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Abstract Continually arriving information is communicated through a network of
n agents, with the value of information to the j’th recipient being a decreasing func-
tion of j/n, and communication costs paid by recipient. Regardless of details of
network and communication costs, the social optimum policy is to communicate
arbitrarily slowly. But selfish agent behavior leads to Nash equilibria which (in the
n→ ∞ limit) may be efficient (Nash payoff = social optimum payoff) or wasteful
(0 < Nash payoff < social optimum payoff) or totally wasteful (Nash payoff = 0).
We study the cases of the complete network (constant communication costs between
all agents), the grid with only nearest-neighbor communication, and the grid with
communication cost a function of distance. The main technical tool is analysis of
the associated first passage percolation process or SI epidemic (representing spread
of one item of information) and in particular its “window width”, the time interval
during which most agents learn the item. In this version (written in July 2007) many
arguments are just outlined, not intended as complete rigorous proofs. One of the
topics herein (first passage percolation on the N×N torus with short and long range
interactions; section 6.2) has now been studied rigorously by Chatterjee and Durrett
[4].
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1 Introduction

A topic which one might loosely call “random percolation of information through
networks” arises in many different contexts, from epidemic models [2] and com-
puter virus models [10] to gossip algorithms [8] designed to keep nodes of a decen-
tralized network updated about information needed to maintain the network. This
topic differs from communication networks in that we envisage information as hav-
ing a definite source but no definite destination.

In this paper we study an aspect where the vertices of the network are agents, and
where there are costs and benefits associated with the different choices that agents
may make in communicating information. In such “economic game theory” settings
one anticipates a social optimum strategy that maximizes the total net payoff to all
agents combined, and an (often different) Nash equilibrium characterized by the
property that no one agent can benefit from deviating from the Nash equilibrium
strategy followed by all other agents (so one anticipates that any reasonable process
of agents adjusting strategies in a selfish way will lead to some Nash equilibrium).
Of course a huge number of different models of costs, benefits and choices could fit
the description above, but we focus on the specific setting where the value to you
of receiving information depends on how few people know the information before
you do. Two familiar real world examples are gossip in social networks and insider
trading in financial markets. In the first, the gossiper gains perceived social status
from transmitting information, and so is implicitly willing to pay for communicate
to others; in the second the owner of knowledge recognizes its value and implictly
expects to be paid for communication onwards. Our basic model makes the simpler
assumption that the value to an agent attaches at the time information is received,
and subsequently the agent takes no initiative to communicate it to others, but does
so freely when requested, with the requester paying the cost of communication. In
our model the benefits come from, and communication costs are paid to, the outside
world: there are no payments between agents.

Remark. Many arguments are just outlined, not intended as complete rigorous
proofs. This version was written in July 2007 to accompany a talk at the ICTP
workshop “Common Concepts in Statistical Physics and Computer Science”, and
intended as a starting point for future thesis projects which could explore these and
many variant problems in detail. One of the topics herein (first passage percolation
on the N ×N torus with short and long range interactions) has now been studied
rigorously by Chatterjee and Durrett [4] (see section 6.2 for their result) and so it
seems appropriate to make this version publicly accessible.

1.1 The general framework: a rank-based reward game

There are n agents (our results are in the n→ ∞ limit). The basic two rules are:
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Rule 1. New items of information arrive at times of a rate-1 Poisson process; each
item comes to one random agent.

Information spreads between agents by virtue of one agent calling another and
learning all items that the other knows (details are case-specific, described later),
with a (case-specific) communication cost paid by the receiver of information.
Rule 2. The j’th person to learn an item of information gets reward R( j

n ).
Here R(u), 0 < u≤ 1 is a function such that

R(u) is decreasing; R(1) = 0; 0 < R̄ :=
∫ 1

0
R(u)du < ∞. (1)

Assuming information eventually reaches each agent, the total reward from each
item will be ∑

n
j=1 R( j

n ) ∼ nR̄. If agents behave in some “exchangeable” way then
the average net payoff (per agent per unit time) is

payoff = R̄− (average communication cost per agent per unit time). (2)

Now the average communication cost per unit time can be made arbitrarily small
by simply communicating less often (because an agent learns all items that another
agent knows, for the cost of one call. Note the calling agent does not know in ad-
vance whether the other agent has any new items of information). Thus the “social
optimum” protocol is to communicate arbitrarily slowly, giving payoff arbitrarily
close to R̄. But if agents behave selfishly then one agent may gain an advantage by
paying to obtain information more quickly, and so we seek to study Nash equilibria
for selfish agents. In particular there are three qualitative different possibilities. In
the n→ ∞ limit, the Nash equilibrium may be
• efficient (Nash payoff = social optimum payoff)
• or wasteful (0 < Nash payoff < social optimum payoff)
• or totally wasteful (Nash payoff = 0).

1.2 Methodology

Allowing agents’ behaviors to be completely general makes the problems rather
complicated (e.g. a subset of agents could seek to coordinate their actions) so in
each specific model we restrict agent behavior to be of a specified form, making
calls at random times with a rate parameter θ ; the agent’s “strategy” is just a choice
of θ , and for this discussion we assume θ is a single real number. If all agents use
the same parameter value θ then the spread of one item of information through the
network is as some model-dependent first passage percolation process (see section
2.2). So there is some function Fθ ,n(t) giving the proportion of agents who learn
the item within time t after the arrival of the information into the network. Now
suppose one agent ego uses a different parameter value φ and gets some payoff-per-
unit-time, denoted by payoff(φ ,θ). The Nash equilibrium value θ Nash is the value of
θ for which ego cannot do better by choosing a different value of φ , and hence is
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the solution of
d

dφ
payoff(φ ,θ)

∣∣∣∣
φ=θ

= 0. (3)

Obtaining a formula for payoff(φ ,θ) requires knowing Fθ ,n(t) and knowing some-
thing about the geometry of the sets of informed agents at time t – see (19,26) for
the two basic examples. The important point is that where we know the exact n→∞

limit behavior of Fθ ,n(t) we get a formula for the exact limit θ Nash, and where we
know order of magnitude behavior of Fθ ,n(t) we get order of magnitude behavior of
θ Nash.

