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Abstract

In a simple model for sports, the probability A beats B is a spec-
ified function of their difference in strength. One might think this
would be a staple topic in Applied Probability textbooks (like the
Galton-Watson branching process model, for instance) but it is curi-
ously absent. Our first purpose is to point out that the model suggests
a wide range of questions, suitable for “undergraduate research” via
simulation but also challenging as professional research. Our second,
more specific, purpose concerns Elo-type rating algorithms for track-
ing changing strengths. There has been little foundational research
on their accuracy, despite a much-copied “30 matches suffice” claim,
which our simulation study casts doubt upon.

1 Introduction

This article provides an overview of several topics from an applied probabil-
ity viewpoint: more details of the mathematics can be found in [3]. A very
useful recent account of the technical statistical side of the topic and further
references to the statistical literature can be found in [17].

∗Research supported by NSF Grant DMS-1504802.
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1.1 The basic probability model.

Each team A has some “strength” xA, a real number. When teams A and
B play

P(A beats B) = W (xA − xB)

for a specified “win-probability function” W satisfying the following condi-
tions (which we regard as the minimal natural conditions):

W : R→ (0, 1) is continuous, strictly increasing

W (−x) +W (x) = 1; lim
x→∞

W (x) = 1.
(1)

Implicit in this setup:

• each game has a definite winner (no ties);

• no home field advantage, though this is easily incorporated by making
the win probability be of the form W (xA − xB ±∆);

• strengths do not change with time.

A common choice for W is the logistic function

L(u) = eu/(1 + eu),−∞ < u <∞.

We will take W = L as a default, though we investigate the likely errors
from using the wrong W in section 2.6. With W = L the model is (under
the reparametrization v = eu) equivalent to the Bradley-Terry model [6],
which has attracted a large literature in statistics by virtue of its “consen-
sus ranking” interpretation. The basic statistics theory (MLEs, confidence
intervals, hypothesis tests, goodness-of-fit tests) of that model is treated in
Chapter 4 of H.A. David’s 1988 monograph [12]. See [7] for a recent survey.

To use the model we need to specify how matches are scheduled. The
following three formats are representative of real-world sports and games:

• League format as in the English Premier League.

• Single-elimination tournament as in Wimbledon.

• No centralized scheduling, as in online games.

The first almost always involves teams, the third individual players, the sec-
ond either: we use the words teams and players interchangeably in describing
the scheduling models in this paper, which are usually simplified analogs of
real-world scheduling.

2



Using W = L involves a “standard unit” of strength difference, which
can be interpreted as follows. Note L′(0) = 1/4. So the effect of a small
increase δ in strength is that the probability of beating an originally equal
strength team increases from 0.5 to about 0.5 + δ/4. See section 2.2 for the
transformation to “unit of strength” implied by conventional Elo ratings.

1.2 Existing literature

We emphasize that our focus is not upon statistical analysis of data from a
particular sport, which has a huge literature using more realistic modeling.
Instead, analogous to use of the Galton-Watson model as a rough guide to
the behavior of more realistic branching-style models, one can hope that the
basic model provides a rough guide to the consequences of the stochastic
nature of sports results. But there has been surprisingly little “applied
probability” style mathematical treatment of the basic model. Indeed the
only textbook mention we know in that field concerns an algorithm for
finding MLEs in the Bradley-Terry model ([20] Example 3.4.1). As recent
examples of papers, [1] gives upper and lower bounds for each player to
win a randomly-matched tournament, in terms of the strengths xi. And
[9] considers the n → ∞ limit probabilities that the best player wins a n-
player league, under different models of random strengths. These papers
cite scattered previous work, but the fact that these are recent papers on
very basic questions underscores the lack of extensive literature1.

1.3 A selection of questions

The first objective of this article is to point out that there is a much broader
variety of questions one could study within the basic model. We describe a
few such questions here.

Robustness of second seed winning probabilty. A mathematically
natural model for relative strengths of top players is (βξi, i ≥ 1) where
0 < β <∞ is a scale parameter and

ξ1 > ξ2 > ξ3 > . . .

form the inhomogeneous Poisson point process on R of intensity e−x arising
in extreme value theory [24]. So we can simulate a tournament, in the
conventional deterministic-over-seeds pattern schedule [28], to see which seed

1Literature involving Elo ratings is discussed later.
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wins. Figure 1 gives data from simulations of such a tournament with 16
players, assuming the seeding (or rank) order coincides with the strength
order. The interpretation of the parameter β is not so intuitive, but that
parameter determines the probability that the top seed would beat the 2nd
seed in a single match, and this probability is shown (as a function of β) in
the top curve in Figure 1. The other curves show the probabilities that the
16-player tournament is won by the players seeded as 1, 2, 3, 5 or 9.

Figure 1: Probabilities of different-ranked players winning the tournament,
compared with probability that rank-1 player beats rank-2 player (top
curve).

