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Abstract

Exchangeable representations of complex random structures are useful in several
ways, in particular providing a moderately general way to derive continuum
limits of discrete random structures. I shall describe an old example (continuum
random trees) and a more recent example (dense graph limits). Thinking this
way about road routes suggests challenging new problems in the plane.
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This write-up follows the style of the ICM talk, presented as 5 episodes in the
development of a topic over the last 80 years.

e Exchangeability and de Finetti’s theorem (1930s - 50s)

Structure theory for partially exchangeable arrays (1980s)

A general program for continuum limits of discrete random structures,
illustrated by trees (1990s)

3 recent “pure math” developments (2000s)

Road routes from this viewpoint (2010s)

An expanded version of the material in sections 1-4 appears as a longer survey
article [4]. Section 5 is work in progress, in part with Wilfrid Kendall, not yet
written up in more detail.
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1. Exchangeability and de Finetti’s Theorem

A common verbal statement of de Finetti’s theorem is

An infinite exchangeable sequence is distributed as a mixture of
i.i.d. sequences.

For readers who don’t work in Probability Theory let me try to explain what
this means, starting with a very elementary story and reminding you of the
jargon of random variables and probability measures.

Dice are an over-used icon for randomness; for our purpose darts (aimed at
the center of a target) are better, because different people have different accu-
racy. So the following three scenarios, which would be mathematically equiva-
lent for dice, are different for darts.

e Pick a person with known accuracy; ask the person to throw dart repeat-
edly.

e Pick a random person in audience; ask the person to throw dart 1 time.
Repeat indefinitely.

e Pick a random person in audience; ask the person to throw dart repeat-
edly.

We are assuming a natural model for dart throwing

e For each person there is a probability measure p on R?; the chance their
dart lands in a region A equals p(A).

e When this person throws repeatedly, the landing points X;, X5, ... are
independent random variables with distribution pu.

Recall independence is formalized by the product rule
P(X; € A and X5 € Ag) = u(A1) x u(As)
or equivalently product measure
dist(X1, Xo) = pu®u dist(X1, Xo, X3,...) = u®@>.

The three scenarios give three different distributions for the infinite sequence
(X1,X5,...) of dart hits. With a 500-person audience with distributions
(pg, 1 < k < 500), one of which is the known distribution pu, the distributions
are

° M®°°

o 1% where v(-) = =55 > pk (")
1 ®oo

500 2ok Mk

In the first two cases, the different throws are independent, but in the third
they’re not. Jargon: in the first two cases the distribution is IID (independent
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and identically distributed), but the third case is a mizture of IID. This last
notion is what arises in de Finetti’s theorem.

Some measure theory background. Let me try to give an intuitive feeling
for basic measure-theoretic probability terms, and a particular technical fact,
neither of which is easily found in textbooks. View a probability measure (PM)
as like a recipe or a plan — something you might do — and a random variable
(RV) as an instance of actually doing it. RVs can take values in an (essentially)
arbitrary space S. That is, for essentially any kind of complicated mathematical
object you can imagine, then you can also imagine a random such object. An S-
valued RV X has a distribution dist(X), the induced PM on S. Many definitions
in Probability Theory are formally about PMs but we phrase them using RVs.
In particular, when we talk about symmetry properties we are talking about
an underlying PM not the realizations of RVs.

Now imagine an idealized random number generator (RNG) that gives a
random number ¢ distributed uniformly on [0, 1]; repeated calls to the RNG give
independent &1, &, . ... Given an arbitrary (measurable) function f : [0,1] — S
for a “nice” space S, we can use f(§) as a S-valued RV with some distribution
w. Different f might give the same pu.

An under-emphasized Theorem in measure theory says that every u arises
as dist(f(£)) for some f. Any time we do a computer simulation of a proba-
bility model we are implicitly using this fact (if it were false then there would
be measures that were in principle impossible to sample computationally). So
any IID S-valued sequence can be represented as (f1(&1), f1(€2), . ..) where the
(&1,&2, .. .) — which we view as calls to a RNG — are IID uniform[0, 1], and where
f1:10,1] — S is some function.

The phrase “a mixture of IID S-valued sequences” means a PM on S°° of
the form

/u®°° U(du), for some PM ¥ on P(S) := {PMs on S}.

