≤sN

(
βN log N

i

) ⎞⎠ = o(N log N),

the final relation by, e.g. the p = 1/2 case of (3.5). �
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4.7. Summary

The reader will recognize the models in this section as standard random graph models,
adapted to our setting in one of several ways. One can take a model of dynamic growth,
adding one vertex at a time, and then assign the k’th vertex a name, e.g. the “default binary”
or “random A-ary” used in the Erdős–Rényi models. Alternatively, as in the “Hamming
distance” model, one can start with N vertices with assigned names and then add edges
according to some probabilistic rule involving the names of end-vertices. Roughly speaking,
for any existing random graph model where one can calculate anything, one can calculate
the entropy rate for such adapted models. But this is an activity perhaps best left for
future Ph.D. theses. We are more interested in models where the nature of the dependence
of the graph structure and the name structure is less straightforward than starting by
specifying one structure and having that influence the other. It is not so easy to devise
tractable such models, but the next section shows our attempt.

5. A HYBRID MODEL

In this section, we study a model for which calculation of the entropy rate is less straightfor-
ward. It incidently reveals a connection between our setting and the more familiar setting
of “graph entropy”.

5.1. The Model

In outline, the graph structure is again sparse Erdős–Rényi G(N,α/N), but we construct it
inductively over vertices, and make the vertex-names copy parts of the names of previous
vertices that the current vertex is linked to. Here are the details.

5.1.1. Model: Erdős–Rényi with hybrid names Take LN ∼ β logA N for 1 < β < ∞.
Vertex 1 is given a uniform random length-LN A-ary name. For 1 ≤ n ≤ N − 1:

vertex n + 1 is given an edge to each vertex i ≤ n independently with probability α/N .

Write Qn ≥ 0 for the number of such edges, and a1, . . . , aQn for the names of the linked
vertices. Take an independent uniform random length-LN A-ary string a0. Assign to vertex
n + 1 the name obtained by, independently for each coordinate 1 ≤ u ≤ LN , making a

uniform random choice from the Qn + 1 letters a0
u, a1

u, . . . , aQn
u .

See Figure 1. This model gives a family (GN ) parametrized by (A, β, α). Note that this
scheme for defining “hybrid” names could be used with any sequential construction of a
random graph, for instance preferential attachment models.

5.2. The Ordered Case

This model illustrates a distinction mentioned in Section 4.2. In the construction above, the
nth vertex is assigned a name, say an, during the construction, but in the final graph GN

we do not see the value of n for a vertex. The “ordered” model (Gord
N ) in which we do see

the value of n for each vertex, by making the name be (n,an), is a different model whose
analysis is conceptually more straightforward, so we will start with that model. We return
to the unordered model in Section 5.6.
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dafcbb

bfccad

bafcac

Figure 1. Schematic for the hybrid model. A vertex (right) arrives with some “original
name” bbdabc and is attached to two previous vertices with names dafcbb and bfccad. The
name given to the new vertex is obtained by copying for each position the letter in that
position in a uniform random choice from the three names. Choosing the underlined letters
gives the name shown in the figure.

5.2.1. Entropy Rate Formula for (Gord
N )

α

2
+ β

∑
k≥0

αkJk(α)hA(k)
k! log A

, (5.1)

where

Jk(α) :=
∫ 1

0

xke−αxdx

and the constants hA(k) are defined at (5.6).
Write GN,n for the partial graph obtained after vertex n has been assigned its edges to

previous vertices and then its name. We will show that, for deterministic eN,n defined at
(5.8) below, as N → ∞ the entropies of the conditional distributions satisfy

max
1≤n≤N−1

E|ent(GN,n+1|GN,n) − eN,n| = o(log N). (5.2)

By the chain rule (3.2) this immediately implies

ent(Gord
N ) −

N−1∑
n=1

eN,n = o(N log N),

which will establish the entropy rate formula.
The key ingredient is the following technical lemma; note that the measures μi below

depend on the realization of Gord
N and are therefore random quantities. Write “ave” for

average, and write

||Θ||(k) := 1
2

∑
a∈Ak

∣∣Θ(a) − A−k
∣∣

for the variation distance between a probability distribution Θ on Ak and the uniform
distribution.