The results here are broadly in accord with intuition. For instance it
seems intuitively obvious that the probability that the top seed is the winner
is monotone in β. What is perhaps surprising and noteworthy is that the
probability that the 2nd seed player is the winner is quite insensitive to
parameter values, away from the extremes, at around 17%.

This kind of testable prediction is an appealing basis for an undergradu-
ate research project. Is this 17% prediction in fact accurate? How robust is
it to alternate models? As a start, data from tennis tournaments2 in Table
1 shows a moderately good fit.

2Wimbledon, and the U.S., French and Australian Opens form the prestigious “Grand
Slam” tournaments.
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Table 1: Seed of winner, men’s and women’s singles, Grand Slam tennis
tournaments, 1968 - 2016.

seed of winner 1 2 3 4 5+ total
frequency 148 94 42 29 77 390

percentage 38% 24% 11% 7% 20% 100%
model, β = 0.65 41% 17 % 11 % 7 % 24% 100%

Annual changes in strength. In professional league-based team sports,
changes in a team’s winning percentages from year to year represent a com-
bination of chance and actual changes in strength. For a specific team it will
usually be difficult to separate these effects, but for the league as a whole
one can try to measure an average “change in strength” between successive
years. It is not obvious how to formalize this notion in a way that can be
estimated from the data of observed wins and losses, but our model suggests
a way. For n teams with each pair playing twice per year, write Ni and N ′i
for the number of wins of team i in successive years. A natural statistic to
consider is

S = 1
n

n∑
i=1

(Ni −N ′i)2.

Figure 2: Distributions of the statistic S for unchanged and changed
strengths.
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If the strengths (xi, 1 ≤ i ≤ n) do not change then

ES = 2
n

n∑
i=1

var Ni

and because var Ni ≤ 2(n − 1) × 1
4 we obtain ES ≤ n − 1. So observing a

value of S significantly larger than n − 1 would confirm our common sense
expectation that strengths overall do indeed change from year to year. But
a more challenging question arises if we ask: how large would the change of
strengths need to be, to make the observed changes in outcomes from last
year to this year be statistically significant, for realistic size leagues? Fig-
ure 2 compares via simulation the distribution of S for unchanged strengths
with the distribution S1 where team strengths change, with typical (RMS)
change3 0.4. Here we took n = 20 teams and 2 games per year between
each pair, and Normal(0,1) distribution of team strengths. The consider-
able overlap in Figure 2 implies that in this scenario, the observed outcome
changes in a given successive pair of years might well not be statistically
significant. What would more realistic (incorporating draws) analysis of
Premier League data show?

Promotion and relegation. In promotion and relegation schemes [29],
each year a specified small number of bottom teams from a top division
are exchanged with the top teams from a second division. This is of course
intended to allow changes in strengths to be reflected in division placement,
and such changes could be modeled as later in this article. But even with un-
changing strengths there is a question about how well the resulting division
placement reflects strength. For instance, for what k is the true strength of
the k’th best-performing team in the second division approximately equal
to the true strength of the k’th worst-performing team in the top division?

Large tournaments. How might one arrange a tournament to choose a
winner out of (say) 200 players, given a constraint on the total number of
matches to be played? Optimal schemes involve weaker players being elimi-
nated progressively to allow more matches between the better players. One
simple implementation (for the case of no prior information about strengths)
would be to split into 10 leagues of 20 teams, do league play within each,
then make a final league of 20 comprised of the top 2 teams from each
original league. How does this compare with other schemes?

3Implying a win-probability previously 50% changes by around ±10%
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Elementary ranking schemes. The textbook [21] discusses simple rat-
ing and ranking methods based on undergraduate linear algebra. How ac-
curate are these, under the basic probability model?

2 Elo-type rating systems

The particular type of rating systems we study are known loosely as Elo-type
systems4 and were first used systematically in chess. The Wikipedia page
[27] is quite informative about the history and practical implementation.
What we describe here is an abstracted “mathematically basic” form of
such systems.

Each player i is given some initial rating, a real number yi. When player
i plays player j, the ratings of both players are updated using a function Υ
(Upsilon)

if i beats j then yi → yi + Υ(yi − yj) and yj → yj −Υ(yi − yj)
if i loses to j then yi → yi −Υ(yj − yi) and yj → yj + Υ(yj − yi) .

(2)

Note that the sum of all ratings remains constant. We require the function
Υ(u), −∞ < u <∞ to satisfy the qualitative conditions

Υ : R→ (0,∞) is continuous, strictly decreasing,

and lim
u→∞

Υ(u) = 0. (3)

We will also impose a quantitative condition

κΥ := sup
u
|Υ′(u)| < 1. (4)

To motivate the latter condition, we want the functions

x→ x+ Υ(x− y) and x→ x−Υ(y − x),

that is the rating updates when a player with (variable) strength x plays
a player of fixed strength y, to be an increasing function of the starting
strength x.