As a corollary of the representation above, any such PM has a representation
as the distribution of

f2(a7£1)’ f2(a’§2)7 f2(a?€3)7"' (1)

for some function f5 : [0,1]x[0,1] — S. Here « is one more independent uniform
[0,1] RV. The proof of (1) relies on the insight that the action of picking a PM
at random can be implemented as a function of «, because any random pick of
any type of object can be implemented that way.

Exchangeability. A finite permutation 7 of {1,2,3,...} induces a map 7 :
5% — §°°, mapping (s;) to (sx(z;)-

Definition. A PM on S* is exchangeable if it is invariant under the action
of each 7 (with the analogous definition for finite products).
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Intuitively: “a sequence of RVs is exchangeable if the order does not matter”.
This is a strong symmetry condition. Note it is obvious that any (finite or
infinite length) mixture of IID sequences is exchangeable. de Finetti’s theorem
is the non-obvious converse.

Theorem 1 (de Finetti). Fach infinite exchangeable sequence is distributed as
a mixture of 1ID sequences

...... and so in particular has a representation in form (1).

de Finetti’s Theorem plays a conceptually fundamental role in Bayesian
Statistics, which I won’t explain in this talk. The theorem appears in many
first-year-graduate level probability textbooks. The next material is somewhat
deeper.

2. Structure Theory for Partially Exchangeable
Arrays

Write N := {1,2,3,...} and write N, for the set of unordered pairs {i, j} C N.
Consider a random array

(Essentially a random infinite symmetric matrix). We want to study the the
partially exchangeable property

x £ (X{x(i)m()ys 1057} € N(g)) for each finite permutation 7. (2)

Because not every permutation of N(yy is of the form {7, j} — {7(i), 7(j)}, this
is a weaker property than exchangeability of the countable family X.

We can create such a partially exchangeable array by starting with our IID
uniform[0, 1] RVs (£1,&,...) and applying a function g, : [0,1]?> — R which is
symmetric in the sense gs(x,y) = g2(y, ), to get

Xiigy = 92(&i5&5)-

This is the “interesting” construction of an array with the partially ex-
changeable property. But also there are the arrays

e with IID entries
e where all entries are the same RV.

We can combine these ideas as follows. Take a function f : [0,1]* — S such
that f(u,u1,us,u12) is symmetric in (u1,us), and then define

X{i’j} = f(U7 Uian7U{i’j}) (3)
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where all the RVs in the families U, (Us,i € N), (U, 53, {4,7} € N(z)) are IID
uniform(0, 1). The array X = (X{; ;1) is partially exchangeable.
As with de Finetti’s theorem, the converse is true but far from obvious.

Theorem 2 (Partially Exchangeable Representation Theorem). An array X
which is partially exchangeable, in the sense (2), has a representation in the

form (3).

There is a (technically complicated) uniqueness property - roughly, f is
unique up to measure-preserving transformations of the U’s.

The specific property (2) is really just a prototype of a whole family of
“partially exchangeable” properties, and Theorem 2 is a prototype of a corre-
sponding family of structure theorems for variations and specializations of
(2). Such results go back to Hoover [8] and Aldous [1] and appear in the 1984
survey [2]. They were subsequently extended systematically by Kallenberg, both
for arrays and analogs such as exchangeable-increments continuous-parameter
processes, and rotatable matrices, during the late 1980s and early 1990s. The
whole topic of representation theorems is the subject of Chapters 7-9 of Kallen-
berg’s 2005 monograph [9]. Not only does this monograph provide a canonical
reference to the theorems, but also its introduction provides an excellent sum-
mary of the topic.

The original motivation for this theory was in part “mathematically natural
conjectures”, in part Bayesian statistics. I won’t explain the original motivation
in this talk, because more recent uses are more interesting.

3. A General Program for Continuum Limits of
Discrete Random Structures

This is a “general program”, where “general” # “always works” but instead
means “works in various settings that otherwise look different”. Let’s start
with a rather obvious idea:

One way of examining a complex mathematical structure equipped
with a PM is to sample IID random points and look at some form
of induced substructure relating the random points

which assumes we are given the complex structure. In contrast, here is a less
obvious idea:

We can often use exchangeability in the construction of complex
random structures as the n — oo limits of random finite n-element
structures G(n).

