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Abstract. Modeling a road network as a planar graph seems very
natural. However, in studying continuum limits of such networks it
is useful to take routes rather than edges as primitives. This article
is intended to introduce the relevant (discrete setting) notion of
routed network to graph theorists. We give a naive classification of
all 71 topologically different such networks on 4 leaves, and pose a
variety of challenging research questions.
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1. Introduction

This article is intended to initiate study of a variant of planar graphs,
motivated as a certain abstraction of road networks. Given two street
addresses, a service such as Google maps will suggest, and draw on a
map, a route between them. As mathematical descriptions of such a
route we might (as one extreme) represent its precise spatial position
as an isometric embedding of [0, L] into the plane, or (as the opposite
extreme) view it as an abstract “edge” as in graph theory. Now take
k ≥ 3 street addresses, find the

(
k
2

)
routes between pairs of addresses,

and consider the union of these routes as the subnetwork (of the entire
real-world road network) spanned by the k addresses. The purpose
of this article is to present an intrinsic graph-theoretic definition of
such spanning subnetworks, and a scheme for the case k = 4 which can
be used to classify real-world examples (satisfying an extra condition
(C3) below) into one of 71 “types”. We do not claim that this scheme
is mathematically canonical, but instead claim that it is easy to use on
real-world data as one aspect of descriptive statistics for the “shape”
of spatial networks. These types correspond to a certain notion of
“topologically different” networks, as discussed in section 1.2. The set-
ting of k = 4 has some special properties; making a precise definition
of “topological isomorphism classes” for general k that is mathemati-
cally tractable and corresponds to intuition, and studying properties of
such networks, is a challenging project for future research. The present
paper is merely an exploratory foray into this topic.

In this paper, the 71 types are illustrated in different figures as PDF.
A single large page showing all the types together can be seen online at
http://www.stat.berkeley.edu/∼aldous/Research/all-types.html.
There the diagrams are drawn in SVG, so you can magnify without
fuzziness.

1.1. Conceptual background. Here we discuss some background mo-
tivation, which involves notions of random networks. The actual results
in this paper do not involve probability – see the mathematical setup
in the next section.

Why consider subnetworks? In many science fields (e.g. gene reg-
ulatory networks [11]), a large network is studied by looking at the
frequencies of small subgraphs to see which appear more often than in
a random model– these are then called motifs. And theoretical study of
such subgraph frequencies is a classic topic within random graph theory
[8]. More relevant to us, there is a broad mathematical technique one
might describe as “exchangeable representations of n → ∞ limits of
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discrete random structures” [4]; an older instance involves the contin-
uum random tree as the limit of uniform random n-trees [1], a currently
very active instance concerns graphons as limits of dense graphs [10],
and a very recent aspect concerns finite Markov chains [13]. The key
idea is to consider the induced substructure on k randomly sampled
points; first let n → ∞ for fixed k to get a limit continuous structure
over k points; these have consistent distributions as k increases, and
so define some (a priori rather abstract) random continuous structure
over infinitely many points, and one can then seek some more concrete
description of the limit.

Is this technique relevant to spatial networks in the plane? Con-
sider a sequence of random networks Gn, each equipped with specified
routes between vertex-pairs, such that the vertices become dense in
the sequence limit. For an arbitrary set of k points (z1, . . . , zk) in the
plane, take vertices (zn1 , . . . , z

n
k ) of Gn with each zni → zi and suppose

the subnetwork of routes in Gn spanned by (zn1 , . . . , z
n
k ) converges in

distribution to some random network on vertices (z1, . . . , zk). So the
limit defines a random continuum network, where the primitives are
routes between each pair of points in the plane, a route of length L
being an an isometric embedding of [0, L] into the plane. This setting
differs from those mentioned above in that the geometric structure of
the plane precludes any strong exchangeability structure; instead as a
minimum one can impose the structure of translation- and rotation-
invariance. Then imposing the extra assumption of scale-invariance
defines a class of probability models called scale-invariant random spa-
tial networks (SIRSNs). The study of SIRSNs was initiated in [2, 9]
– see the overview in [3]. As with more familiar probability models of
(mostly non-spatial) networks [5, 7, 12] one can seek to compare prop-
erties of SIRSN model networks with properties of real-world networks.
For instance the simplest consequence of the invariance properties is
that the (random) route-length R(d) between points at Euclidean dis-
tance d apart should satisfy

(1) the distribution of d−1R(d) does not depend on d.