Lemma 3: Write (n,an), 1 ≤ n ≤ N for the vertex-names of Gord
N . For each k ≥ 1 and

i := (i1, . . . , ik) with 1 ≤ i1 < · · · < ik ≤ N , write μi for the empirical distribution of
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(ai1
u , . . . , aik

u ), 1 ≤ u ≤ LN . That is, the probability distribution on Ak

μi(x1, . . . , xk) := L−1
N

LN∑
u=1

11
(a

i1
u =x1,...,a

ik
u =xk)

.

Then

Δ(k)
N := max

2≤n≤N
E|| ave

1≤i1<···<ik≤n
μi||(k) ≤ C

(
Ak/2

√
log N

+
k2

N

)
. (5.3)

for a constant C not depending on k,N .

We defer the proof to Section 5.3.
Fix N and n, and consider ent(GN,n+1|GN,n), the entropy of the conditional distribution.

Conditioning on the edges of vertex n + 1 in GN,n+1, and using the chain rule (3.2), we find

ent(GN,n+1|GN,n) = nE(α/N)

+
∑

k=0,...,n

1≤i1<···<ik≤n

( α

N

)k (
1 − α

N

)n−k

ent(an+1|GN,n, n + 1 → {i1, . . . , ik}), (5.4)

where n + 1 → {i1, . . . , ik} denotes the event that vertex n + 1 connects to vertices i1, . . . , ik
and no others. The contribution to the entropy from the choice of edges is nE(α/N), which
as in previous models contributes (after summing over n) the first term α/2 of the entropy
rate formula, so in the following we need consider only the contribution from names, that
is the sum in (5.4). Consider the contribution to the sum (5.4) from k = 2, that is on the
event {Qn = 2} that vertex n + 1 links to exactly two previous vertices. Conditional on
these being a particular pair 1 ≤ i < j ≤ n, with names ai,aj , the contribution to entropy
is exactly

ent(an+1|GN,n, n + 1 → {i, j}) = LN

∑
(a,a′)∈A×A

g2(a, a′) μ(i,j)(a, a′),

where

g2(a, a′) = EA(A+1
3A , A+1

3A , 1
3A , 1

3A , . . . , 1
3A ) if a′ �= a

= EA( 2A+1
3A , 1

3A , 1
3A , 1

3A , . . . , 1
3A ) if a′ = a

and where EA(p) is the entropy of a distribution p = (p1, . . . , pA). Now unconditioning on
the pair (i, j), the contribution to ent(GN,n+1|GN,n) from the event {Qn = 2}; that is the
k = 2 term of the sum (5.4); equals

LN

∑
1≤i<j≤n

α2

N2

(
1 − α

N

)n−2 ∑
(a,a′)∈A×A

g2(a, a′) μ(i,j)(a, a′)

=
LNα2

(
n
2

)
N2

(
1 − α

N

)n−2 ∑
(a,a′)∈A×A

g2(a, a′) ave
1≤i<j≤n

μ(i,j)(a, a′). (5.5)

Lemma 3 now tells us that the sum in (5.5) differs from

hA(2) := A−2
∑

(a,a′)∈A×A

g2(a, a′)
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by at most 2g∗2Δ(2)
N where g∗2 ≤ log A is the maximum possible value of g2(·, ·) and Δ(2)

N is
as defined in Lemma 3. So to first order as N → ∞, the quantity (5.5) is

eN,n,2 := β logA N × α2hA(2)(n
2)

N2 exp(−αn/N),

with an error bounded by

(2 log A)LN

(
n

2

)( α

N

)2 (
1 − α

N

)n−2

Δ(2)
N .

A similar argument applies to the terms in the sum (5.4) for a general number k of links.
In brief, we define

eN,n,k := β logA N × αkhA(k) (n
k)

Nk exp(−αn/N),

where
hA(k) := A−k

∑
(a1,...,ak)∈Ak

ent(p[a1,...,ak]) (5.6)

and where p[a1,...,ak] is the probability distribution p on A defined by

p[a1,...,ak](a) =
1 + A × |{i : ai = a}|

(1 + k)A
.

Also for k = 0 we set hA(0) = log A, the entropy of the uniform distribution on A. Repeating
the argument from the case k = 2, we find that (5.4) is, to first order,

∑
k≥0 eN,n,k, with

error of order

LN

n∑
k=0

(
n

k

)( α

N

)k (
1 − α

N

)n−k

Δ(k)
N . (5.7)

Applying Lemma 3 to bound Δ(k)
N and then using simple properties of the binomial

distribution yields that (5.7) is o(log N).
So, we are now in the setting of (5.2) with

eN,n =
∑
k≥0

eN,n,k. (5.8)

Because
N−1∑
n=1

(n
k)

Nk exp(−αn/N) ∼ N
k!Jk(α)

calculating
∑N−1

n=1 eN,n gives the stated entropy rate formula.