Note that we have assumed that in a Nash equilibrium each agent uses the same
strategy. This is only a sensible assumption when the network cost structure has
enough symmetry (is transitive – see section 7.1) and the non-transitive case is an
interesting topic for future study.

It turns out (section 4) that for determining the qualitative behavior of the Nash
equilibria, the important aspect is the size of the window width wθ ,n of the associated
first passage percolation process, that is the time interval over which the proportion
of agents knowing the item of information increases from (say) 10% to 90%. While
this is well understood in the simplest examples of first passage percolation on fi-
nite sets, it has not been studied for very general models and our game-theoretic
questions provide motivation for future such study.

To interpret later formulas it turns out to be convenient to work with the derivative
of R. Write R′(u) =−r(u), so that R(u) =

∫ 1
u r(s)ds and (1) becomes

r(u)≥ 0; 0 < R̄ :=
∫ 1

0
ur(u)du < ∞. (4)

1.3 Summary of results

1.3.1 The complete graph case

Network communication model: Each agent i may, at any time, call any other
agent j (at cost 1), and learn all items that j knows.
Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate θ ) process, to a random agent.
Result (section 2). In the n→ ∞ limit the Nash equilibrium value of θ is

θ
Nash =

∫ 1

0
(1+ log(1−u))R(u)du =

∫ 1

0
r(u)g(u)du (5)

where g(u) =−(1−u) log(1−u) > 0.
Our assumptions (1) on R(u) imply 0 < θ Nash < R̄. Because an agent’s average cost

per unit time equals his value of θ , from (2) the Nash equilibrium payoff R̄−θ Nash
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is strictly less than the social optimum payoff R̄ but strictly greater than 0. So this is
a “wasteful” case.

1.3.2 The nearest neighbor grid

Network communication model: Agents are at the vertices of the N×N torus (i.e.
the grid with periodic boundary conditions). Each agent i may, at any time, call any
of the 4 neighboring agents j (at cost 1), and learn all items that j knows.
Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate θ ) process, to a random neighboring agent.
Result (section 3). The Nash equilibrium value of θ is such that as N→ ∞

θ
Nash
N ∼ N−1

∫ 1

0
g(u)r(u)du (6)

where g(u) > 0 is a certain complicated function – see (28).
So here the Nash equilibrium payoff R̄− θ Nash

N tends to R̄; this is an “efficient”
case.

1.3.3 Grid with communication costs increasing with distance

Network communication model. The agents are at the vertices of the N×N torus.
Each agent i may, at any time, call any other agent j, at cost c(N,d(i, j)), and learn
all items that j knows.

Here d(i, j) is the distance between i and j. We treat two cases, with different
choices of c(N,d). In section 5 we take cost function c(N,d) = c(d) satisfying

c(1) = 1; c(d) ↑ ∞ as d→ ∞ (7)

and
Poisson strategy. An agent’s strategy is described by a sequence (θ(d); d =
1,2,3, . . .); where for each d:

at rate θ(d) the agent calls a random agent at distance d.
In this case a simple abstract argument (section 5) shows that the Nash equilib-

rium is efficient (without calculating what the equilibrium strategy or payoff actually
is) for any c(d) satisfying (7).

In section 6 we take

c(N,d) = 1; d = 1
= cN ; d > 1

where 1� cN � N3, and
Poisson strategy. An agent’s strategy is described by a pair of numbers (θnear,θfar) =
θ :



6 David J. Aldous

at rate θnear the agent calls a random neighbor
at rate θfar the agent calls a random non-neighbor.

In this case we show (42) that the Nash equilibrium strategy satisfies

θ
Nash
near ∼ ζ1c−1/2

N ; θ
Nash
far ∼ ζ2c−2

N

for certain constants ζ1,ζ2 depending on the reward function. So the Nash equilib-
rium cost ∼ ζ1c−1/2

N , implying that the equilibrium is efficient.

1.3.4 Plan of paper

The two basic cases (complete graph, nearest-neighbor grid) can be analyzed di-
rectly using known results for first passage percolation on these structures; we do
this analysis in sections 2 and 3. There are of course simple arguments for order-
of-magnitude behavior in those cases, which we recall in section 4 (but which the
reader may prefer to consult first) as a preliminary to the more complicated model
“grid with communication costs increasing with distance”, for which one needs to
understand orders of magnitude before embarking on calculations.

1.4 Variant models and questions

These results suggest many alternate questions and models, a few of which are ad-
dressed briefly in the sections indicated, the others providing suggestions for future
research.

• Are there cases where the Nash equilibrium is totally wasteful? (section 2.1)
• Wouldn’t it be better to place calls at regular time intervals? (section 7.2)
• Can one analyze more general strategies?
• In the grid context of section 1.3.3, what is the equilibrium strategy and cost for

more general costs c(N,d)?
• What about the symmetric model where, when i calls j, they exchange informa-

tion? (section 7.1)
• In formulas (5,6) we see decoupling between the reward function r(u) and the

function g(u) involving the rest of the model – is this a general phenomenon?
• In the nearest-neighbor grid case, wouldn’t it be better to cycle calls through the

4 neighbors?
• What about non-transitive models, e.g. social networks where different agents

have different numbers of friends, so that different agents have different strategies
in the Nash equilibrium?

• To model gossip, wouldn’t it be better to make the reward to agent i depend on
the number of other agents who learn the item from agent i? (section 7.3)

• To model insider trading, wouldn’t it be better to say that agent j is willing to
pay some amount s(t) to agent i for information that i has possessed for time t,
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the function s(·) not specified in advance but a component of strategy and hence
with a Nash equilibrium value?