As another consequence, consider a particular geometric configuration
of 4 points z1, z2, z3, z4, say as corners of a square of side σ. Then
the distribution of the induced subnetwork spanned by (z1, z2, z3, z4)
does not depend on where the points are positioned in the plane (by
translation- and rotation-invariance), and moreover the “shape” (dis-
cussed below) of the network does not depend on the side-length σ
either (by scale-invariance). In particular, parallel to using property
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(1) as the basis for one test for approximate scale-invariance of real-
world network, one could test whether the distribution of “shape” of
spanning subnetworks is independent of scale.

What we mean by “shape” is “isomorphism type”, illustrated in
Figure 1 and the discussion following. First, one feature implicit in
the setting above is worth emphasizing. In order for a model to have
exact scale-invariance it must be defined in the continuum plane. Then
because routes are one-dimensional, for generic points z1, z2, z3 in the
plane the route from z1 to z2 will not pass through z3; so in the spanning
network on (z1, . . . , zk) each zi will be a leaf. This is an important
feature of our mathematical setup below.

Figure 1. An illustration of type.

The left picture shows a real-world subnetwork on 4 addresses. The
center diagram represents it as a plane graph. The right diagram repre-
sents the “isomorphism type” of the plane graph. To quote (somewhat
edited) from the textbook [6]

Intuitively, we would like to call an isomorphism be-
tween plane graphs topological if it is induced by a home-
omorphism from the plane R2 to itself. To avoid having
to grant the outer face a special status, we take a detour
via the homeomorphism of the punctured sphere [infor-
mally, that maps a point of R2 to the point at infinity]
[and identify homeomorpic graphs]. Under this weaker
notion of topological isomorphism, inner and outer faces
are no longer different.

In our road network context that “punctured sphere” homeomorphism
is hardly natural; we work instead with the original intuitive notion of
“topological isomorphism”.

The plane graphs that can arise as subnetworks of road networks have
some special features. As mentioned above, a spanning subnetwork on
k addresses is modeled as a graph with exactly k leaves; the other
vertices arise as junctions of routes and so must have degree at least 3.
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However, the central conceptual point of this paper is that we want
to think of routes, not edges, as primitives. The structures in Figure 1
are assumed to have

(
4
2

)
= 6 specified routes (a route between each pair

of leaves) even though these are not explicitly shown in the Figure – as
a default they are taken to be the shortest routes through the network.
In the “atlas” later we show the routes as colored paths (a style often
used in subway route maps) and the network in Figure 1 is shown as
type 4 in Figure 4.

1.2. Mathematical set-up. The previous discussion motivates the
following mathematical set-up. Fix k ≥ 3. Define a routed k-network
to be a (finite, connected) plane graph with exactly k leaves and no
degree-2 vertices; and the network is equipped with a specified route
(path of edges through distinct vertices) between each (unordered) pair
of leaves, with the following properties.

(C1) Each edge is in at least one route.
(C2) If two routes each pass through vertices v and v′ then the

two subroutes between v and v′ are the same.
By isomorphism of two such networks we mean the (intuitive) notion

of a graph isomorphism induced by a homeomorphism from the plane
R2 to itself, with the extra requirement that routes are preserved. Our
goal is to study the different isomorphism classes (“types”) of routed
k-networks.

For k = 3 it is easy to see there are exactly 5 “types”, pictured
in Figure 2. This holds because, if the network is not a tree, then
there must be exactly one cycle which must have three edges, and the
leaves must link to the cyclic vertices. So the different remaining types
correspond to the different possible number of leaves inside the cycle.