5.3. Proof of Lemma 3

Fix N . Recall the construction of Gord
N involves an “original name process”—letters of the

name of vertex n may be copies from previous names or may be from an “original name”,
independent uniform for different n. Consider a single coordinate, w.l.o.g. coordinate 1, of
the vertex-names of Gord

N . For each vertex n this is either from the original name of n or a
copy of some previous vertex-name, so inductively the letter at vertex n is a copy of the letter
originating at some vertex 1 ≤ CN

1 (n) ≤ n; and similarly the letter at general coordinate
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u is a copy from some vertex CN
u (n). Because the copying process is independent of the

name origination process, it is clear that the (unconditional) distribution of each name an

is uniform on length-LN words. Moreover, it is clear that, for 1 ≤ i < j ≤ N ,

the two names ai and aj are independent uniform

on the event {CN
u (i) �= CN

u (j) ∀u}.
(5.9)

The proof of Lemma 3 rests upon the following lemma, whose proof we defer to the end of
Section 5.4.

Lemma 4: For (I, J) uniform on {1 ≤ i < j ≤ n}, write θN,n = P(CN
1 (I) = CN

1 (J)). Then

max
2≤n≤N

θN,n = O(1/N) as N → ∞.

We first use this lemma to prove Lemma 3 in the case where k = 2. For (I, J) as in
Lemma 4,

Δ(2)
N = 1

2 max
2≤n≤N

E

∑
x∈A2

∣∣∣∣∣E
(

L−1
N

LN∑
u=1

11(aI
u=x1,aJ

u=x2)|GN,n

)
− A−2

∣∣∣∣∣
≤ 1

2 max
2≤n≤N

∑
x∈A2

E

∣∣∣∣∣L−1
N

LN∑
u=1

11(aI
u=x1,aJ

u=x2) − A−2

∣∣∣∣∣ . (5.10)

By Lemma 4 and (5.9), the two names aI ,aJ are independent uniform on ALN outside
an event of probability O(1/N). Under this event, we bound the total variation distance
appearing in Δ(2)

N by 1, leading to the second summand in the bound (5.3). If the two
names are independent, then because the sum below has Binomial(LN , A−2) distribution
with variance < LNA−2,

E

∣∣∣∣∣L−1
N

LN∑
u=1

11(aI
u=x1,aJ

u=x2) − A−2

∣∣∣∣∣ ≤ L
−1/2
N A−1, (5.11)

which contributes the first summand in the bound (5.3).
The proof of Lemma 3 for general k is similar. Taking I1, . . . , Ik independent and

uniform on the set {1 ≤ i1 < · · · < ik ≤ n}, we have the analog of (5.10):

Δ(k)
N ≤ 1

2 max
2≤n≤N

∑
x∈Ak

E

∣∣∣∣∣L−1
N

LN∑
u=1

11
(a

I1
u =x1,...,a

Ik
u =xk)

− A−k

∣∣∣∣∣ .
The names aI1 , . . . ,aIk are independent outside of the “bad” event that some pair within
k random vertices have the same CN

1 (·) value. But the probability of this bad event is
bounded by

(
k
2

)
times the chance for a given pair, which, after applying Lemma 4, leads

to the second summand of the bound (5.3). And the upper bound for the term analogous
to (5.11) becomes L

−1/2
N A−k/2.
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5.4. Structure of the Directed Sparse Erdős–Rényi Graph

In order to prove Lemma 4 and later results, we study the original name variables CN
u (i)

defined at (5.9). It will first help to collect some facts about the structure of a directed
sparse Erdős–Rényi random graph. Write (omitting the dependence on N)

Tn = {1 ≤ j ≤ n : ∃g ≥ 0 and a path n = v0 > v1 > · · · > vg = j in GN}.

We visualize Tn as the vertices of the tree of descendants of n although it may not be a
tree. The next result collects two facts about the structure of Tn including that for large N
it is a tree with high probability.

Lemma 5: For m < n and Tn as above,

(a) P(Tn ∩ Tm �= ∅) ≤ (αeα)2+αeα

N .