1.5 Conclusions

As the list above suggests, we are only scratching the surface of a potentially
large topic. In the usual setting of information communication networks, the goal
is to communicate quickly, and our two basic examples (complete graph; nearest-
neighbor grid) are the extremes of rapid and slow communication. It is therefore
paradoxical that, in our rank-based reward game, the latter is efficient while the for-
mer is inefficient. One might jump to the conclusion that in general efficiency in the
rank-based reward game was inversely related to network connectivity. But the ex-
amples of the grid with long-range interaction show the situation is not so simple, in
that agents could choose to make long range calls and emulate a highly-connected
network, but in equilibrium they do not do so very often.

2 The complete graph

The default assumptions in this section are
Network communication model: Each agent i may, at any time, call any other
agent j (at cost 1), and learn all items that j knows.
Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate θ ) process, to a random agent.

2.1 Finite number of rewards

Before deriving the result (5) in our general framework, let us step outside that
framework to derive a very easy variant result. Suppose that only the first two recip-
ients of an item of information receive a reward, of amount wn say. Agent strategy
cannot affect the first recipient, only the second. Suppose ego uses rate φ and other
agents use rate θ . Then (by elementary properties of Exponential distributions)

P(ego is second to receive item) =
φ

φ +(n−2)θ
(8)

and so
payoff(φ ,θ) =

wn

n
+

φwn

φ +(n−2)θ
−φ .

We calculate
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d
dφ

payoff(φ ,θ) =
(n−2)θwn

(φ +(n−2)θ)2 −1

and then the criterion (3) gives

θ
Nash
n =

(n−2)wn

(n−1)2 ∼
wn

n
.

To compare this variant with the general framework, we want the total reward avail-
able from an item to equal n, to make the social optimum payoff→ 1, so we choose
wn = n/2. So we have shown that the Nash equilibrium payoff is

payoff = 1−θ
Nash
n → 1

2 . (9)

So this is a “wasteful” case.
By the same argument we can study the case where (for fixed k ≥ 2) the first k

recipients get reward n/k. In this case we find

θ
Nash
n ∼ k−1

k

and the Nash equilibrium payoff is

payoff→ 1
k (10)

while the social optimum payoff = 1. Thus by taking kn → ∞ slowly we have a
model in which the Nash equilibrium is “totally wasteful”.

2.2 First passage percolation : general setup

The classical setting for first passage percolation, surveyed in [11], concerns nearest
neighbor percolation on the d-dimensional lattice. Let us briefly state our general
setup for first passage percolation (of “information”) on a finite graph. There are
“rate” parameters νi j ≥ 0 for undirected edges (i, j). There is an initial vertex v0,
which receives the information at time 0. At time t, for each vertex i which has
already received the information, and each neighbor j, there is chance νi jdt that j
learns the information from i before time t + dt. Equivalently, create independent
Exponential(νi j) random variables Vi j on edges (i, j). Then each vertex v receives
the information at time

Tv = min{Vi0i1 +Vi1i2 + . . .+Vik−1ik}

minimized over paths v0 = i0, i1, i2, . . . , ik = v.



When Knowing Early Matters 9

2.3 First passage percolation on the complete graph

Consider first passage percolation on the complete n-vertex graph with rates νi j =
1/(n−1). Pick k random agents and write S̄n

(1), . . . , S̄
n
(k) for the times at which these

k agents receive the information. The key fact for our purposes is that as n→ ∞

(S̄n
(1)− logn, . . . , S̄n

(k)− logn) d→ (ξ +S(1), . . . ,ξ +S(k)) (11)

where the limit variables are independent, ξ has double exponential distribution
P(ξ ≤ x) = exp(−e−x) and each S(i) has the logistic distribution with distribution
function

F1(x) =
ex

1+ ex , −∞ < x < ∞. (12)

Here d→ denotes convergence in distribution. To outline a derivation of (11), fix a
large integer L and decompose the percolation times as

S̄n
(i)− logn = (τL− logL)+(S̄n

(i)− τL + log(L/n)) (13)

where τL is the time at which some L agents have received the information. By the
Yule process approximation (see e.g. [1]) to the fixed-time behavior of the first pas-
sage percolation, the number N(t) of agents possessing the information at fixed large
time t is approximately distributed as Wet , where W has Exponential(1) distribution,
and so

P(τL ≤ t) = P(N(t)≥ L)≈ P(Wet ≥ L) = exp(−Le−t)

implying τL− logL ≈ ξ in distribution, explaining the first summand on the right
side of (11). Now consider the proportion H(t) of agents possessing the information
at time τL + t. This proportion follows closely the deterministic logistic equation
H ′ = H(1−H) whose solution is (12) shifted to satisfy the initial condition H(0) =
L/n, so this solution approximates the distribution function of S(i)− log(L/n). Thus
the time S̄n

(i) at which a random agent receives the information satisfies

(S̄n
(i)− τL + log(L/n))≈ S(i) in distribution

independently as i varies. Now the limit decomposition (11) follow from the finite-n
decomposition (13)..