A B C D E

Figure 2. The 5 types of routed 3-network. The routes, not explicitly

shown, are the natural minimum-length paths.
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Our everyday experience suggests, correctly, that in real-world road
networks on three addresses in roughly an equilateral triangle config-
uration, type B is most common, type A less common and the other
types very uncommon. With this in mind, to reduce the number of
types we need to classify in the case k = 4 we will only consider those
with the property

(C3) each leaf is on the outer boundary of the network
possessed by types A and B for k = 3. Again, everyday experience
suggests (and samples confirm – section 5.2) that for real-world road
subnetworks on k = 4 addresses in approximately a square configura-
tion, property (C3) will usually hold. Simulations confirm (section 5.1)
this is also true in one of our SIRSN models,

The content of this paper is a description of the 71 types (isomor-
phism classes) of routed 4-networks with property (C3). This is done
in sections 2 - 3 via a human-friendly scheme, intended to make it
easy in practice to classify a given real-world example. One can devise
many ways to arrange these types; in section 4 we show a grouping by
numbers of faces and vertices, and another grouping by counting the
numbers of routes traversing each edge.

Our main goal is to introduce the notion of routed k-network and
to propose systematic rigorous study of the general k ≥ 4 case as a
research field for experts in planar graph theory. Some specific ques-
tions are stated in section 6. We derive the classification via intuitive
“rubber sheet geometry” considerations, rather than rigorous proofs
from the axioms of topological graph theory. Two topological points
to keep in mind are:
(i) Reflections, as well as rotations, are homeomorphisms.
(ii) In our k = 4 setting the non-leaf vertices have degree 3 or 4. As an
incidental advantage of considering routes between leaves, we can asso-
ciate to each directed route a sequence such as LR2LL describing the
directions of exit from each such vertex: “Left or Right” at a degree-3
vertex, or “1st or 2nd or 3rd from left” at a degree-4 vertex. An isomor-
phism between routed networks must either conserve such sequences,
or reflect every sequence (L ↔ R and 1 ↔ 3). This often provides a
simple way to check intuition about networks which are isomorphic as
planar graphs being not isomorphic as routed networks.
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2. Analysis of the outer boundary

We write G for a routed 4-network, and G for the underlying plane
graph where routes are not specified.

The starting point for our analysis is to consider the outer boundary
(the boundary of the outer face) Go of G. By (C3) each leaf is on the
outer boundary. By considering the order of leaves visited in travers-
ing the outer boundary, we can classify pairs of leaves as adjacent or
opposite, that is label them as `1, `2, `3, `4 such that {`1, `3} are oppo-
site, {`2, `4} are opposite, and other pairs are adjacent. Our opening
observation is

Lemma 1. The outer boundary Go is the union of the 4 routes
route(`1, `2), route(`2, `3), route(`3, `4), route(`4, `1) between adjacent
leaves.

This seems geometrically obvious – we outline an argument in the
Appendix, but here move on to more informative results.

Lemma 2. Suppose Go contains an r-cycle, for some r ≥ 3. Then the
subgraph of Go obtained by deleting the edges of the r-cycle has exactly
r components, each containing exactly one vertex of the r-cycle. Each
component contains at least one leaf of G; if only one leaf then the
component is simply the edge from the cyclic vertex to the leaf.

Proof. If two vertices of the cycle were in the same component of the
subgraph, then there would two such vertices (v, v′) such that there
were three edge-disjoint paths in Go between v and v′ (the two paths
within the cycle and the third through the subgraph component); but
this canot happen with all these path edges in the outer boundary of
G. So there are r components, each containing exactly one vertex of
the r-cycle. The final assertions hold by (C1).

Lemma 3. The possible classes (up to topological isomorphism, ignor-
ing routes) of the outer boundary Go are the 7 classes shown in Figure
3.