(b) P(Tn is not a tree ) ≤ (αeα)3

2N .

Proof: First note that for 1 ≤ j < n ≤ N the mean number of decreasing paths from n
to j of length g ≥ 1 equals

(
n−j−1

g−1

)
(α/N)g. Because n − j − 1 ≤ N , this is bounded by

((α)/(N))((αg−1)/((g − 1)!), and summing over g gives

P(j ∈ Tn) ≤ E(number of decreasing paths from n to j) ≤ αeα/N. (5.12)

We break the event Tn ∩ Tm �= ∅ into a disjoint union according to the largest element in
the intersection: max Tn ∩ Tm = j for j = 1, . . . , m. Now note for j ≤ m − 1, we can write

P(max Tn ∩ Tm = j) ≤ E

∑
xj

n,yj
m

11(xj
n is path in GN )11(yj

m is path in GN ), (5.13)

where the sum is over edge-disjoint decreasing paths xj
n from n to j and yj

m from m to j.
Since the paths are edge-disjoint, the indicators appearing in the sum (5.13) are independent
and so we find

P(max Tn ∩ Tm = j) ≤
∑

xj
n,yj

m

P(xj
n is path in GN )P(yj

m is path in GN )

≤
∑
xj

n

P(xj
n is path in GN )

∑
yj

m

P(yj
m is path in GN )

≤ (αeα/N)2;

where the sums in the second line are over all paths from n (respectively m) to j, and the
final inequality follows from (5.12). Now part (a) of the lemma follows by summing over
j < m and adding the corresponding bound (5.12) for the case j = m.

Part (b) is proved in a similar fashion. If Tn is not a tree then for some j2 ∈ Tn and
some j1 < j2 there are two edge-disjoint paths from j2 to j1. For a given pair (j2, j1) the
mean number of such path-pairs is bounded by P(j2 ∈ Tn) × (αeα/N)2. By (5.12) this is
bounded by (αeα/N)3, and summing over pairs (j2, j1) gives the stated bound. �

Remark: Note that for part (a) of the lemma we could also appeal to the more sophisticated
inequalities of [14] concerning disjoint occurrence of events, which would give the stronger
bound P(max Tn ∩ Tm = j) ≤ P(j ∈ Tm) × P(j ∈ Tn).

Proof of Lemma 4: Lemma 4 follows from Lemma 5(a) and the observation that
{CN

1 (i) = CN
1 (j)} ⊆ {Ti ∩ Tj �= ∅}. �
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5.5. Making the Vertex Labels Distinct

In the ordered model studied above, the vertex-names are (n,an), 1 ≤ n ≤ N . In order to
study the unordered model described at the start of Section 5, we first must address the
fact that the vertex-names an, 1 ≤ n ≤ N may not be distinct.

Lemma 6: Let GN be random graphs-with-vertex-names, where (following our standing
assumptions) the names have length log N/ log A ≤ LN = O(log N), and suppose that for
some deterministic sequence kN = o(N), the number of vertices that have non-unique
names in GN , say VN , satisfies P(VN ≥ kN ) = o(1). Let G∗

N be a modification with unique
names obtained by re-naming some or all of the non-uniquely-named vertices. Then
|ent(G∗

N ) − ent(GN )| = o(N log N).

Proof: The chain rule (3.2) implies that

ent(G∗
N ) ≤ ent(GN ) + Eent(G∗

N |GN ),

so we want to show that Eent(G∗
N |GN ) is o(N log N). Considering the number of ways of

relabeling VN vertices,

Eent(G∗
N |GN ) ≤ E log

(
VN !

(
ALN

VN

))
,

≤ E(log AVN LN )11(VN <kN ) + E(log ALN VN )11(VN≥kN ),

≤ log(A)LN [kN + NP(VN ≥ kN )] = o(N log N),

as desired. �

Remark: The analogous lemma holds if instead we replace the labels of any random subset
of vertices of GN to form G∗

N , provided the subset size satisfies the same assumptions as VN .