We emphasize (11) instead of more elementary derivations (using methods of
[9, 13]) of the limit distribution for S̄n

(1)− logn because (11) gives the correct de-
pendence structure for different agents. Because only relative order of gaining in-
formation is relevant to us, we may recenter by subtracting ξ and suppose that the
times at which different random agents gain information are independent with lo-
gistic distribution (12).
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2.4 Analysis of the rank-based reward game

We now return to our general reward framework

The j’th person to learn an item of information gets reward R( j
n )

and give the argument for (5).
Suppose all agents use the Poisson(θ ) strategy. In the case θ = 1, the way that a

single item of information spreads is exactly as the first passage percolation process
above; and the general-θ case is just a time-scaling by θ . So as above, we may
suppose that (all calculations in the n→ ∞ limit) the recentered time Sθ to reach a
random agent has distribution function

Fθ (x) = F1(θx) (14)

which is the solution of the time-scaled logistic equation

F ′
θ

1−Fθ

= θFθ (15)

(Recall F1 is the logistic distribution (12)). Now consider the case where all other
agents use a value θ but ego uses a different value φ . The (limit, recentered) time
Tφ ,θ at which ego learns the information now has distribution function Gφ ,θ satisfy-
ing an analog of (15):

G′
φ ,θ

1−Gφ ,θ
= φFθ . (16)

To explain this equation, the left side is the rate at time t at which ego learns the
information; this equals the rate φ of calls by ego, times the probability Fθ (t) that
the called agent has received the information. To solve the equation, first we get

1−Gφ ,θ = exp
(
−φ

∫
Fθ

)
.

But we know that in the case φ = θ the solution is Fθ , that is we know

1−Fθ = exp
(
−θ

∫
Fθ

)
,

and so we have the solution of (16) in the form

1−Gφ ,θ = (1−Fθ )φ/θ . (17)

If ego gets the information at time t then his percentile rank is Fθ (t) and his reward
is R(Fθ (t)). So the expected reward to ego is

ER(Fθ (Tφ ,θ )); where dist(Tφ ,θ ) = Gφ ,θ .

We calculate
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P(Fθ (Tφ ,θ )≤ u) = Gφ ,θ (F−1
θ

(u))

= 1− (1−Fθ (F−1
θ

(u)))φ/θ by (17)

= 1− (1−u)φ/θ (18)

and so

ER(Fθ (Tφ ,θ )) =
∫ 1

0
r(u) (1− (1−u)φ/θ )du.

This is the mean reward to ego from one item, and hence also the mean reward per
unit time in the ongoing process. So, including the “communication cost” of φ per
unit time, the net payoff (per unit time) to ego is

payoff(φ ,θ) =−φ +
∫ 1

0
r(u) (1− (1−u)φ/θ )du. (19)

The criterion (3) for θ to be a Nash equilibrium is, using the fact d
dφ

xφ/θ = logx
θ

xφ/θ ,

1 = 1
θ

∫ 1

0
r(u) (− log(1−u)) (1−u)du. (20)

This is the second equality in (5), and integrating by parts gives the first equality.
Remark. For the linear reward function

R(u) = 2(1−u); R̄ = 1

result (5) gives Nash payoff = 1/2. Consider alternatively

R(u) = 1
u0

1(u≤u0); R̄ = 1.

Then the n→ ∞ Nash equilibrium cost is

θ
Nash(u0) =

1
u0

∫ u0

0
(1+ log(1−u)) du.

In particular, the Nash payoff 1−θ Nash(u0) satisfies

1−θ
Nash(u0)→ 0 as u0→ 0.

In words, as the reward becomes concentrated on a smaller and smaller proportion
of the population then the Nash equilibrium becomes more and more wasteful. In
this sense result (5) in the general framework is consistent with the “finite number
of rewards” result (10).
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3 The N×N torus, nearest neighbor case

Network communication model. There are N2 agents at the vertices of the N×N
torus. Each agent i may, at any time, call any of the 4 neighboring agents j (at cost
1), and learn all items that j knows.
Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate θ ) process, to a random neighboring agent.

We will derive formula (6). As remarked later, the function g(u) is ultimately
derived from fine structure of first passage percolation in the plane, and seems im-
possible to determine as an explicit formula. But of course the main point is that
(in contrast to the complete graph case) the Nash equilibrium payoff R̄− θ Nash

N =
R̄−O(N−1) tends to the social optimum R̄.

3.1 Nearest-neighbor first passage percolation on the torus

Consider (nearest-neighbor) first passage percolation on the N×N torus, started at
a uniform random vertex, with rates νi j = 1 for edges (i, j). Write (T N

i , 1 ≤ i ≤ 4)
for the information receipt times of the 4 neighbors of the origin (using paths not
through the origin), and write QN(t) for the number of vertices informed by time t.
Write T N

∗ = min(T N
i , 1≤ i≤ 4).

The key point is that we expect a N→ ∞ limit of the following form

(T N
i −T N

∗ ,1≤ i≤ 4; N−2QN(T N
∗ ); (N−1(QN(T N

∗ + t)−QN(T N
∗ )),0≤ t < ∞))

d→ (τi,1≤ i≤ 4; U ; (Vt,0≤ t < ∞)) (21)

where τi,1 ≤ i ≤ 4 are nonnegative with mini τi = 0; U has uniform(0,1) distribu-
tion; 0 < V < ∞; with a certain complicated joint distribution for these limit quanti-
ties.

To explain (21), first note that as N → ∞ the differences T N
i −T N

∗ are stochas-
tically bounded (by the time to percolate through a finite set of edges) but cannot
converge to 0 (by linearity of growth rate in the shape theorem below), so we expect
some non-degenerate limit distribution (τi,1≤ i≤ 4). Next consider the time T N

0 at
which the origin is wetted. By uniformity of starting position, QN(T N

0 ) must have

uniform distribution on {1,2, . . . ,N2}, and it follows that N−2QN(T N
∗ ) d→ U . The

final assertion

(N−1(QN(T N
∗ + t)−QN(T N

∗ )),0≤ t < ∞) d→ (Vt,0≤ t < ∞) (22)

is related to the shape theorem [11] for first-pasage percolation on the infinite lattice
started at the origin. This says that the random set Bs of vertices wetted before time
s grows linearly with s, and the spatially rescaled set s−1Bs converges to a limit
deterministic convex set B:
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s−1Bs→B. (23)

It follows that
N−2QN(sN)→ q(s) as N→ ∞

where q(s) is the area of sB regarded as a subset of the continuous torus [0,1]2.