Proof. If Go is a tree, it must be class 1 or 2. If not, by Lemma 2
it cannot contain an r-cycle for r > 4 and if it contains a 4-cycle it
must be class 7. The only remaining possibility is that Go contains at
least one 3-cycle. Fix one such 3-cycle. By Lemma 2, because the only
way to partition the 4 leaves into the 3 components is (1, 1, 2), two of
the cyclic vertices are attached to leaves and the third cyclic vertex, v
say, is such that the component of v (after deleting the cyclic edges)
contains two leaves of G. This v is shown in Figure 3. If v has degree



8 DAVID J. ALDOUS

3 in Go then the only possibilities are classes 3 or 4, whereas if v has
degree 4 in Go then the only possibilities are classes 5 or 6.

2 3 4

1 5 6

2 3 4

1 5 6 7

v v

v v

Figure 3. The 7 classes of outer boundary.

Lemma 4. If a routed 4-network G is such that the outer boundary
Go is not class 7 in Figure 3, then the class in Figure 3 determines the
type of G itself, these types being shown in Figure 4.

In other words, even though (Lemma 1) we are only shown the routes
between adjacent leaves, in these cases the routes between opposite
leaves are completely determined.

Figure 4. Types 1-6.
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Proof of Lemma 4. This is clear for the trees. And in each of
classes 3 - 6, the connectivity structure implies that the marked vertex
v has the properties
v is in route(`1, `2) and in route(`3, `4) for some partition of leaves

into adjacent pairs (`1, `2) and (`3, `4)
v is in route(`1, `3) and in route(`2, `4), the routes between opposite

leaves.
So the route-consistency property (C2) implies that the section of

route(`1, `3) between `1 and v must coincide with the section of route(`1, `2)
between `1 and v; by the same argument, the entire routes between op-
posite leaves are determined.
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3. Analysis of the diamond configurations

When Go is class 7 from Figure 3 we have the diamond configuration.
Figure 5 provides a template for this configuration. We label the leaves
as N, E, W, S (compass directions) and show in Figure 5 the 4 routes
between adjacent leaves. Write j-N for the junction between the N-W
route and the N-E route, and similarly for j-E, j-S, j-W. We need to
study the different ways that the N-S and E-W routes can be added to
form a routed 4-network. These routes cannot go outside the diamond.

To think intuitively for a moment, consider how a N-S route might
start from N. At the junction j-N it might “go left” and follow the N-E
route all the way to j-E, or part of the way and then branch right; or
symmetrically it might “go right” at j-N; or it might “go straight” at
j-N, making that a degree-4 vertex. There are the same options at the
S end of the N-S route (though not all are compatible). And the same
options for the E-W route. Moreover the N-S and E-W routes might
cross at a degree-4 vertex, or might share an edge. This may suggest
a huge number of possible “shapes”, though in fact different choices of
options above will often lead to topologically isomorphic networks.

W j-W

S

j-S

N

j-N

Ej-E

Figure 5. Template for the diamond configuration.
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3.1. Routes using diamond edges. Here we consider the case where
at least one of the N-S or E-W routes follows two sides of the diamond.
It turns out there are 6 such types, shown in Figure 6. In the Figure
we took the “following two sides of the diamond” route to be the N-S
route going via j-E, drawn in yellow.

The first possibility is that the E-W (drawn in blue) route also follows
two sides of the diamond. This is type 7 – all cases are isomorphic.
Next we organize by degrees of j-E and j-W. If the degrees are both 4
we have type 8. If one degree is 4 and the other is 3 then we have type
9 or 10. If both degrees are 3 then we have type 11 or 12.

7 8

9 10 11 12

Figure 6. Types 7 - 12.
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3.2. Degrees (4,4,4,3-4). What now remains is the case where nei-
ther of the N-S or E-W routes follows any complete side of the diamond
(because a route which did so would be forced, by the consistency con-
dition (C2), to follow the next side also, which was the previous case).
In other words, at each end of each such route – say the E-W route
starting from E – the route either goes straight at j-E (making j-E a
degree-4 vertex) or follows part of the NE or SE side of the diamond
before branching off (leaving j-E as a degree-3 vertex). We will classify
these cases by looking at the degrees of the four “leaf-junctions” (j-N,
j-E, j-S, j-W).