What’s the point of such an indirect method? Well, it is available for use
when there’s no natural way to think of each G(n), as n varies, as taking values
in the same space.
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To expand the idea:

Within the n-element structure G(n) pick & IID random elements,
look at an induced substructure on these k elements — call this
S(n, k) — taking values in some space Sy that depends on k but
not n. Take a limit (in distribution) as n — oo for fixed k, any
necessary rescaling having been already done in the definition of
S(n,k) — call this limit S,. Within the limit random structures
(Sk,2 < k < 00), the k elements are exchangeable, and the distri-
butions are consistent as k increases and therefore can be used to
define an infinite structure Soo.

Where one can implement this program, the random structure So, will, for
many purposes, serve as a n — oo limit of the original n-element structures.
Note that S, makes sense as a rather abstract object, via the Kolmogorov
extension theorem, but in concrete cases one tries

e to identify S, with some more concrete construction

e to characterize all possible limits of a given class of finite structures.

3.1. Continuum random trees. Trees fit nicely into the “substruc-
ture” framework. Vertices v(1),...,v(k) of a tree define a spanning (sub)tree.
Take each maximal path (wg,w1,...,wy) in the spanning tree whose interme-
diate vertices have degree 2, and contract to a single edge of length ¢. Applying
this to k independent uniform random vertices from a n-vertex tree 7,, then
rescaling edge-lengths by the factor n=1/2, gives a tree we’ll call S(n, k). We
visualize such trees as below, vertex v(i) having been relabeled as i.

Figure 1. A leaf-labeled tree with edge-lengths. Trees are “abstract”, not
embedded in R%.

For suitable models of random n-vertex tree Ty, there is a limit [3]

S(n, k) 4 S(k) as n — oo with fixed k

with the limit distribution described below.
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(i) The state space is the space of trees with k leaves labeled 1,2, ...,k and
with unlabeled degree-3 internal vertices, and where the 2k — 3 edge-lengths
are positive real numbers.

(ii) For each possible topological shape, the chance that the tree has that
particular shape and that the vector of edge-lengths (Lq,...,Lok_3) is in
([li, 1+ dl;], 1 < i < 2k — 3) equals sexp(—s?/2)dl; ...dlo,—_3, where s = > 1;.

From the “sampling” construction (recall the general program) the distribu-
tions of the S(k) must be consistent as k varies, and so (following the general
program) the family (S(k), k& < co) determines a distribution of a random tree
with a countable infinite number of leaves k = 1,2, 3, .... Finally take a closure
to get what is now called the (Brownian) continuum random tree (CRT).

In this context there is in fact a simple explicit rule (the line-breaking con-
struction [3]) for how to add a new edge to S(k) to get S(k + 1), so the scheme
above becomes an explicit construction.

Moreover there is an alternative general way to construct such real (con-
tinuum) trees, observed by Aldous [3] and Le Gall [10]. Consider a continuous
excursion-type function f : [0,1] — [0,00) with f(0) = f(1) =0 and f(z) >0
elsewhere. Use f to define a continuum tree as follows. Define a pseudo-metric
on [0,1] by:

d(z,y) = f(x) + f(y) = 2min(f(u) ;2 <u<y), =<y

The continuum tree is the associated metric space. Applying this construction
with f = standard Brownian excursion (scaled by a factor 2) gives the Brownian
CRT [3].

Our focus in this talk is on the initial construction — getting a limit object via
induced substructures on sampled vertices — but the CRT illustrates the general
goal of identifying such limit objects with more concrete representations.

4. Three Recent “pure math” Developments

Over 2004-8 there were three independent rediscoveries of the basic structure
theory, motivated by “pure math” questions in different fields and leading in
novel directions. I'll say (only) a few words about each.

4.1. Isometry classes of metric spaces with probability
measures.

Question: Can we characterize a “metric space with probability
measure” up to measure-preserving isometry? That is, can we tell
whether two such spaces (S, dy, p1) and (Sa, da, p2) have a measure-
preserving isometry?
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The analog is difficult for “metric space” but easy for “metric space with prob-
ability measure”. Given (S, d, i), take i.i.d.(u) random elements (&;,1 < i < 00)
of S, form the array

Xpijy =d(&,&); {i,j} € Ny

and let ¥ be the distribution of the infinite random array. It is obvious that,
for two isometric “metric spaces with probability measure”, we get the same
¥, and the converse is a simple albeit technical consequence of the uniqueness
part of structure theory, implying:

Theorem 3 (Vershik [12]). “Metric spaces with probability measure” are char-
acterized up to isometry by the distribution V.