Because N−2QN(T N
0 ) d→ U we have

T N
∗ ≈ T N

0 ≈ N2q−1(U)

where q−1(·) is the inverse function of q(·). Writing Q′N(·) for a suitably-interpreted
local growth rate of QN(·) we deduce

(N−2QN(T N
∗ ),N−1Q′N(T N

∗ )) d→ (U,q′(q−1(U)))

and so (22) holds for V = q′(q−1(U)).

3.2 Analysis of the rank-based reward game

We want to study the case where other agents call some neighbor at rate θ but
ego (at the origin) calls some neighbor at rate φ . To analyze rewards, by scaling
time we can reduce to the case where other agents call each neighbor at rate 1 and
ego calls each neighbor at rate λ = φ/θ . We want to compare the rank MN

λ
of ego

(rank = j if ego is the j’th person to receive the information) with the rank MN
1 of

ego in the λ = 1 case. As noted above, MN
1 is uniform on {1,2, . . . ,N2}. Writing

(ξ λ
i , 1 ≤ i ≤ 4) for independent Exponential(λ ) r.v.’s, the time at which the origin

receives the information is

T N
∗ +min

i
(T N

i −T N
∗ +ξ

λ
i )

and the rank of the origin is

MN
λ

= QN(T N
∗ )+NQ̃N(min

i
(T N

i −T N
∗ +ξ

λ
i ))

where
Q̃N(t) = N−1(QN(T N

∗ + t)−QN(T N
∗ )).

Note we can construct (ξ λ
i , 1≤ i≤ 4) as (λ−1ξ 1

i , 1≤ i≤ 4). Now use (22) to see
that as N→ ∞

(N−2MN
1 ,N−1(MN

λ
−MN

1 )) d→ (U,V Z(λ )) (24)

where
Z(λ ) := min

i
(τi +ξ

λ
i )−min

i
(τi +ξ

1
i ). (25)

Now in the setting where ego calls at rate φ and others at rate θ we have
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payoff(φ ,θ)−payoff(θ ,θ)+(φ −θ) = E

[
R

(
MN

φ/θ

N2

)
−R

(
MN

1
N2

)]

and it is straightforward to use (24) to show this

∼ N−1
∫ 1

0
(−r(u)) zu(φ/θ)du, for zu(λ ) := E(V Z(λ )|U = u). (26)

The Nash equilibrium condition

d
dφ

payoff(φ ,θ)
∣∣∣∣
φ=θ

= 0

now implies

θ
Nash
N ∼ N−1

∫ 1

0
(−r(u)) z′u(1)du. (27)

Because Z(λ ) is decreasing in λ we have z′u(1) < 0 and this expression is of the
form (6) with

g(u) =−z′u(1) =− d
dλ

E(V Z(λ )|U = u)|
λ=1 (28)

Remark. The distribution of V depends on the function q(·) which depends on
the limit shape in nearest neighbor first passage percolation, which is not explicitly
known. Also Z(λ ) involves the joint distribution of (τi), which is not explicitly
known, and also is (presumably) correlated with the direction from the percolation
source which is in turn not independent of V . This suggests it would be difficult to
find an explicit formula for g(u).

4 Order of magnitude arguments

Here we mention simple order of magnitude arguments for the two basic cases we
have already analyzed. As mentioned in the introduction, what matters is the size of
the window width wθ ,n of the associated first passage percolation process We will
re-use such arguments in sections 5 and 6.1, in more complicated settings.

Complete graph. If agents call at rate θ = 1 then by (11) the window width is
order 1; so if θn is the Nash equilibrium rate then the window width wn is order
1/θn. Suppose wn→∞. Then ego could call at some fixed slow rate φ and (because
this implies many calls are made near the start of the window) the reward to ego
will tend to R(0), and ego’s payoff R(0)− φ will be larger than the typical payoff
R̄−θn. This contradicts the definition of Nash equilibrium. So in fact we must have
wn bounded above, implying θn bounded below, implying the Nash equilbrium in
wasteful.

Nearest neighbor torus. If agents call at rate θ = 1 then by the shape theorem
(23) the window width is order N. The time difference between receipt time for
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different neighbors of ego is order 1, so if ego calls at rate 2 instead of rate 1 his rank
(and hence his reward) increases by order 1/N. By scaling, if the Nash equilibrium
rate is θN and ego calls at rate 2θN then his increased reward is again of order 1/N.
His increased cost is θN . At the Nash equilibrium the increased reward and cost
must balance, so θN is order 1/N, so the Nash equilibrium is efficient.

5 The N×N torus with general interactions: a simple criterion
for efficiency

Network communication model. The agents are at the vertices of the N×N torus.
Each agent i may, at any time, call any other agent j, at cost c(d(i, j)), and learn all
items that j knows.

Here d(i, j) is the distance between i and j, and we assume the cost function c(d)
satisfies

c(1) = 1; c(d) ↑ ∞ as d→ ∞. (29)

Poisson strategy. An agent’s strategy is described by a sequence (θ(d); d =
1,2,3, . . .); and for each d:

at rate θ(d) the agent calls a random agent at distance d.
A simple argument below shows

under condition (29) the Nash equilibrium is efficient. (30)

Consider the Nash strategy, and suppose first that the window width wN converges
to a limit w∞ < ∞. Consider a distance d such that the Nash strategy has θ Nash(d) >
0. Suppose ego uses θ(d) = θ Nash(d) + φ . The increased cost is φc(d) while the
increased benefit is at most O(w∞φ), because this is the increased chance of getting
information earlier. So the Nash strategy must have θ Nash(d) = 0 for sufficiently
large d, not depending on N. But for first passage percolation with bounded range
transitions, the shape theorem (23) remains true and implies that wN scales as N.