Note that if Υ satisfies (3) then so does cΥ for any scaling factor c > 0.
So given any Υ satisfying (3) with κΥ <∞ we can scale to make a function
where (4) is satisfied. The complementary logistic function

L(−x) =
1

1 + ex
= 1− ex

1 + ex
,−∞ < x <∞

4Named after Arpad Elo; sometimes mistakenly written ELO as if acronym.
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is a common choice for the “update function shape” in Elo-type rating sys-
tems. That is, one commonly uses Υ(x) = cL(−x) for some scaling param-
eter c.

2.1 What is the connection between ratings and the proba-
bility model?

Elo-type rating algorithms have nothing to do with probability, a priori.
But there is a simple heuristic connection between the probability model
and the rating algorithm. This connection is “well known” in the sense of
being implicit in much discussion of Elo ratings, but we have never seen a
careful mathematical discussion, so we will attempt one here.

Consider n teams with unchanging strengths x1, . . . , xn, with match re-
sults according to the basic probability model with some win probability
function W , and ratings (yi) given by the update rule with some update
function Υ. When team i plays team j, the expectation of the rating change
for i equals

Υ(yi − yj)W (xi − xj)−Υ(yj − yi)W (xj − xi). (5)

So consider the case where the functions Υ and W are related by

Υ(u)/Υ(−u) = W (−u)/W (u), −∞ < u <∞. (6)

In this case

(*) If it happens that the difference yi − yj in ratings of two
players playing a match equals the difference xi−xj in strengths
then the expectation of the change in rating difference equals
zero

whereas if unequal then (because Υ is decreasing) the expectation of (yi −
yj)− (xi − xj) is closer to zero after the match than before.

Call (6) the balance relation. These observations suggest that, under this
balance relation, there will be a tendency for player i’s rating yi to move
towards5 its strength xi though there will always be random fluctuations
from individual matches. So if we believe the basic probability model for
some given W , then in a rating system we should use an Υ that satisfies the
balance relation.

Now we have a mathematical question: given W , what is the solution of
the balance equation (6) for unknown Υ? Curiously, this does not have a

5More precisely, we center both strengths and ratings.
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good answer. The first observation is that Υ(u) = W (−u) is a solution, so
we can use

Υ(u) = δW (−u) (7)

with any scaling factor 0 < δ < 1 we like. But there are more general
solutions. For symmetric φ (that is, φ(u) ≡ φ(−u)) with φ(0) = 1,

Υ(u) = δW (−u)φ(|u|) (8)

is a solution, provided the qualitative conditions (3, 4) remain satisfied.
Other than simplicity, we know no explicit reason why choice (7) should be
preferable to some other choice of form (8). One approach to this issue is
to note that equation (6) arose from setting the expectation of the rating
change to equal zero when ratings equal true strengths. The extra freedom of
(8) allows us to impose a second requirement, that the variance of the rating
change should be constant, and this leads to a specific “variance-stabilizing”
form for the update function

Υ(u) = δ
√
W (−u)/W (u). (9)

Unfortunately, for logistic W the resulting Υ does not satisfy (4). But for
the Cauchy distribution function the resulting Υ does indeed satisfy (4).
This suggests a project: look at real-world Elo ratings based on the logistic,
and see whether the alternative update function (9) arising from the Cauchy
gives better predictions.

However, the mathematics is clearer if we consider the balance relation
the other way round. Given an update function Υ there is a unique win-
probability function W satisfying (6):

WΥ(u) := Υ(−u)/(Υ(u) + Υ(−u)). (10)

So when Elo ratings are derived from Υ we can regard this WΥ as an as-
sociated implicit win-probability function. In particular the conventional
use of a scaled logistic Υ(u) = δL(−u) is implicitly using the logistic L as
win-probability function.

2.2 Relating our mathematical set-up to published ratings.

As mentioned before, what we discuss in this article is the “mathematically
basic” form of Elo ratings. In practice, the algorithm is adapted in different
ways to different sports (see e.g. [11] for international football) so numerical
values in this article would need to be adjusted before attempting serious
data analysis.
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In published real-world data, ratings are integers, mostly in range 1000−
2000. For instance, at time of writing the ratings for the England and Aus-
tralian football teams [11] are 1909 and 1701. The conventional implemen-
tation is that 1 standard unit (for logistic) in our model corresponds to 174
rating points6. So the implicit probabilities for an upcoming match would
be

P(Australia beats England) = L(1701−1909
174 ) = 0.23.

By convention a new player is given a 1500 rating. If players never departed,
the average rating would stay at 1500. However, players leaving (and no re-
centering) will make the average tend to drift. One can define “expert” in
a given sport by a threshold rating, but the drift makes it problematic to
compare “expert” in different sports, or in the same sport over long time
periods.

In published data the update scaling factor δ (there called the K-factor)
varies; for international football [11] the factor depends on the significance
of the match but δ = 0.2 is typical. for tennis, [26] uses δ = 0.12.

