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Abstract

We show that the largest eigenvalues of graphs whose highest degrees are Zipf-like
distributed with slope « are distributed according to a power law with slope /2. This
follows as a direct and almost certain corollary of the degree power law. Our result
has implications for the singular value decomposition method in information retrieval.

1 Introduction

There has been a recent surge of interest in graphs whose degrees have very skewed distribu-
tions, with the ith largest degree of the graph about c:~* for some positive constants ¢ and «.
Such distributions are called Zipf-like distributions (the Zipf distribution being the one with
a=1) or power laws. In contrast, the degrees of random graphs in the traditional G,, , model
[11] are, by the law of large numbers, exponentially distributed around the mean. It had
been observed for some time that the graph of documents and hyperlinks in the worldwide
web follow such degree distributions; in fact, there are several papers proposing plausible
models (based on “preferential attachment” [4, 5, 2, 8], or “copying”[20]) for explaining, with
varying degrees of persuasivenes and rigor, this phenomenon.

More recently, in [13] it was pointed out that the Internet graph (both the graph of the
routers and that of the autonomous systems) also has degrees that are power law distributed,
with an exponent o between .85 and .93. This created much interest in the Internet research
community, because the graph generators used by researchers had theretofore lacked this
property; generators that are realistic in this sense have since appeared [17, 22, 23, 25].
In [12] a theoretical explanation of this phenomenon was proposed, in terms of a model of
network growth driven by the trade-off of two optimization criteria (connection costs and
communication delays), predicting a power law degree distribution.

Another very interesting, intriguing, and as of yet unexplained observation in [13] is that
the (twenty or so) largest eigenvalues of the Internet graph (that is, the largest eigenvalues of



its adjacency matrix) are also power law distributed, with « between .45 and .5. This is in line
with similar observations in Physics with a = .5 (see [14, 15] where a heuristic explanation
is described). In fact, all graph generators aiming to accurately simulate Internet topologies
use the eigenvalue power law as a performance measure [17, 22, 23, 25].

The distribution of the largest eigenvalues of Internet-related graphs is of additional spe-
cial interest for the following reason: Spectral techniques [18, 26, 3, 1] based on the analysis
of the largest eigenvalues and eigenvectors of the web graph have proven algorithmically
successful in detecting “hidden patterns” such as semantics and clusters in the worldwide
web. Is the Internet graph also amenable to such analysis?

In this note we provide a very simple, intuitive, and rigorous explanation of the eigenvalue
power law phenomenon: We point out that it is a rather direct and almost certain corollary
of the degree power law. In particular, we define a random graph model whose degrees are,
in expectation, di,...,d, and show that, if these degrees are power-law distributed, then,
with high probability, the few largest eigenvalues of the graph are close to \/di,/ds,... —
and therefore follow a power law with exponent half of that of the degrees. This is in good
agreement with the findings of [13], where the eigenvalue exponent is a little larger than half
that of the degree exponent.

There is a negative implication of our result: By being essentially determined by the
largest degrees (a very “local” aspect of a graph), the largest eigenvalues are unlikely to
be helpful in analyzing and understanding the structure of the internet topology (the cor-
responding eigenvectors are highly concentrated on the largest degrees). In [24] we show
experimental evidence that spectral analysis of the Internet topology becomes useful only
after the high degrees have been removed —for example, by first deleting all leaves. A similar
problem in the use of spectral methods in “term-document” contexts is known as the “term
norm distribution problem” [16]; it is considered the main bottleneck in the use of spec-
tral filtering for information retrieval. Extending our study from the context of undirected
graphs (symmetric matrices) to the context of terms and documents (general matrices) is an
interesting technical problem with direct practical significance.

The rest of the paper is organized as follows: In Section 2 we review some basics from
algebraic graph theory and matrix perturbation. We state a first theorem that indicates
the effect of high degrees on the spectrum. In Section 3 we show that for a rich class of
random graphs whose high degrees are Zipf distributed follow a power law on their highest
eigenvalues, almost surely. In Section 4 we discuss implications of our results for the singular
value decomposition method.