This contradiction implies that the window width wN → ∞. Now suppose the
Nash equilibrium were inefficient, with some Nash cost θ̄ > 0. Suppose ego adopts
the strategy of just calling a random neighbor at rate φN , where φN→ 0, φNwN→∞.
Then ego obtains asymptotically the same reward R̄ as his neighbor, a typical agent.
But ego’s cost is φN→ 0. This is a contradiction with the assumption of inefficiency.
So the conclusion is that the Nash equilibrium is efficient and wN → ∞.

Remarks. Result (30) is striking. but does not tell us what the Nash equilibrium
strategy and cost actually are. It is a natural open problem to study the case of (29)
with c(d) = dα . Instead we study a simpler model in the next section.
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6 The N×N torus with short and long range interactions

Network communication model. The agents are at the vertices of the N×N torus.
Each agent i may, at any time, call any of the 4 neighboring agents j (at cost 1), or
call any other agent j at cost cN ≥ 1, and learn all items that j knows.
Poisson strategy. An agent’s strategy is described by a pair of numbers (θnear,θfar) =
θ :

at rate θnear the agent calls a random neighbor
at rate θfar the agent calls a random non-neighbor.

This model obviously interpolates between the complete graph model (cN = 1)
and the nearest-neighbor model (cN = ∞).

First let us consider for which values of cN the nearest-neighbor Nash equilibrium
(θnear is order N−1, θfar = 0) persists in the current setting. When ego considers using
a non-zero value of θfar, the cost is order cNθfar. The time for information to reach a
typical vertex is order N/θnear = N2, and so the benefit of using a non-zero value of
θfar is order θfarN2. We deduce that

if cN � N2 then the Nash equilibrium is asymptotically the same as in the
nearest-neighbor case; in particular, the Nash equilibrum is efficient.

Let us study the more interesting case

1� cN � N2.

The result in this case turns out to be, qualitatively

θ Nash
near is order c−1/2

N and θ Nash
far is order c−2

N . In particular, the Nash equilibrum is efficient.
(31)

“Efficient” because the cost cNθfar +θnear is order c−1/2
N . See (42) for the exact result.

We first do the order-of-magnitude calculation (section 6.1), then analyze the rel-
evant first passage percolation process (section 6.2), and finally do the exact analysis
in section 6.3.

6.1 Order of magnitude calculation

Our order of magnitude argument for (31) uses three ingredients (32,33,34). As in
section 4 we consider the window width wN of the associated percolation process.
Suppose ego deviates from the Nash equilibrium (θ Nash

near ,θ Nash
far ) by setting his θfar =

θ Nash
far + δ . The chance of thereby learning the information earlier, and hence the

increased reward to ego, is order δwN and the increased cost is δcN . At the Nash
equilibrium these must balance, so

wN � cN (32)
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where � denotes “same order of magnitude”. Now consider the difference `N be-
tween the times that different neighbors of ego are wetted. Then `N is order 1/θ Nash

near .
Write δ = θ Nash

near and suppose ego deviates from the Nash equilibrium by setting his
θnear = 2δ . The increased benefit to ego is order `N/wN and the increased cost is δ .
At the Nash equilibrium these must balance, so δ � `N/wN which becomes

θ
Nash
near � w−1/2

N � c−1/2
N . (33)

Finally we need to calculate how the window width wN for FPP depends on
(θnear,θfar), and we show in the next section that

wN � θ
−2/3
near θ

−1/3
far . (34)

Granted this, we substitute (32,33) to get

cN � c1/3
N θ

−1/3
far

which identifies θfar � c−2
N as stated at (31).

6.2 First passage percolation on the N×N torus with short and
long range interactions

We study the model (call it short-long FPP, to distinguish it from nearest-neighbor
FPP) defined by rates

νi j = 1
4 , j a neighbor of i

= λN/N2, j not a neighbor of i

where 1� λN � N−3.
Recall the shape theorem (23) for nearest neighbor first passage percolation; let

A be the area of the limit shape B. Define an artificial distance ρ such that B
is the unit ball in ρ-distance; so nearest neighbor first passage percolation moves
at asymptotic speed 1 with respect to ρ-distance. Consider short-long FPP started
at a random vertex of the N×N torus. Write FN,λN for the proportion of vertices
reached by time t and let T(0,0) be the time at which the origin is reached. The event
{T(0,0) ≤ t} corresponds asymptotically to the event that at some time t−u there is
percolation across some long edge (i, j) into some vertex j at ρ-distance ≤ u from
(0,0) (here we use the fact that nearest neighbor first passage percolation moves at
asymptotic speed 1 with respect to ρ-distance). The rate of such events at time t−u
is approximately

N2FN,λN (t−u)×Au2×λN/N2

where the three terms represent the number of possible vertices i, the number of pos-
sible vertices j, and the percolation rate νi j. Since these events occur asymptotically
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as a Poisson process in time, we get

1−FN,λN (t)≈ P(T(0,0) ≤ t)≈ exp
(
−AλN

∫
∞

0
u2FN,λN (t−u) du

)
. (35)

This motivates study of the equation (for an unknown distribution function Fλ )

1−Fλ (t) = exp
(
−λ

∫ t

−∞

(t− s)2Fλ (s) ds
)

, −∞ < t < ∞ (36)

whose solution should be unique up to centering. Writing F1 for the λ = 1 solution,
the general solution scales as

Fλ (t) := F1(λ 1/3t).

So by (35), up to centering

FN,λN (t)≈ F1((AλN)1/3t). (37)

To translate this result into the context of the rank-based rewards game, suppose
each agent uses strategy θN = (θN,near,θN,far). Then the spread of one item of infor-
mation is as first passage percolation with rates

νi j = θN,near/4, j a neighbor of i

= θN,far/(N2−5), j not a neighbor of i.

This is essentially the case above with λN = θN,far/θN,near, time-scaled by θN,near, and
so by (37) the distribution function FN,θN for the time at which a typical agent re-
ceives the information is

FN,θN (t)≈ F1

(
A1/3

θ
1/3
N,farθ

2/3
N,neart

)
. (38)

In particular the window width is as stated at (34).