2.3 A convergence theorem

What can we do, in the setting above, via standard mathematical probability
theory? Assume the basic probability model with non-changing strengths,
and use Elo-type ratings – what happens? We need to specify how the
matches are scheduled, so let us use the mathematically simplest “random
matching” scheme in which there are n players and for each match a pair
of players is chosen uniformly at random. This gives a continuous-state
Markov chain

Y(t) = (Yi(t), 1 ≤ i ≤ n), t = 0, 1, 2, . . .

where Yi(t) is the rating of player i after a total of t matches have been
played. Call this the update process. Note that this process is parametrized
by the functions W and Υ, and by the vector x = (xi, 1 ≤ i ≤ n) of
player strengths. We center player strengths and rankings:

∑
i xi = 0 and∑

i Yi(0) = 0.
The following convergence theorem is perhaps intuitively obvious; the

main point is that no further technical assumptions are needed for W,Υ.

Theorem 1. Under our standing assumptions (1, 3, 4) on W and Υ, for
each x the update process has a unique stationary distribution Y(∞), and
for any initial ratings y(0) we have Y(t)→ Y(∞) in distribution as t→∞.

6174 arises as 400/ log(10).
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This can be proved [3] by standard methods – coupling and Lyapounov
functions. Note here we are not assuming the balance relation (6) between
W and Υ. Note also that given non-random initial rankings y(0) the distri-
bution of Y(t) has finite support for each t, so we cannot have convergence
in variation distance, which is the most familiar setting for Markov chains
on Rd [23].

Alas these techniques do not give useful quantitative information about
the stationary distribution. Theorem 1 suggests a wide range of quantitative
questions – how close is Y(∞) to x? – which we can’t answer via theory,
but for which we can hope to gain insight via simulation.

A parallel analysis can be carried out in the “continuum limit” framework
of n → ∞ limits under Υn(u) = δnW (−u). In this continuum framework,
there is a density function of ratings at time t, which evolves according to a
dynamical system, and it is shown in [16] that analogous to Theorem 1, as
t → ∞ the density function of ratings does converge to the density of the
strengths.

2.4 How to measure error?

Within the basic probability model we could measure ratings error directly
as the difference between rating and strength. But for real-world sports we
can’t measure true strengths, and (as explained below) it seems more useful
to consider errors in predicted win probabilities.

Within our model, to any update function Υ we associate the implied
win-probability function WΥ(u) at (10). So when the Elo algorithm with Υ
gives ratings (Yi(t) at the current time t, our implicitly predicted probability
of team i beating team j is

WΥ(Yi(t)− Yj(t)).

In the model the true probability is W (xi − xj). So there is a “prediction
error”

WΥ(Yi(t)− Yj(t)) − W (xi − xj)

and a natural way to measure the size of prediction error is via the “RMS
prediction error” statistic√

E
1

n(n− 1)

∑
i

∑
j 6=i

(WΥ(Yi(t)− Yj(t)) − W (xi − xj))2. (11)

We use this notion of error throughout. Note it is root-mean-square, and so
is directly interpretable as typical additive error in estimating a probability.
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2.5 The prediction tournament paradox.

Can one assess a person’s accuracy at estimating probabilities of future
real-world events, when the true probabilities are unknown? To do so seems
paradoxical, like saying one can grade exam answers to questions whose
correct answers are unknown. But the key point is that one can assess
relative accuracy. If C and D give estimates pC(i), pD(i) for events A(i)
with unknown true probabilities (q(i), 1 ≤ i ≤ m) then we can quantify
their prediction MSE as error(C) = m−1

∑
i(pC(i) − q(i))2 and similarly

error(D). After the events are determined, we can award a score to C as
score(C) = m−1

∑
i(1A(i) − pC(i))2, and similarly award score(D) to D.

Decomposition of variance gives

E(score(C)− score(D)) = error(C)− error(D). (12)

So for large m the difference in accuracy, that is error(C) − error(D), is
well estimated by the observed score difference, without assuming anything
about the unknown true probabilities.

The fascinating book [25] describes this basic mathematics in the course
of detailed study of the accuracy of “expert judgement” in geopolitics. In our
sports context, this means that we can compare relative accuracy of differ-
ent win-probability forecasts for real-world matches, whether from Elo-type
ratings or from more elaborate modeling or from gambling odds. See section
5.1 for further comments. Potential undergraduate projects mentioned in
this article would use this methodology.

2.6 Mismatch error

In the real world we don’t know the win-probability function, so we can’t
use an update function satisfying the balance relation. Is there much harm
in using the logistic regardless? Persi Diaconis (personal communication)
notes that, in the analysis of binary data, statisticians use the logistic as a
default and regard it as quite robust – see e.g. [10] section 2.7. Is this true
in our context?

We can study this question, in the non-changing strengths setting, by
considering the “slow update” limit in which we fix Υ but use a scaled
update function δΥ. In the δ → 0 limit the (random) Elo rating process,
appropriately time-scaled, converges to a deterministic dynamical system.
The conclusion [3] is that, given (W,Υ) and strengths x = (x1, . . . , xn), the
large-t Elo ratings Y(t) will approximate, for small δ, the solution y(x) of
a certain fixed-point equation y = Γxy. This solution is different from x
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when the balance relation (6) does not hold – call this mismatch error. As
at (11) we quantify that as RMS mismatch error

νx =

√
1

n(n− 1)

∑
i

∑
j 6=i

(WΥ(yi(x)− yj(x)) − W (xi − xj))2.