The first case we consider, shown in Figure 7, is where at least three
of these degrees equal 4. In this case there is some route, which we can
take to be the N-S route, such that j-N and j-S both have degree 4. As
before we need to consider where the E-W (drawn in blue) route might
go. If j-W and j-E both have degree 4 then we have type 13 or 14. If
one, say j-E, has degree 4 and j-W has degree 3, then we can take the
W-E route to start along the ES side of the diamond, and types 15, 16,
17 are the possibilities for how this route reaches j-E.

13 14

15 16 17

Figure 7. Types 13 - 17.
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3.3. Degrees (4,4,3,3). Next is the case where two of the four leaf-
junctions have degree 4 and the other two have degree 3. This splits into
two sub-cases. In the first sub-case the degree-4 vertices are opposite,
say j-N and j-S. In this case, shown in Figure 8, the N-S route is again
drawn in yellow and we need to consider where the E-W (drawn in
blue) route might go. If these routes cross at a degree-4 vertex, the
network must be type 18 or 19. If they share an edge, the network
must be type 20 - 22.

Here types 21 and 22 are not isomorphic because, intuitively, the
only possible homeomorphism would be a half-turn, but that takes each
of those types to itself. Symbolically, in type 21 the route across the
interior is described by the turn sequence RLLRRL (in either direction)
whereas in type 22 it is RLRLRL; these sequences are not equivalent
under reversals and L↔ R interchange. Such arguments are implicitly
used throughout subsequent cases, and we do not give details.

18 19 20 21 22

Figure 8. Types 18 - 22.
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In the second sub-case the degree-4 leaf-junctions are adjacent, say
j-N and j-E. here we find the eleven network types shown in Figure 9.
Consider the two diagonal (N-S and E-W) routes. The rows in Figure
9 correspond to the cases
(a) these routes cross in the interior of the diamond
(b) these routes share an edge, but only in the strict interior of the
diamond;
(c) these routes coincide at some point on the boundary of the diamond.
And case (b) splits into the sub-case (b+) where the routes, directed
away from the degree-4 leaf-junctions, have the same direction on the
shared edge, and the sub-case (b-) where they have opposite directions.

23 24 25

26 27 28

29 30 31

32 33

(a)

(b+)

(b-)

(c)

Figure 9. Types 23 - 33.
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3.4. Degrees (4,3,3,3). Next is the case where one of the four leaf-
junctions has degree 4 and the other three have degree 3. This turns
out to be simple to categorize. We may take the degree-4 junction as
j-N, and may take the N-S route to meet the SE side of the diamond.
Once this is done, the four sides of the diamond are distinguishable,
and so we have 4 distinct possibilities for which sides of the diamonds
are met by the E-W route. We then obtain the 12 types shown in
the top 3 rows of Figure 10, where the three rows correspond to the 3
possibilities of the E-W route either crossing the N-S route, or sharing
an edge in the N-S direction, or sharing an edge in the S-N direction –
all this in the strict interior of the diamond.

The bottom two rows are the cases where these routes coincide at
some point on the boundary of the diamond.

3.5. Degrees (3,3,3,3). What remains is the case where all leaf-junctions
have degree 3. In other words, from each starting point of each route
between opposite leaves, the route starts along one edge of the diamond
and then branches off. We will organize these networks via the numbers
of such branchpoints on each diamond edge. Up to cyclic re-order and
reversal there are four possibilities for the numbers of branchpoints on
each diamond edge:

(1, 1, 1, 1) (2, 1, 0, 1) (2, 1, 1, 0) (2, 0, 2, 0).

The corresponding networks are shown in Figure 11.
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34 35 36 37

38 39 40 41

42 43 44 45

50

47

51

48

49

46

Figure 10. Types 34 - 51.



ROUTED PLANAR NETWORKS 17

52
53

54
55

56
57

58
59

60
61

62
63

64
65

66
67

68
69

70
71

Figure 11. Types 52 - 71.
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4. Coarser groupings

Our notion of topological isomorphism is a stringent requirement,
and the resulting number (71) of types may be larger than one might
wish for practical study of the “shape” of a network. Let us briefly
consider two coarser classifications. Writing
F = number of inner faces
V = number of vertices, other than the 4 leaves
E = number of edges, other than the edges at leaves

Euler’s formula tells us that E = F + V − 1. So we could classify
networks by values of (F, V,E). Alternatively we could classify by
values of (f4, f3, f2, f1) where

fi := number of edges traversed by exactly i routes

again excluding edges at leaves.