4.2. Limits of dense graphs. Being a probabilist, I visualize the un-
derlying “size n” structures as being random, but one can actually apply our
“general scheme” to some settings where they are deterministic. (Recall we
introduce randomness via random sampling). Here’s the simplest interesting
case.

Suppose that for each n there is a graph G, on n vertices, but we don’t see
the edges of G,,. See Figure 2: the o are the vertices. Instead of seeing all edges,
we can sample k random vertices and see only the induced subgraph on the
sampled vertices. In Figure 2 we sampled k = 5 vertices and saw which edges
between them are present.

o) o) o} o}
4 @) 0 o)
o) o} o}
o} o}

3
) o o}
) ) o} o) o}

Figure 2. Induced subgraph S(n, k) on k of the n vertices of Gy.

One sense of “convergence” of graphs G,, is that for each fixed k the random
subgraphs S(n, k) converge in distribution to some limit S(oo, k).

This fits the “general program” setup of section 3, as follows. For each n
let (Uy,% > 1) be ii.d. uniform on the vertex-set of G,,. Consider the infinite
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{0, 1}-valued matrix X":
X' = 1(Un,i, Un ) is an edge of Gy,).

When n > k? the k sampled vertices (Up,1,...,U, k) of G, will be distinct
and the k x k restriction of X" is the incidence matrix of the induced subgraph
S(n, k) on these k vertices. Suppose there is a limit random matrix X:

X" 4 Xasn— oo (4)
in the usual product topology, that is
(X7, 1<ij<k) % (X,;, 1<i,j<Fk) for cach k.
As background to this supposition:

e By compactness there is always a subsequence in which such convergence
holds.

e For a non-trivial limit we need the dense case where
(number of edges of G,,)/(5) = p € (0,1).

Now each X" has the partially exchangeable property (2), and the limit X
inherits this property, so we can apply the representation theorem to describe
the possible limits. In the {0, 1}-valued case we can simplify the representation.
First consider a representing function of form (3) but not depending on the first
coordinate — that is, a function f(u;,u;,ug; ;3). Write

q(ui,ug) = P(f (uis ug, ug jy) = 1).

The distribution of a {0, 1}-valued partially exchangeable array of the special
form f(U;, U;,Uy; 1) is determined by the symmetric function ¢(-, -), and so for
the general form (3) the distribution is specified by a probability distribution
over such symmetric functions.

This all fits our “general program”. From an arbitrary sequence of finite
deterministic graphs we can (via passing to a subsequence if necessary) extract
a “limit infinite random graph” S, on vertices 1,2, ..., defined by its incidence
matrix X in the limit (4), and we can characterize the possible limits.

What is the relation between S and the finite graphs (G,,)? In probability
language it’s just

the restriction S of S to vertices 1,...,k is distributed as the n — oo

limit of the induced subgraph of G,, on k random vertices. (5)

A recent line of work in graph theory, initiated by Lovédsz and Szegedy [11],
started by defining convergence in a more combinatorial way, by counting num-
ber of subgraphs of GG,, homomorphic to fixed graphs. But this is equivalent
(see Diaconis and Janson [7] for details) to our notion (5) of G,, converging
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t0 Seo. The structure theorem, rediscovered in this setting in [11], has subse-
quently been used to develop new and interesting results in graph theory, and
this remains an active topic.

4.3. Further uses in finitary combinatorics. The remarkable re-
cent survey by Austin [5] gives a more sophisticated treatment of the theory
of representations of jointly exchangeable arrays, with the goal of clarifying
connections between that theory and topics involving limits in finitary combi-
natorics.

In particular, Austin [5] describes connections with the “hypergraph regu-
larity lemmas” featuring in combinatorial proofs of Szemerédi’s Theorem, and
with the structure theory within ergodic theory that Furstenberg developed for
his proof of Szemerédi’s Theorem.

Subsequently Austin and Tao [6] apply such methods to the topic of hered-
itary properties of graphs or hypergraphs being testable with one-sided error;
informally, this means that if a graph or hypergraph satisfies that property “lo-
cally” with sufficiently high probability, then it can be modified into a graph
or hypergraph which satisfies that property “globally”.