Table 2: RMS mismatch error.

W logistic logistic Cauchy Cauchy linear linear
Υ linear Cauchy logistic linear logistic Cauchy

σ = 0.5 0.9% 1.1% 1.2% 2.4% 3.2% 6.4%
σ =1.0 2.9% 2.9% 2.5% 5.4% 3.2% 6.0%

Even in this deterministic limit, giving theoretical bounds on mismatch
error seems a hard problem. Table 2 shows some simulation results, in
which we averaged the RMS mismatch error νx over i.i.d. Normal(0, σ2)
realizations of strengths x = (xi, 1 ≤ i ≤ n). We use σ = 0.5 and 1 because
the resulting spreads of win-proportions in a season bracket those of most
real-world professional league sports. In the table, Cauchy means W is
the distribution function of the standard Cauchy distribution, and linear
means W is the distribution function of the uniform [−1, 1] distribution,
with corresponding names for update functions Υ(u) = W (−u).

Note that errors are unchanged if Υ is “stretched”, that is replaced by
Υ(c)(u) = Υ(u/c). Instead, what matters is the spread of strengths (here
represented by σ) relative to the spread of the distribution W .

Compared with the other sources of error described later, the mismatch
errors in Table 2 are surprisingly small, except perhaps for the linear/Cauchy
combinations, which intuitively seem rather extreme possibilities.

3 The central question: how well does Elo track
changing strengths?

The Elo rating algorithm is implicitly intended for games where many in-
dividuals are to be rated but where there is no systematic scheduling of
matches. Chess and tennis are longstanding examples, but nowadays these
ratings are widely used in online games. Ratings have several uses: enabling
individuals to know their relative strength, eligibility for advanced tourna-
ments, arranging matches to be between equally strong players. A key point
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is that we expect strengths to change with time. Indeed this is a vital fea-
ture of both amateur and professional sport – players in the former, and
spectators in the latter, hope performance will improve. Sports would be
very dull otherwise!

At this point we diverge from the analogy with Bradley-Terry consensus
rankings from a fixed data set. In that context, given real world data, one
can simply calculate MLEs (or Bayes analogs) of the strength parameters.
In the sport context, to do this precisely one would need to update all
strength estimates after each single match. More importantly, the Bradley-
Terry set-up does not naturally allow strengths to vary with time. Of course
one can make particular models of time-varying strengths and study optimal
estimation procedures for the particular model (see e.g. [8, 14, 18]) but it
is hard to believe that any particular model would be plausible across the
range of sports where Elo ratings are used.

To summarize, the plausible conceptual advantages of Elo-type ratings
over classical statistical parameter estimation methods are

• They are dynamic: a rating is updated only after a match by that
player, and in a very simple human-interpretable way.

• They implicitly give more weight to recent matches, and avoid needing
to explicitly choose how much past data to use.

• They provide a general purpose method of tracking strength changes
without assuming any specific model for changing strengths.

But can we go beyond rhetoric: how accurate are these ratings, either in
absolute terms or in comparison with other methods?

The web site [11] maintaining Elo ratings for international football teams
asserts

ratings tend to converge on a team’s true strength relative to its
competitors after about 30 matches.

A search engine finds this sentence verbatim in other online venues, evidently
copied from some original source, but we have been unable to find its origin,
or any theoretical or empirical foundation. By analogy, a search on “seven
shuffles suffice” (to mix a deck of cards) finds not only non-technical discus-
sion but also an actual underlying theorem [5]. So, is there any foundation
for the “30 matches suffice” Elo assertion?

Within our models, one can obtain various asymptotic mathematical
results (section 4.6) but such asymptotic regimes are scarcely relevant to
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real world sports. More informative results can be found via simulation,
and such simulation study is the main focus of this article.

Conceptually there are three sources of error in ratings:

• Mismatch error caused by using an update function not adapted to
the win-probability function.

• Lag error caused by our data coming from past results affected by
past, rather than current, strength.

• Noise caused by the randomness of recent match results.

In simulations we use logistic W and Υ, so no there is no mismatch error.
As we shall see, in choosing the update scaling δ there is an obvious tradeoff
between lag error (which increases as δ decreases) and noise error (which
increases as δ increases). The tables later show the RMS prediction errors
for the optimal value of δ, which is also shown. Note that these choices will
tend to make the simulation predictions better than real-world predictions.
We will use three different models for time-varying strengths, each being a
stationary random process with the same long-run average strength for each
team (but section 4.5 removes this rather unrealistic assumption) and each
having a “relaxation time” parameter τ indicating the number of matches
required for a team’s strength to change substantially. So in each model the
errors depend on σ and τ , where as earlier σ2 is the variance of strength
over teams.

To jump to the bottom line, let us summarize the conclusion of our
simulations as follows.