The result of Chatterjee and Durrett [4]. Their paper gives a rigorous proof of
analogs of (36, 37) under a slightly different “balloon process” model, consisting of
overlapping circular discs in the continuous torus [0,N]2. Disc centers are created
at random times and positions with intensity N−α× (area of covered region); each
disc radius then expands linearly and deterministically. Their Theorem 3 proves that
the quantity N−2Cψ(s) (in their notation) representing the proportion of the torus
covered at time ψ(s) = R+Nα/3s satisfies

limP(sup
s≤t
|N−2Cψ(s)−F1(s)| ≥ δ ) = 0 for fixed (t,δ ).

Here
R = Nα/3[(2−2α/3) logN− logM]
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for M not depending on N. This result pins down the position of the center of the
critical window, which was not given in the heuristic argument. Additionally, their
Theorem 4 analyses the time until the entire torus is covered.

6.3 Exact equations for the Nash equilibrium

The equations will involve three quantities:
(i) The solution F1 of (36).
(ii) The area A of the limit set B in the shape theorem (23) for nearest-neighbor first
passage pecolation.
(iii) The limit distribution (cf. (21))

(T r
i −T r

∗ , 1≤ i≤ 4) d→ (τi, 1≤ i≤ 4) as r→ ∞ (39)

for relative receipt times of neighbors of the origin in nearest-neighbor first passage
percolation, where now we start the percolation at a random vertex of ρ-distance
≈ r from the origin.

To start the analysis, suppose all agents use rates θ = (θN,near,θN,far). Consider the
quantities

S is the first time that ego receives the information from a non-neighbor
T is the first time that ego receives the information from a neighbor
F = FN,θN is the distribution function of T .

We claim that, with probability→ 1 as N → ∞ ego will actually receive the infor-
mation first from a neighbor, and so F is asymptotically the distribution function
of the time at which ego receives the information. To check this we need to show
that the chance ego receives the information from a non-neighbor during the criti-
cal window is o(1). This chance is O(N2×θN,far/N2×wN), which by the order of
magnitude calculations in section 6.1 is O(c−1

N ) = o(1).
Now suppose ego uses a different rate φN,far 6= θN,far for calling a non-neighbor.

This does not affect T but changes the distribution of S to

P(S > t)≈ exp
(
−φN,far

∫ t

−∞

F(s) ds
)

by the natural Poisson process approximation. Because θN,far is small we can ap-
proximate

P(S≤ t)≈ φN,far

∫ t

−∞

F(s) ds.

The mean reward to ego for one item, as a function of φN,far, varies as

E(R(F(S))−R(F(T ))1(S<T ) + constant.

Because U = F(T ) is uniform on (0,1), in the N→ ∞ limit
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E(R(F(S))−R(F(T ))1(S<T ) = E(R(F(S))−R(U))1(F(S)<U)

=
∫ 1

0
du E(R(F(S))−R(u))1(F(S)<u)

=
∫ 1

0
du E

∫ u

min(F(S),u
r(y)dy

=
∫ 1

0
dy (1− y)r(y)P(F(S)≤ y)

=
∫ 1

0
dy (1− y)r(y)P(S≤ F−1(y))

= φN,far

∫ 1

0
dy (1− y)r(y)

∫ F−1(y)

−∞

F(s)ds.

The cost associated with using φN,far is cNφN,far, and at the Nash equilibrium the cost
and reward must balance, so at the Nash equilibrium F = FN,θN must satisfy

cN ∼
∫ 1

0
dy (1− y)r(y)

∫ F−1(y)

−∞

F(s)ds. (40)

Now suppose instead that ego uses a different rate φN,near 6= θN,near for calling
a neighbor. As in section 3.2, we set λ = φN,near/θN,near so that we can use rate-1
nearest-neighbor first passage pecolation as comparsion. For (τi) at (39) and inde-
pendent Exponential(λ ) random variables (ξ λ

i ) write (as at (25))

Z(λ ) := min
i

(τi +ξ
λ
i )−min

i
(τi +ξ

1
i ).

So Z(λ ) is the time difference for ego receiving the information, caused by ego
using φN,near instead of θN,near. This time difference is measured after time-rescaling;
in real time units the time difference is Z(λ )/θN,near.

As above, write T for receipt time for ego using θN,near, and F = FN,θN for its
distribution function. Then receipt time for ego using φN,near is T + Z(λ )/θN,near, so
ego’s rank becomes ≈ F(T )+F ′(T )Z(λ )/θN,near, and setting U = F(T ) the rank of
ego is ≈U +F ′(F−1(U))Z(λ )/θN,near. The associated mean reward change for ego
is asymptotically

z(λ )
θN,near

×
∫ 1

0
r(u)F ′(F−1(u)) du; λ = φN,near/θN,near

where z(λ ) = EZ(λ ). Because the cost of using rate φN,near equals φN,near, the Nash
equilibrium condition (3) implies

θ
2
N,near ∼ z′(1)

∫ 1

0
r(u)F ′(F−1(u)) du. (41)

We have now obtained the desired two equations for FN,θN at the Nash equilib-
rium θN . Use (38) to rewrite these equations (40,41) in terms of F1 as
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cN ∼ A−1/3
θ
−1/3
N,far θ

−2/3
N,near

∫ 1

0
dy (1− y)r(y)

∫ F−1
1 (y)

−∞

F1(s)ds

θ
2
N,near ∼ A1/3

θ
1/3
N,farθ

2/3
N,nearz

′(1)
∫ 1

0
r(u)F ′1(F

−1
1 (u)) du.

Solving for θN,near,θN,far we find

θN,near ∼ Q1/2c1/2
N , θN,far ∼ A−1Q−1c−2

N (42)

for

Q = z′(1)

(∫ 1

0
dy (1− y)r(y)

∫ F−1
1 (y)

−∞

F1(s)ds

)(∫ 1

0
r(u)F ′1(F

−1
1 (u)) du

)
.