2 Eigenvalues and Degrees

We begin by recalling certain basic facts from algebraic graph theory and matrix perturba-
tion. For a symmetric graph G with n nodes, we denote by A (G) > A (G) > --- > A\, (G)



the eigenvalues of its adgacency matrix in non increasing order. E denotes the set of edges,
and d; the highest degree of the graph.

Fact 2.1 (See Lovész [21], pages 70-73.)
1. For any graph G, |\(G)| < min{d,, /| E|}.

2. If G is a star with n—1 leaves, then A\ (G) = vVn—1, \,(G) = —v/n—1 and X\(G) =
0,i=2,...,n—1.

3. The multiset of the eigenvalues of a graph G is the union of the eigenvalue multisets
of its connected components.

Now let A and B be symmetric n x n matrices and let A\;(A) > A(A) > --- > A\, (4)
and Ay (B) > Ag(B) > --- > A\,(B) be their eigenvalues in non increasing order.

Fact 2.2 (See Wilkison [29], page 101.) X;(A) + A\ (B) < Ai(A+ B) < X\i(A) + A(B).
Now the following theorem is immediate:

Theorem 2.3 Suppose that an undirected graph G can be decomposed into
o Vertex disjoint stars S; with degrees d;, 1=1,..., k.

o Vertex disjoint components G; with corresponding mazimum degrees d(G;) and number
of edges e(G;), such that min{d(G;),/e(G;)} = o(dk), j=1,...,m. In addition all

the components G; are disjoint from all the stars S;.

o A graph H with mazimum degrees d and E edges such that min{d,VE} = o(d}), wher
H can have arbitrary intersections with the S;’s and the G;’s.

Then the largest eigenvalues of G are \/d;(1 — o(1)) < X\ Vdi(1+0(1)), i=1,...,k.

Remark 1: It is clear that the spectrum of G is dominated by the spectrum of the high-
est degree stars. It is worth noticing how much information this dominance can hide. In
particular, H could be any sparse graph: connected, disconnected, with or without clusters,
a tree, an expander. However, we would not be able to retrieve the structure of H from
the spectrum of G. If G was the topology of the Internet, H could be the network back-
bone, and yet, all information about this structure would be lost. Indeed, in experiment, we
have been able to decompose the Internet topology analyzed in [13] precisely along the lines
of Theorem 2.3. The mere numbers are striking: For highest degree vertices in November
2000 d(UUNET)=2034, d(Sprint)=1079, d(C&WUSA)=793, d(AT&T)=742, d(BBN)=529,



d(QWest)=483, d(AboveNet)=405, d(Verio)=363, d(Buslnter)=347, d(GlobCros)=311 and
d(Level3)=274, the highest eigenvalues squared were A} = 3113, A2 = 1135, \3 = 787,
Al =676, A2 =590, \2 = 515, \2 = 424, \2 = 395, \2 = 289, \}, = 277, \?, = 268.
Remark 2: A technical statement analogous to Theorem 2.3 can be made about the stability
of eigenvectors that correspond to largest eigenvalues (along the lines of Stewart [28]). As
expected, the statement is that these eigenvectors of G' are very “close” to the eigenvectors
of the stars, and are hence highly concentrated on the vertices with the highest degrees.

Remark 3: Suitable modifications of Theorem 2.3 carry over if we take the Laplacian of
the adjacency matrix or the graph, the transition matrix associated with a random walk on
the graph, the “symmetrization” of this random walk, etc.