Under plausible models of time-varying strengths, the typical
error of predicted win-probabilities will not be substantially less
than 10%, regardless of number of matches played.

Readers may judge for themselves whether our models and parameter val-
ues are indeed plausible. To us, this contradicts the “30 matches suffice”
assertion quoted earlier, but again this is a matter of judgment.

4 Simulation results

The subsections below describe simulation results for each of three models
of time-varying strengths. In these models, at each time step we randomly
assign all n teams into n/2 matches, so here time t = 0, 1, 2, . . . indicates
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the number of games that each team has played. In the simulations we use
n = 20, but the results are insensitive to the exact value of n.

Our models give a stationary process (X(t), t = 0, 1, 2, . . .) of team
strengths X(t) = (Xi(t), 1 ≤ i ≤ n), The Elo rating algorithm gives rat-
ings Y(t) = (Yi(t), 1 ≤ i ≤ n), and our simulation results refer to the jointly
stationary process ((X(t),Y(t)), t = 0, 1, 2, . . .) for which initial ratings do
not matter.

As before, our statistic for measuring the quality of the Elo ratings is
the root-mean-square error of the win-probabilities predicted from the Elo
ratings, in this context the number µ defined by

µ2 =
1

n(n− 1)
E
∑
i

∑
j 6=i

(L(Xi(t)−Xj(t))− L(Yi(t)− Yj(t)))2

for the jointly stationary process. Call this statistic RMSE-p, where the p is
a reminder that we are estimating probabilities, not outcomes. Our strength
models are exchangeable over teams, so

µ2 = E (L(X1(t)−X2(t))− L(Y1(t)− Y2(t)))2 .

In each model we show “realization” figures, which show the strengths
and ratings of two teams over a 128-game window, so one can see how well
the ratings track the changing strengths (labeled as “ability” here).

4.1 The cycle model

This first model is obviously unrealistic, but provides a test of mathematical
intuition. Strengths follow a deterministic cycle, with a random shift for each
team:

Xi(t) = 21/2σ sin(Ui + π
2τ t)

where Ui is uniform on [0, 2π]. So varXi(t) = σ2, and the “relaxation time”
parameter τ indicates the number of games required for strength to decrease
from the maximum to the average value.

The realizations in Figure 3 agree with intuition. When the update scal-
ing is comparatively small (left, δ = 0.17) the ratings follow a cycling curve
fairly closely (the “noise” from random wins/losses is small) but lag in time
behind the true strength curve. When the update scaling is comparatively
large (right, δ = 0.35) the ratings show larger noise but their averages track
strengths better. This bias-variance tradeoff is optimized at some interme-
diate value, at δ = 0.26.
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Table 3 shows numerical values of RMSE-p for the optimal values of δ
in this cycle model, We will discuss these numbers from the three models in
section 4.4.

Figure 3: Realizations of the cycle model (σ = 1, τ = 100, logistic W and Υ)
for δ = 0.17 (top left) δ = 0.35 (top right) and δ = 0.26 (optimal, bottom) .

Table 3: Cycle model: RMSE-p and (optimal δ).

τ
σ 50 100 200 400

0.5 13.4% 10.8% 8.6% 6.8 %
(0.20) (0.14) (0.09) (0.06)

1.0 15.7% 12.5 % 9.9% 8.0%
(0.40) (0.27) (0.17) (0.12 )
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4.2 The Ornstein-Uhlenbeck strength model

Here we model strengths as a discretized Ornstein-Uhlenbeck process (ARMA

process). In the standard process, for each team i the process (X
(τ)
i (t), t =

0, 1, 2, . . .) of strengths evolves as

X
(τ)
i (t+ 1) = (1− τ−1)X

(τ)
i (t) +

√
1− (1− τ−1)2Zi(t)

where (Zi(t), t ≥ 1) are IID Normal(0,1). This gives a stationary process
with Normal(0,1) marginal. The processes are independent for different
teams, so for a league of n teams we have a combined process X(τ)(t) =

(X
(τ)
i (t), 0 ≤ i ≤ n). The parameter τ � 1 is the relaxation time. Finally

we can scale by the factor σ to define a 2-parameter “Ornstein-Uhlenbeck
strength model”

X(t) = X(τ,σ)(t) = σX(τ)(t).

Figure 4 shows realizations, comparing τ = 400 (left) with τ = 50 (right),
using the optimal values of δ (0.16 and 0.28). Table 4 gives numerical values
of RMSE-p for the optimal values of δ.

Figure 4: Realizations of the Ornstein-Uhlenbeck model: σ = 1.
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Table 4: Ornstein-Uhlenbeck model: RMSE-p and (optimal δ)

τ
σ 50 100 200 400

0.5 12.9% 11.1% 9.5% 8.2 %
(0.11) (0.09) (0.08) (0.07)

1.0 17.0% 14.6 % 12.4% 10.4%
(0.28) (0.24) (0.16) (0.14 )

4.3 The jump model

In this model, for each team i the strength process remains constant for a
Geometric(1/τ) time, then jumps to an independent Normal(0, σ2) value.
Figure 5 shows realizations, comparing τ = 400 (left) with τ = 50 (right),
using the optimal values of δ (0.13 and 0.30). Table 5 gives numerical values
of RMSE-p for the optimal values of δ.