Lemma 7: For Gord
N and GN ,

E|{n : an = am for some m �= n}| = o(N). (5.14)

Proof: As in Lemma 4, the proof is based on studying the originating vertex Ci(n) (now
dropping the notational dependence on N) of the letter ultimately copied to coordinate
i of vertex n through the “trees” Tn. Given Tn, the copying mechanism that determines
the name an evolves independently for each coordinate, and this implies the conditional
independence property: for 1 ≤ m < n ≤ N , the events {Ci(n) = Ci(m)}, 1 ≤ i ≤ LN are
conditionally independent given Tm and Tn. Because

P(an
i = am

i |Tn, Tm)

= P(Ci(n) = Ci(m)|Tn, Tm) + 1
AP(Ci(n) �= Ci(m)|Tn, Tm)

the conditional independence property implies

P(an = am|Tn, Tm)

=
[
P(C1(n) = C1(m)|Tn, Tm) + 1

AP(C1(n) �= C1(m)|Tn, Tm)
]LN

.
(5.15)

Now we always have C1(n) ∈ Tn so trivially

P(C1(n) = C1(m)|Tn, Tm) = 0 on Tn ∩ Tm = ∅. (5.16)
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We show below that when the sets do intersect we have

P(C1(n) = C1(m)|Tn, Tm) ≤ 1
2 on {Tn and Tm are trees}. (5.17)

Assuming (5.17), since A ≥ 2, for p ≤ 1/2, we have p + (1 − p)/A ≤ 3/4, and now combining
(5.15)–(5.17), we find

P(an = am|Tn, Tm) ≤ ( 3
4 )LN 11(Tn∩Tm �=∅) on {Tn and Tm are trees}.

Now take expectation, appeal to part (a) of Lemma 5, and sum over m to conclude

P(Tn is a tree,an = am for some m �= n for which Tm is a tree)

≤ ( 3
4 )LN ((αeα)2 + αeα) → 0.

Now any n for which the name an is not unique is either in the set of n defined by the event
above, or in one of the two following sets:

{n : Tn is not a tree}
{n : Tn is a tree, an = am for some m �= n for which Tm is not a tree

but an �= am for all m �= n for which Tm is a tree}.

The cardinality of the final set is at most the cardinality of the previous set, which by
part (b) of Lemma 5 has expectation O(1). Combining these bounds gives (5.14).

It remains only to prove (5.17). For v ∈ Tn write Rv(n) for the event that the path of
copying of coordinate 1 from C1(n) to n passes through v. We may assume there is at least
one edge from n into [1, n − 1] (otherwise we are in the setting of (5.16)). Given Tn, the
chance that vertex n adopts the label of any given neighbor in Tn is bounded by 1/2, we see

P(Rv(n)|Tn) ≤ 1
2 , v ∈ Tn. (5.18)

Similarly by (5.16) we may assume Tn ∩ Tm �= ∅. By hypothesis Tn and Tm are trees, and so
there is a subset M ⊆ Tn ∩ Tm of “first meeting” points v with the property that the path
from v to n in Tn does not meet the path from v to m in Tm and

{C1(n) = C1(m)} = ∪v∈M[Rv(n) ∩ Rv(m)]

with a disjoint union on the right. So

P(C1(n) = C1(m)|Tn, Tm) =
∑
v∈M

P(Rv(n)|Tn) × P(Rv(m)|Tm). (5.19)

Now v → P(Rv(n)|Tn) and v → P(Rv(m)|Tm) are sub-probability distributions on M and
the former satisfies (5.18). Now (5.19) implies (5.17). �

5.6. The Unordered Model and its Entropy Rate

The model we introduced as GN in section 5.1 does not quite fit our default setting because
the vertex-names will typically not be all distinct. However, if we take the ordered model
Gord

N and then arbitrarily rename the non-unique names, to obtain a model Gord∗
N say, then
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Lemmas 6 and 7 imply that only a proportion o(1) of vertices are renamed and the entropy
rate is unchanged:

(Gord∗
N ) has entropy rate (5.1).

Now we can “ignore the order”, that is replace the names {(n,an)} by the now-distinct
names {an}, to obtain a model G∗

N , say. In this section, we will obtain the entropy rate
formula for (G∗

N ) as

(entropy rate for G∗
N ) = (entropy rate for Gord∗

N ) − 1. (5.20)

The remainder of this section is devoted to the proof of (5.20). Write HN for the Erdős–
Rényi graph arising in the construction of Gord∗

N ; that is, each vertex n + 1 is linked to each
earlier vertex i with probability α/N , and we regard the created edges as directed edges (n +
1, i). Now delete the vertex-labels; consider the resulting graph Hunl

N as a random unlabeled
directed acyclic graph. Given a realization of Hunl

N there is some number 1 ≤ M(Hunl
N ) ≤ N !

of possible vertex orderings consistent with the edge-directions of the realization.