3 Random Graphs

We next define a distribution of graphs with prescribed degrees. Let d=(dy,ds,...,d,) be
a vector of integers between 0 and n, in decreasing order. Denote Y°/_, d; by D;, and assume
that d? < D,,. Define now G,,(d) to be the distribution of graphs with n nodes generated by
the following experiment: Edges are added by independent draws, where, for 7,57 =1,...,n
the probability that the edge [i,j] is added is d}s;‘ij. Notice that we allow self-loops, an
analytical convenience that does not affect the highest degrees much. Notice also that, by
definition, node ¢ has degree d;, in expectation. (A similar random graph model has been
considered in [7] and is known to have robust connectivity properties). Our main result is

the following:

Theorem 3.1 For any constant v, with 0 <~y <1, for any constant o, with % <a<l, for
any constant B, with 0< < 12_—63, and for any positive integer c, if d=(dy,dy, ..., d,), with
di=D,=0(n'") (1)

and J
di=—, fori=1,... . k=0(n’), (2)

then, for any constant ', with 0 <f'< 3, the eigenvalues of G, (d) satisfy
V(L= 0(1)) € X € \Jdi(1 +0(1)), fori=1,....K=0(n*), (3)
with probability at least 1—0(n~°), for large enough n (n>ng(a, 7, c)).

Proof: We decompose G into the following graphs:

e (41 is a union of vertex disjoint stars Sy, ..., S, where, for t=1,...,k, S; has node ¢ as
its center and leaves those nodes from among k+1,...,n which are adjacent to ¢ and
not adjacent to any node in {1,...,i—1}.
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e (' contains all edges of G with one endpoint in {1, ..., k} and the other in {k+1,...,n},
except those in G;.

e (5 is the subgraph of G induced by {1,...,k}.

e (3 is the subgraph of G induced by {k,...,n}.

We will show that the spectrum of GG; dominates and that each star S; has degree very close
to its expectation d;. Let s; be the expected degree of S; in G;. To get a lowerbound, define
F; as the subset of vertices {k+1,...,n} not adjacent to {1,...,i—1} and notice:

_ wn did dydy
Si = iekp 5”“(1 ZldeFl D,
A a4 _ d
= d;i Y g D, — D Z[Ilglr]l d (4)
2 dz El:k+1 D_n — = Dy :

In the above expression we need to argue about the quantities 37", g—; and EJ|F;|]. For
the first sum first notice:

Ef:l dj = d Z§:1 J

-«
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800
= =" , by equations (1) and (2)
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, which for 8 < 12__07 becomes
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(1—a)n'~ &

(1—a)n'~ 2@

Now (1) and (5) imply
> d~D,. (6)
I=k+1

It can be seen that equation (6) above can be satisfied provided the average degree of
nodes k+1 through n is Q(D,/n). But the maximum expected degree of these nodes is
dr, which implies that ndy = Q(D,). From equations (1) and (2) this is equivalent to
n-n's* -nPe = Q(n'*7), which is indeed satisfied for /3 as in the statement of Theorem 3.1.
For E[|F;|] we have:

— n d;d,
E[|Fi] 5o Siken By
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Now combining (4), (6) and (7) we get:

di(l _ dkdlklfa)

s D2n(—lﬂ_aa)ﬁ(1—a)
= dz(l - %) ,by substitution (8)
d; (1 — nfi=20)) ,with a > 1.

Combining 8 with the obvious upper bound we get
dz(l - ’I’Lﬂ(172a)) S S; S dz ,With a > % (9)

To argue about sharp concentration of the degrees of the S;’s around their means we will
use the standard Chernoff bounds for small probabilities of success [[27], Lecture 4]: For
independent random variables X7, ..., Xy, such that such that Pr[X;=1]=p; and Pr[X;=
0]=1-p;, and where p= (XX, p;)/N:

N 62 43
Pr[| X, —pN| >s] < e 8 Gmp (10)
=1

It can be readily checked from (9) and (10) that for some constant ¢/, the actual degrees §;
are concentrated as follows:

d; —y/dd;logn < §; < d; +/cd;logn (11)

and the probability that (11) fails even for one i=1,...,k is at most n=¢/4. Now Fact 2.1
implies that the largest eigenvalues of G; are

V(1 —o(1)) < M(Gh) < Jdi(1+0(1)), i=1,....k (12)

and the probability that (12) fails even for one i=1,..., k is at most n=¢/4.