Figure 5: Realizations of the jump model: σ = 1.
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Table 5: Jump model: RMSE-p and (optimal δ).

τ
σ 50 100 200 400

0.5 12.8% 11.2% 9.8% 8.4 %
(0.12) (0.09) (0.06) (0.05)

1.0 16.9% 14.5 % 12.4% 10.5%
0.30 0.24 0.19 0.14

4.4 Discussion of simulation results in these 3 models

Of course none of these three models is very plausible from a real-world
viewpoint, but they serve to represent different “extreme” possibilities.

In relating the graphics to the tabled values, recall that the maximum
slope of the logistic function is L′(0) = 1/4, so that a 10% error in estimating
win probability corresponds to a somewhat more than 0.4 error in strength
difference.

As mentioned before, the optimal choice of δ involves a trade-off between
lag – the fact that our data arises from past strength, not current strength
– and the noise from the random outcomes of recent matches. This type of
bias - variance trade-off is of course very familiar to statisticians.

As intuition suggests, increasing τ make the Elo ratings more accurate
and decreases the optimal δ. Increasing σ, in the range 0.5−1.0 we consider,
makes them less accurate, which is less immediate intuitively. One might
think that increasing the variability of strengths would make it easier to
assess a team’s strength. As regards assessing a given team’s strength as
a percentile amongst the league of teams, this intuition is likely correct.
However, the fact the typical strength-differences are larger makes the effect
of errors on assessing strengths larger; also our parametrization makes the
absolute rate of change of strength per game proportional to σ for fixed τ ,
so that changes in strength are harder to track.

The numerical values in Tables 4 and 5 are remarkably close, which
suggests that the prediction accuracy of Elo ratings may be somewhat in-
sensitive to the details of the model for time-varying strengths, and instead
determined mainly by the parameters σ and τ (in our “no long term differ-
ence in average strength” setting). On the other hand, one can easily give
convincing heuristics for τ → ∞ asymptotics in these models (see section
4.6 for the cycle and Ornstein-Uhlenbeck models) and these show different
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asymptotic behavior in the three models. So we cannot explain the incidence
of numerical values via asymptotics.

Because RMSE-p is a smooth unction of the update scaling parameter δ,
its values must be almost constant in some neighborhood of the optimal δ,
and this neighborhood can be quite large. For instance for the jump model
with τ = 50, σ = 1.0 (Table 5) the value of RMSE-p hardly varies over the
range 0.24 ≤ δ ≤ 0.36. This suggests that accuracy of Elo ratings are not
very sensitive to choice of update scaling parameter.

For the cycle model, and the Ornstein-Uhlenbeck model with larger τ ,
we see numerically that the optimal value of δ for σ = 1 is around twice
the optimal value for σ = 0.5. We do not have a good explanation, but
it suggests how one might take into account the diversity of strengths in a
real-world implementation.

Regarding the absolute values of RMS errors, if we always predicted 50%
win probabilities, the RMS error would be 15.9% (σ = 0.5) or 26.1% (σ = 1).
The tables show, very roughly, that in order for the Elo ratings to cut this
error in half, we need a relaxation time τ of order 150 - 200 games. This is
larger than intuition might suggest. At first sight it might be a consequence
of the unrealistic “no long term difference in average strength” setting, but
in fact this has less effect than one might think (section 4.5).

Given any specific model for time-varying strengths, there is in theory
some optimal way to predict win-probabilities, via some model-dependent
rule involving the entire past of the win/lose process of all teams. Where it
is computationally feasible to calculate the optimal prediction, this suggests
another simulation project:

How close to optimal – as regards RMSE-p or some other crite-
rion – is the Elo rating, in a particular model?

4.5 Differing long-term average strengths

In the previous models the long-run average strength was the same for each
team. Manchester United and the New York Yankees remind us that for
real-world professional team sports, long-term average performance has not
been the same for all teams in a league. Let’s look at one model. Take
0 < α < 1 and suppose

• Long-term average strengths of different teams are independent Normal(0, ασ2).

• Fluctuations of a team’s strength around its long-term average fol-
low the discrete Ornstein-Uhelnbeck process as in section 4.2, with
relaxation time τ and stationary variance (1− α)σ2.
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So the team strengths have variance σ2, with the relative contributions to
variance being α from the diversity of long-term averages and 1 − α from
the shorter-term fluctuations.

Intuition suggests that Elo ratings should be more accurate as α increases
(note that α = 0 case is the “equal long-term average strengths” model), and
this is borne out by simulations. Table 6 gives numerical values of RMSE-
p for the optimal values of δ. But even in the rather extreme case where
75% of variance is due to different long-term strengths, the win-probability
predictions are not greatly reduced.