Lemma 8: In the notation above,

ent(Gord∗
N ) = ent(G∗

N ) + E log M(Hunl
N ). (5.21)

Proof: According to the chain rule (3.2),

ent(Gord∗
N ) = ent(G∗

N ) + Eent(Gord∗
N |G∗

N ).

We only need to show

ent(Gord∗
N |G∗

N ) = log M(Hunl
N ),

which follows from two facts: given G∗
N , all possible vertex orderings consistent with the

edge-directions of Hunl
N are equally likely and there are M(Hunl

N ) of these orderings. The
latter fact is obvious from the definition and to see the former, consider two such orderings;
there is a permutation taking one to the other. Given a realization of Gord∗

N associated with
the realization of Hunl

N , applying the same permutation gives a different realization of Gord∗
N

associated with the same realization of Hunl
N . These two realizations of Gord∗

N have the same
probability, and map to the same element of G∗

N , and (here we are using that the second
part of the labels are all distinct) this is the only way that different realizations of Gord∗

N

can map to the same element of G∗
N . �

So it remains only to prove

Proposition 9:

E log M(Hunl
N ) ∼ N log N.

Proof: Choose KN ∼ Nε for small ε > 0 and partition the labels [1, N ] into KN con-
secutive intervals I1, I2, . . . , each containing N/KN labels. Consider a realization of the
(labeled) Erdős–Rényi graph HN . The number Vi of edges with both end-vertices in Ii has
Binomial(

(
N/KN

2

)
, α/N) distribution with mean ∼ αN

2K2
N

, and from standard large deviation
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bounds (e.g., [8] Theorem 2.15)

P(Vi ≤ αN
K2

N
, all 1 ≤ i ≤ KN ) → 1.

For a realization HN satisfying these inequalities we have

M(Hunl
N ) ≥

((
N

KN
− 2αN

K2
N

)
!
)KN

.

This holds because we can create permutations consistent with Hunl
N by, on each interval Ii,

first placing the (at most 2αN
K2

N
) labels involved in the edges with both ends in Ii in increasing

order, then placing the remaining labels in arbitrary order. So

E log M(Hunl
N ) ≥ (1 − o(1)) log

((
N

KN
− 2αN

K2
N

)
!
)KN

∼ KN × N
KN

log N
KN

∼ (1 − ε)N log N

establishing Proposition 9. �

Remark: Proposition 9 and Lemma 8 are in the spirit of the graph entropy literature, but
we could not find these results there. As discussed in Section 2.2, this literature is largely
concerned with the complexity of the structure of an unlabeled graph, or in the case of [7],
the entropy of probability distributions on unlabeled graphs. A quantity of interest in these
settings is the “automorphism group” of the graph which is closely related to M(Hunl

N ) here.
For example, an analog of (5.21) is shown in Lemma 1 of [7] and Theorem 1 there uses this
lemma to relate the entropy rate between an Erdős–Rényi graph on N vertices with edge
probabilities pN with distinguished vertices and that of the same model where the vertex
labels are ignored. Their result is very close to Proposition 9, but [7] only considers edge
weights pN satisfying NpN/ log(N) bounded away from zero, which falls outside our setting.

6. OPEN PROBLEMS

Aside from the (quite easy) Lemmas 1 and 2, our results concern specific models. Are there
interesting “general” results in this topic? Here are two possible avenues for exploration.

Given a random graph-with vertex-names G = GN , there is an associated random
unlabeled graph Gunl and an associated random unordered set of names Names, and
obviously

ent(G) ≥ max(ent(Gunl), ent(Names)).

Lemmas 1 and 2, applied conditionally as indicated in Section 4.6, give sufficient condi-
tions for ent(G) = ent(Gunl) or ent(G) = ent(Names). In general, one could ask “given Gunl

and Names, how random is the assignment of names to vertices?” The standard notion
of graph entropy enters here, as a statistic of the “completely random” assignment, so the
appropriate conditional graph entropy within a model constitutes a measure of relative ran-
domness. Another question concerns measures of strength of association of names across
edges. One could just take the space ALN of possible names, consider the empirical distri-
bution across edges (v, w) of the pair of names (a(v),a(w)) as a distribution on the product
space ALN × ALN and compare with the product measure using some quantitative measure
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of dependence. But neither of these procedures quite gets to grips with the issue of finding
conceptually interpretable quantitative measures of dependence between graph structure
and name structure, which we propose as an open problem.