Let m; be the expected degree of vertex 7 in the graph G, i=1,...,k=n”. Then using
the calculations of (7) and straightforward substitutions we get:

_ d;d;
mi = Yier, L

I
=)
WE
m
!
&

. : n—aDézil—a (13)
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. nB(2a-1)
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S

, with a > 1.

For the expected degree of vertex i in the graph Gy when i=k+1,...,n we have the obvious
bound d; < di. This together with (13) and the Chernoff bound (10) suggest that, for some
constant ¢’ all actual degrees t; of G satisfy:

t; < dy ++/c"d;logn (14)
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and the probability that (14) fails even for one i=1,...,n is at most n=¢/4.
The total number of edges for the graph G, is:

d;d; d? . .
i Z?:l Do = D_;Ef:ﬂ' azlej ¢
< gLg (15)
— pfBl-a)

7l

The above together with (10) suggest that, for some constant ¢ the actual total number of

edges e(Gs) satisfy

Pre(Gy) > n*0-9) 4 \/c”’nzﬂ(l—a) logn] < n™¢/4. (16)

For the graph G3 we have the obvious bound that all its degrees are in expectations
bounded by dy, and hence are at most d++/c"dy, log n with probability as in (14). Combining
this with (14), (16) and Fact 2.1 we get that the largest eigenvalues of each one of the graphs
G, Gy and G3 are

MG, Ni(Ga), Mi(Gs) < k(1 +o(dy)), i=1,....k (17)

and the probability that (17) fails even for one i=1, ...,k is at most 3n=¢/4. We may now
combine (12) and (17) and see that, for any 8’ < 3, we have

dk:O(dz'), i=1,...,k':nﬂ’

hence the statement of the Theorem follows. o

Remark: We stated our result for the case in which the highest d;’s follow an exact power
law; obviously, essentially the same conclusion holds if the degrees follow a less precise
law (e.g., if the degrees are within constant multiples of the bounds). Finally, the d? <
D,, assumption is useful for keeping the G, (d) model simple; unfortunately, it does not
hold for the Internet topology. However, the Internet, as measured in [13], does satisfy
the assumption, if its few (5 or 6) highest-degree nodes are removed. These high-degree
nodes do not affect the other degrees much, and do not harm our argument, no matter how
adversarially they may be connected.

4 Implication on SVD method for Information Retrieval

Spectral filtering and, in particular the singular value decomposition (SVD) method is re-
peatedly invoked in information retrieval and datamining. It has also been ameanable to
theoretical analysis and has yielded a remarkable set of elegant algorithmic tools [18, 26, 3, 1].
However, in practice, SVD is weakened by the so-called “term norm distribution problem”:



this arises when terms are used in frequencies disproportionately higher than their relative
significance, and several heuristics (so-called “inverse frequency normalizations”) are known,
however, none of them is known to perform adequately in theory or in practice (see [16]
for a nice exposition). The term norm distribution problem appears very similar to the
problem of high degrees that we treated here. It would be interesting to study the term
norm distribution problem in a theoretical framework and quantify the proposed heuristics
to overcome it. For the Internet topology of [13], in practice we solved the problem of high
degrees by pruning small ISP’s (leaves and a few more nodes) [24]. However, we do not have
a formal framework for this method, and we do not know how it would extend in the case
of term-documents or directed graphs.

The effectiveness of several of the SVD-based algorithms [3, 1] requires that the underlying
space has “low rank”, that is, a relatively small number of significant eigenvalues. Power
laws on the statistics of these spaces, including eigenvalue power laws, have been observed
[6, 19, 9] and are quoted as evidence that the involved spaces are indeed low rank and hence
spectral methods should be efficient. In view of the fact that the corresponding eigenvalue
power law on the Internet topology was essentially a restatement of the high degrees and thus
revealing no “hidden” semantics (see Remark 2 in Section 2), it is intruiging to understand
what kind of information the corresponding power laws on the spectra of term-document
spaces convey (or hide...)
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