Table 6: RMSE-p and (optimal δ) for the “differing long-term average
strengths” model: σ = 1.0.

τ
α 50 100 200 400

0.0 17.0% 14.6 % 12.4% 10.4%
(0.28) (0.24) (0.16) (0.14 )

0.5 13.9% 12.0 % 10.4% 8.8%
(0.20 ) (0.17) (0.13) (0.10 )

0.75 11.2% 9.8% 8.5% 7.3%
(0.14) (0.11) (0.09) (0.07)

4.6 Scaling laws for slowly varying strengths

Consider a model of smoothly time-varying strengths, and introduce the
relaxation time τ as a “stretch” parameter, as in our cycle model. If τ is
large then the update factor δ will be small. Here we are in a classical
setting of Ornstein-Uhlenbeck approximations to stable dynamical systems
with small noise ([13] Chapter 6). As outlined in [3] (informally, but could
be readily be rephrased as rigorous asymptotics) we find the following small
noise asymptotics.

In a model of smoothly time-varying strengths, as τ → ∞ the
optimal update factor δ scales as τ−2/3, and the resulting RMSE-
p error statistic scales as τ−1/3.

And the data from Table 3 (the cycle model) is consistent with this con-
clusion. Similarly, one can analyze the Ornstein-Uhlenbeck strength model
from section 4.2 in the τ →∞ limit. Here the informal calculations [3] say
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the optimal update factor δ scales as τ−1/2, and the resulting
RMSE-p error statistic scales as τ−1/4.

Looking at the Table 4 data, this prediction works quite well for the RMSE-
p error but less well for the optimal δ, perhaps because of the next order
terms.

5 Final remarks

5.1 Do simulations relate to real data?

It is important to remember that the simulations above are within a model in
which we know the true win-probability for each match and then study the
accuracy of the win-probability implied by Elo ratings. For real world sports
data we do not know true win-probabilities, so what can such simulations
tell us?

There is some literature comparing Elo-type ratings with other meth-
ods of predicting outcomes of matches. See for instance recent work [19]
for tennis, [15] for English league football and [22] for international foot-
ball7. The latter article shows different methods having outcome MSEs in
the range 12% - 15%, though because of the frequency of draws in football
these numbers are not directly comparable to our win-or-lose setting8. In
the terminology of section 2.5, these outcome-MSEs are the scores in a pre-
diction tournament. Identity (12) shows that the difference in scores of two
methods is a good estimate of the difference in their accuracy in predicting
probabilities, defined as the difference in MSE-p, that is the square of our
RMSE-p.

To relate this to simulations, suppose we see outcome MSE scores of
11.75% and 14% for two prediction schemes S1 and S2. This tells us that the
difference in MSE-p is 2.25%, but is consistent with a spectrum of possible
absolute errors in predicting win-probabilities:

• S1 has 0 RMS-p error and S2 has 15% RMS-p error;

• S1 has 13% RMS-p error and S2 has 20% RMS-p error;

• or S1 has 20% RMS-p error and S2 has 25% RMS-p error.

We cannot distinguish between these possibilities because we do not know
the true win-probabilities.

7Such work usually finds that Elo-type rankings work better than official rankings.
8MSEs would be larger in our setting.
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As a criterion for accuracy in predicting probabilities in our theoretical
study, we invoked an arbitrary benchmark of 10% RMSE-p, that is 1% MSE-
p, as a goal. If that were achieved by Elo rankings on real data, that would
say9 that we could expect no other algorithm based only on past results to
beat Elo by more than 1% in outcome MSE, however accurate the stochastic
model of changing strengths.

Another project would be to treat the probabilities derived from gam-
bling odds as true probabilities, and examine the accuracy of the probabili-
ties derived from Elo ratings.

5.2 “Probability in the Real World”

This article is an extended write-up of a lecture in the author’s “Probability
in the Real World” course at U.C. Berkeley. The course consists of around
20 lectures on different topics, each (ideally) “anchored” by contemporary
data (here the Elo football ratings [11]), and each (ideally) offering scope for
student projects based on contemporary data. Two other extended write-
ups are available, one on martingales and prediction markets [2] and one on
a game-theoretic analysis of an online game which one can observe being
played (“by your grandmothers”) in real time [4].
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[17] F. J. Király and Z. Qian. Modelling Competitive Sports: Bradley-
Terry-Elo Models for Supervised and On-Line Learning of Paired Com-
petition Outcomes. ArXiv e-prints, January 2017.

25



[18] Leonhard Knorr-Held. Dynamic rating of sports teams. The Statisti-
cian, 49:261–276, 2000.

[19] Stephanie Kovalchik. Searching for the GOAT of tennis win prediction.
Journal of Quantitative Analysis in Sports, 12:127–138, 2016.

[20] Kenneth Lange. Applied Probability. Springer Texts in Statistics.
Springer, New York, second edition, 2010.

[21] Amy N. Langville and Carl D. Meyer. Who’s #1? The Science of
Rating and Ranking. Princeton University Press, Princeton, NJ, 2012.
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