7 Variants

7.1 Transitivity and the symmetric variant

The examples we have studied so far have a certain property called transitivity in
graph theory [3]. Informally, transitivity means “the network looks the same to each
agent”; formally, it means that for any two agents i, j there is an automorphism of
the network that preserves the network cost structure and maps i to j. This is what
allows us to assume that in a Nash equilibrium each agent uses same strategy.

The general framework of section 1.1 uses the asymmetric model in which agent i
calls agent j (at a certain cost to i) and learns all items that j knows. In the symmetric
variant, agent i calls agent j (at a certain cost to i), and each tells the other all items
they know.

For the transitive networks we have studied there is a simple relationship be-
tween the Nash equilibrium values of the asymmetric and symmetric variants of the
Poisson strategies:

θ
Nash
sym = 1

2 θ
Nash
asy . (43)

The point is that the percolation process in the symmetric variant is just the percola-
tion process in the asymmetric variant, run at twice the speed, and this leads to the
following relationship between the reward when ego uses rate φ and other agents
use rate θ :

rewardsym(φ ,θ) = rewardasy(φ +θ ,2θ).

Because payoff(φ ,θ) = reward(φ ,θ)−φ in each case, we get

payoffsym(φ ,θ) = payoffasy(φ +θ ,2θ)+θ

and therefore
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d
dφ

payoffsym(φ ,θ) =
d

dφ
payoffasy(φ +θ ,2θ).

The criterion (3) leads to (43).

7.2 Communication at regular intervals

We have studied “Poisson rate θ” calling strategies because these are simplest to
analyze explicitly. A natural alternative is the “regular, rate θ” strategy in which
agent i calls a random other agent at times

Ui,Ui + 1
θ
,Ui + 2

θ
, . . . (44)

where Ui is uniform on (0, 1
θ
).

Consider first the complete graph case, and the setting (section 2.1) where (for
fixed k ≥ 2) the first k recipients get reward n/k. In this case, for k = 2 formula (8)
is replaced by

P(ego is second to receive item) =
∫ min( 1

φ
, 1

θ
)

0
(1−θu)n−2

φ du

and repeating the analysis in section 2.1 gives exactly the same asymptotics (9,10)
as in the Poisson case. Consider instead the general reward framework

The j’th person to learn an item of information gets reward R( j
n ).

If all agents use rate θ then the distribution function Fθ for receipt time for a typical
agent satisfies (as an analog of the logistic equation (15))

1−Fθ (t) =
∫ t

t− 1
θ

∏
i≥0

(
1−Fθ (s− i

θ
)
)

θ ds. (45)

If ego switches to rate φ then the distribution function Gφ ,θ for ego’s receipt time
satisfies (as an analog of (16))

1−Gφ ,θ (t) =
∫ t

t− 1
φ

∏
i≥0

(
1−Fθ (s− i

φ
)
)

φ ds. (46)

One can now continue the section 2.4 analysis; we do not get useful explicit so-
lutions but the qualitative behavior is similar to the “Poisson calls” case, and in
particular the Nash equilibrium is wasteful.

Similarly, on the N×N grid with nearest neighbor interaction, switching from
the “Poisson calls” case to the “regular calls” case preserves the order N−1 value of
the Nash equilibrium rate θ Nash

N and hence preserves its efficiency.
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7.3 Gossip with reward based on audience size

Perhaps a more realistic model for gossip is to replace Rule 2 by
Rule 3. An agent i gets reward c whenever another agent learns an item from i.
For the complete graph and Poisson(θ ) strategies we can re-use the section 2.4 anal-
ysis to calculate the Nash equilibrium. First suppose all agents use the same rate θ

and consider an agent i who receives the information at percentile u. For j > un the
j’th agent to receive the information has chance 1

j to receive it from agent i, and so

the mean reward to agent i is (calculations in the n→ ∞ limit) c
∫ 1

u
1
x dx =−c logu.

Suppose now ego switches to rate φ . Then (calls incur unit cost)

payoff(φ ,θ) =−φ + cE(− logFθ (Tφ ,θ ))

where the time Tφ ,θ at which ego receives the information has distribution function
Gφ ,θ at (17), and where Fθ at (14) is the distribution function of the time at which a
typical agent receives the information. Now

E(− logFθ (Tφ ,θ )) =
∫ 1

0

1
u P(Fθ (Tφ ,θ )≤ u) du

=
∫ 1

0

1
u P(Gθ (Tφ ,θ )≤ 1− (1−u)φ/θ ) du

=
∫ 1

0

1
u (1− (1−u))φ/θ du by (18)

and then we calculate

d
dφ

payoff(φ ,θ) =−1− c
∫ 1

0

log(1−u)
θ

(1−u)φ/θ

u du.

Now the Nash equilibrium criterion (3) implies

θ
Nash
n →−c

∫ 1

0

1−u
u log(1−u) du. (47)

So switching to this “Rule 3” model preserves the wastefulness of the Nash equilib-
rium on the compete graph.

However, for the N×N grid with nearest neighbor interaction, switching to the
“Rule 3” models changes the efficient (θ Nash

N is order N−1) Nash equilibrium to a
wasteful equilibrium with θ Nash

N becoming order 1.
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7.4 Related literature

We do not know any literature closely related to our model. As well as the epidemic
and the gossip algorithm topics mentioned in the introduction, and classic applied
probability work on stochastic rumors [5], other loosely related work includes

• models where agents form networks under conditions where there are costs for
maintaining network edges and benefits from being part of a large network [7].

• Prisoners’ Dilemma games between neighboring agents on a graph [6].

One can add many other topics which are harder to model mathematically, e.g. dif-
fusion of technological innovations [12] or of ideologies.

Acknowledgements I thank an anonymous referee for careful reading and helpful suggestions.
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