A second issue concerns “local” upper bounds for the entropy rate. In the classical
context of sequences X1, . . . , Xn from A, an elementary consequence of subadditivity is
that (without any further assumptions) one can upper bound ent(X1, . . . , Xn) in terms of
the “size-k random window” entropy

En,k := ent(XU ,XU+1, . . . , XU+k−1); U uniform on [1, n − k + 1]

and this is optimal in the sense that for a stationary ergodic sequence the “global” entropy
rate is actually equal to the quantity

lim
k→∞

lim
n→∞

k−1En,k

arising from this “local” upper bound. In our setting, we would like some analogous result
saying that, for the entropy EN,k of the restriction of GN to some “size-k” neighborhood of
a random vertex, there is always an upper bound for the entropy rate c of the form

c ≤ lim
k→∞

lim
N→∞

EN,k

k log N

and that this is an equality under some “no long-range dependence” condition analogous
to ergodicity. But results of this kind seem hard to formulate, because of the difficulty in
specifying which vertices and edges are to be included in the “size-k” neighborhood.
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APPENDIX A

A.1 Small Worlds Model: 0 < γ < 2

Here, we complete the analysis of the graph entropy rate in the “small worlds” model of Section 4.3.
First, we show that for a as in (4.4), the average degree tends to a constant. For Du = (n − 1)/2 + b
and Dl = (n − 1)/2 − b, where b is constant with respect to N (and chosen large enough for the
inequalities below to hold), we find using (4.1) that

8a

∫ π/4

0

∫ Dl sec(θ)

1
r−γ+1dr dθ ≤ ED(v) − 4

≤ 8a

∫ π/4

0

∫ Du sec(θ)

1
r−γ+1dr dθ + 4a

2γ/2 ,

8aD2−γ
l

2−γ

∫ π/4

0
sec2−γ(θ) dθ − 2aπ

2−γ ≤ ED(v) − 4 (A.1)

≤ 8aD2−γ
u

2−γ

∫ π/4

0
sec2−γ(θ) dθ − 2aπ

2−γ + 4a
2γ/2 .

Taking a and κγ as in (4.4), the inequalities above imply ED(v) → 4 + α.
To show the entropy rate is as claimed, take N large enough to make a < 1/2, so that E(ar−γ)

is a decreasing function of r for r > 1. Using the inequality −(1 − x) log(1 − x) ≤ x for 0 < x < 1,

−8a

log(N)

∫ π/4

0

∫ Dl sec(θ)

1
E(ar−γ)rdr dθ

∼ −8a

log(N)

∫ π/4

0

∫ Dl sec(θ)

1
r−γ+1 log(ar−γ) dr dθ, (A.2)

and we will show (A.2) tends to α as N → ∞. From this point, similar arguments show the same
is true with Dl replaced by Du, so that following the arguments that established the convergence
of the average degree and using (4.2), we find

lim
N→∞

ent(GN )

N log(N)
=

α

2
,

as desired. To obtain the claimed asymptotic, note that we can write (A.2) as

− 8a log(a)

∫ π/4

0

∫ Dl sec(θ)

1
r−γ+1dr dθ (A.3)

+ 8aγ

∫ π/4

0

∫ Dl sec(θ)

1
r−γ+1 log(r) dr dθ. (A.4)
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From (A.1) above and the definition (4.4) of a, it is easy to see that (A.3) is

α(1 − γ/2) log(N) + o(log(N)) as N → ∞. (A.5)

Now, making the substitution u = r2−γ , (A.4) is equal to

8aγ

(2 − γ)2

∫ π/4

0

∫ D2−γ
l sec2−γ(θ)

1
log(u) du dθ

=
8aγ

(2 − γ)2

∫ π/4

0
D2−γ

l sec2−γ(θ)[log(D2−γ
l sec2−γ(θ)) − 1] dθ.

After simplification, the only term that is not o(log(N)) is

8aγ

(2 − γ)2
D2−γ

l log(D2−γ
l )

∫ π/4

0
sec2−γ(θ) dθ,

which after simplification is equal to

αγ

2
log(N) + o(log(N)). (A.6)

Combining (A.5) and (A.6) with (A.3) and (A.4) implies (A.2) tends to α as N → ∞.
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