5. Continuum Spatial Random Networks
Take (say) 7 addresses in the U.S. and find (e.g. via an online map service) the

road route between each pair. These routes form a sub-network of the entire
U.S. road network, as illustrated in the figure.

Figure 3. A subnetwork spanning 7 points of a large spatial network.

Imagine the 7 positions marked on a transparency and positioned randomly over
a (real-world) road map. The sub-network (as drawn on the transparency) is
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now a random network linking the 7 positions. Scale-invariance is the property
that the distribution of such a subnetwork does not depend on the scale of the
map, i.e. is the same whether the region in the figure has width of 10 miles
or 50 miles or 250 miles. Obviously such a mathematical property cannot be
exactly true for real road networks, but there is some evidence it is a reasonable
approximation over scales of interest.

Question: How can we formulate the concept of a scale-invariant
random spatial network (SIRSN) as a well-defined mathematical
object?

A loose analogy is with (mathematical) Brownian motion, used as a model
for many phenomena (physical Brownian motion, stock prices, white noise)
even though its scale-invariance in not true for the real phenomenon on all
scales. Analogously, in a model we want a SIRSN to be ezactly scale-invariant.
Note this forces us to work in the continuum. We will need to have routes
R(z1,22) between (almost) all pairs of points in the plane, not just between
some discrete set of points. Defining such a process directly, one faces technical
issues in handling an uncountable number of random variables.

The general program from section 3 suggests an alternative approach. If we
were given a SIRSN then we could sample random points in the plane, pre-
cisely a Poisson point process Z(\) of mean A per unit area, then consider the
subnetwork S(\) of routes between pairs of points in Z(A). The natural “inclu-
sion coupling” of the point processes (Z(A),0 < A < co) implies an inclusion
coupling of the subnetworks (S(A),0 < A < o0), and scale-invariance for the
SIRSN implies a certain scaling property for the subnetworks.

Now the conceptual point is that we can reverse the line of thought above,
and take these properties of a family (S(A),0 < A < c0) as the starting point
for a definition of a SIRSN, thereby finessing the technical issues above.

5.1. Examples of SIRSNs. There seems no construction of a SIRSN
that is both simple and natural, but here is the simplest artificial construction
we know. Start with a square grid of roads, but impose a “binary hierarchy of
speeds”: a road meeting an axis at a point ((2¢ + 1)2%,0) or (0, (2i + 1)2°) has
speed v*® for a parameter 1 < v < 2. Define routes between grid points to be the
“shortest-time” routes. The construction is consistent under binary refinement
of the lattice, so can be used to define (by continuity) routes between points in
R?, and is invariant under scaling by 2. We can obtain a process with further
invariance properties by using external randomization, as follows.

e Apply large-spread random translation, take weak limits, to get transla-
tion invariance.

e Apply a random rotation to get rotation-invariance.

e Applying a random scaling with appropriate distribution on [1,2] gives
full scaling invariance.
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Figure 4. Thicker lines indicate faster roads.

5.2. Properties of SIRSNs. Roughly speaking, we view the SIRSN as
the A — oo limit of the family (S(A),0 < A < o0) of sampled subnetworks.
Here is one interesting aspect of such processes.

Let £(A,r) C S(A) be the positions z in edges of S(A) such that z is in the
route R(¢,¢’) for some points &, & of Z(A) such that min(]z — ¢, |z — &']) > 7.
In words, the road sections used in some route for which both starting and
ending points are at distance at least r from the section. Let p(\,r) be the
mean length-per-unit-area of £(A\,r). Then A — p(\,r) is increasing. Suppose
the limit

p(r) == lim p(\,7)

A—00

is finite. Then scale-invariance implies
p(r)=p(l)/r, 0 <r < oo.

Of course p(r) is the mean length-per-unit-area of £(oco,r) 1= limy_,oc E(A, 7).

Now in a real world road network there is a spectrum of “sizes” of road, from
“major roads” to “minor roads”. One could model a network via some specific
and explicitly hierarchical model. Instead, for the general class of SIRSN models
we can interpret £(oco,r) as the roads of “size > r”; the size spectrum emerges
from scale-invariance without being explicitly assumed.
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