F V E Types f4 f3 f2 f1
0 1 0 1
0 2 1 2 1
1 3 3 5 2 1

1 4 4
3 1 2 1
7 1 2 1

1 5 5 6 4 2
2 4 5 8 2 3

2 5 6
9 1 2 3
10 3 3

2 6 7
4 1 4 2
69 1 4 2

11-12 1 3 3
3 6 8 32-33 47 50 3 5

3 7 9
48 51 1 3 5

46 49 55 61 67 4 5

3 8 10
54 60 66 1 4 5
56 62 68 5 5

4 5 8 13 8
4 6 9 14-15 1 8
4 7 10 16-19 23-25 2 8
4 8 11 20-22 26-31 34-37 3 8
4 9 12 38-45 52 57 63 70 4 8
4 10 13 53 58-59 64-65 71 5 8

The table shows that for k = 4 the “Euler” categorization gives 17
types, and the “edge-frequency” categorization is a slight refinement
that gives 23 types.
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Implicit in our section 1.2 set-up is the fact that isomorphism of
routed networks is a stronger property than isomorphism (in both cases,
a graph isomorphism induced by a homeomorphism from the plane R2

to itself) of the underlying un-routed plane graphs. In the setting of our
atlas of routed 4-networks satisfying (C3); the distinction is small, in
that there are only three cases (shown in Figure 12) where two different
types of routed network have isomorphic unrouted networks.

9

10

12

69 56

62 62

Figure 12. The three pairs of types whose unrouted networks are iso-

morphic: 9/10, 12/69 and 56/62.

Note here the two diagrams labelled 62 are in fact the same type.

5. Simulations and data

5.1. Simulations from SIRSN models. Let us recall very briefly
the model from [3, 2]. Start with a square grid of roads, but impose
a binary hierarchy of speeds: on a road meeting an axis at (2i + 1)2s,
one can travel at speed γ−s for a parameter 1/2 < γ < 1. Define the
route between grid points to be a shortest-time path. Then extend the
construction to the continuum by including lines with s < 0.

Qualitatively, for γ near 1/2 one expects routes will exploit the “fast
freeway” edges even when this involves longer route-length; whereas
for γ near 1 routes will be shorter and use a greater variety of different
edges.

The data below is from 100 simulations with the values γ = 0.6, 0.75, 0.9.
The positions of the 4 leaves, in a square configuration, were randomly
rotated and translated; recall that the essence of scale-invariance is
that the size of the square makes no difference. The data was obtained
from simulations without showing routes explicitly, so we could not
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reliably distinguish between the unrouted-isomorphic pairs in Figure
12, which ironically occurred quite often. Only a few of the simulated
subnetworks, indicated by *, did not satisfy condition (C3).

γ = 0.6 type 7 12/69 11 60 *
frequency 63 22 11 1 3

γ = 0.75 type 12/69 7 56/62 11 60 49 41 68 *
frequency 40 26 17 9 3 2 1 1 1

γ = 0.9 type 12/69 56/62 49 11 9/10 32 30 7 46 45
frequency 25 21 12 11 5 3 3 2 2 2

γ = 0.9 type 65 14 16 17 28 39 42 54 59 64 *
frequency 2 1 1 1 1 1 1 1 1 1 3

The most common types were the simple networks shown in Figure 13.

Figure 13. Frequent types: 7, 12/69, 56/62 in the binary hierarchy

model.

This data seems consistent with the qualitative behavior mentioned
above. But in this model all edges are on a (rotated) square grid, so
it is not a plausible representative of real-world road networks outside
U.S. cities.
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5.2. A little data from the U.S. road network. We sampled 30
subnetworks, each on 4 street addresses roughly in a square configura-
tion, of sides between 50 and 250 miles. The frequencies of different
types are shown here. Six types appeared more than once (frequency
in parentheses)

7(4), 10(2), 11(4), 57(2), 59(3), 63(3)

and twelve types appeared exactly once

23, 24, 36, 39, 46, 52, 56, 60, 61, 66, 68, 70.

We see a larger diversity of types than in the particular SIRSN model in
section 5.1; in particular the most frequent types in that model (Figure
14) are not so common in the real road network data, and indeed it
seems intuitively clear they are artifacts of that specific model.

A serious statistical study of real road network data would present
substantial conceptual and practical difficulties, and we do not attempt
to do so here.

6. Remarks and open problems

Both the derivation of the classification and its uninformative orga-
nization as “types 1–71” are ad hoc and special to the case k = 4 and
restriction (C3). Moreover for larger k the restriction (C3) seems less
sensible. So

Open Problem 5. Give a rigorous classification of topological isomor-
phism classes of routed k-networks for general k ≥ 4, and an algorithm
for deciding whether two given routed plane (i.e. embedded) networks
are isomorphic.

Figure 12 showed that the type of a routed plane network is not
determined by the (topological isomorphism) type of its plane graph
(i.e. without specified routes). This prompts

Open Problem 6. Which (topological isomorphism types of) plane
graph with k leaves arise from routed k-networks?

Thinking of routes as minimum-distance or minimum-time paths
suggests the variants of the following problem.

Open Problem 7. Which routed k-networks can be embedded into the
plane in such a way that routes are shortest-length paths, where the
length of an edge (v1, v2) is
(i) Euclidean distance;
(ii) an arbitrary positive real number, subject to the “metric” constraint



22 DAVID J. ALDOUS

that it is at most the length of any alternate path from v1 to v2;
(iii) an arbitrary positive real number.

We observed, from the table in section 4, that for k = 4 the “edge-
frequency” categorization is a refinement of the “Euler” categorization.
We conjecture this is not true for general k. That is, we conjecture that
the implication

if two routed k-networks have the same frequencies (fi, i ≥
1) of “number of edges traversed by exactly i routes”
(and therefore the same number of edges) then they have
the same number of vertices

is not true for large k.
Returning to the discussion of random networks in section 1.1, one

can ask what probability distributions on types of routed 4-networks
could arise from some SIRSN model (as the spanning subnetwork of
4 points in a square configuration). This question may be impossibly
difficult. Problems like this are not well understood even in the setting
of abstract (non-spatial) graphs. That is, the problem

what probability distributions µ on the set of graphs on
4 vertices arise as n → ∞ limits of the subgraphs of
some n-vertex graph Gn sampled at 4 uniform random
vertices

is in principle answered by the theory of graphons [10]: each graphon (a
function W : [0, 1]2 → [0, 1]) determines some µW by a simple formula,
and the set M in question is the set of all such µW . But this does not
explicitly tell us whether a given µ is in M.

Acknowledgements. I thank Karthik Ganesan for the simulations
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map data used in section 5.2.

Answer: types in Figure 13. Left to right: types 71, 51, 65.
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Appendix A. Outline proof of Lemma 1.

Consider the union (G̃, say) of the 4 routes
route(`1, `2), route(`2, `3), route(`3, `4), route(`4, `1) between adjacent
leaves. There are a number of topologically different possibilities for
G̃ (ultimately the 7 shown in Figure 3, though we do not know that
a priori) but the argument is essentially the same in every a priori
possible case, so let us take the case of the diamond configuration
shown in Figure 5.
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We need to show that the N-S route does not go outside G̃. Suppose
it did. Then we can find a first-exit point x1 and a re-entry point
x2 in G̃, hence in at least one of the 4 routes (N-E, E-S. S-W, W-N)
defining G̃. These points cannot both be in the same defining route,
by the consistency property (C2). But if they were in different defining
routes, say N-E and E-S, then the intervening sub-route of the N-S
route would need to loop around leaf E, or around leaves N, W, S,
contradicting property (C3). The same contradiction arises for any
distinct pair of defining routes.


