Stat206: Random Graphs and Complex Networks

Lecture 18: Emergence of Giant Component

Lecturer: David Aldous Scribe: Raul Etkin

18.1 Theorem 5.4 of [1]

Theorem 1 Consider an Erdos-Renyi random graph G(n,p). Set p = ¢/n, fixed ¢ > 0.
Study n — oo limits.

Assertions hold with prob— 1 as n — oo.

(a) If ¢ < 1 the largest component size is at most ﬁ logn.

(b) If ¢ > 1 there is a unique giant component with (1 4+ o(1))Bn wvertices, where § = B(c) > 0 solves

B +e B =1. The second largest component size is at most (cl_ﬁlc)g logn.

We will use 3 ideas:

e Comparison with GWBP, Poisson(c) offspring.
e Exploring a component by ”expanding” vertices.

e Chernoff (tail) bounds: quote
If Y has Binomial(m, ¢) distribution:
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In a GWBP, offspring £ with probability generating function ®(-), the extinction probability p = p(&) solves
p = ®(p). For £ =4 Poissson(c), ¢ > 1, we get p=1— 3 for 8 in (b).

P(Y <mgq—1t)
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One can check that if n' ~ n then

p[Binomial(n’, ¢/n)] — p[Poisson(c)] =1 —
?Expand” a vertex by writing its new neighbors (see Figure 1)

X; = # of new vertices which are new neighbors of v; =4 Bin(n — # of vertices written already, ¢/n)

Proof: Case (a): Fix vertex v.
Xi <stoch Bin <n, E)
n
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Figure 1: Exploring a component. Unshaded vertices haven’t been explored yet.
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where mg=ckandt=K —-1-cK =(1-¢)K — 1.
Then we can write:

1 —c)2K>

P (3 component of size > K) < nP(component 3 v has size > K) < nexp (— 5

and we can choose K = K, such that this upper bound goes to zero as n — oo.

def def
Case (b): Idea: show that each component size is either: < K_ = ﬁ or > K, = n?/3.
gn

Fix vertex v, fix K € [K_, K], seek upper bound on chance of event:

Ex = {v in component of size > K,and # of unexplored vertices vk is less than (¢ — 1)K /2}

L <(e)K2
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Figure 2: On the event Ej the number of unexplored vertices is < (¢ — 1)K /2.

On this event the total # of vertices written < K + (¢ — 1)K/2 = (¢ + 1)K/2.

May suppose X; >stocn, Bin(n — (¢ + 1)K /2, p). (If we see this many (n — (¢ + 1)K /2) extra children the
event in question cannot occur). Then,
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P (Bin(K(n —(c+1)K,/2),p) < K+ #)
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We can define: "Bad” event = event Ei occurs for some v, some K € [K_,K;]. Then, using Chernoff



bound and algebra we have,
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and we can choose K_ = % logn to make this bound — 0.

We now work on ”Good” event, that is the complement of ”Bad”, in which case all components have size
< K_ or > K. When exploring a component of size > K, at step K there are at least (¢ — 1)K /2
unexplored vertices.

at least (c-1)K,/2 vertices

Figure 3: Exploring 2 disjoint components.

Fix v and v'. Explore components for K, steps. Suppose all vertices seen so far in the 2 components are
disjoint. Then,

Chance v,v' in diff. components of G(n,p) < Chance no edges between unexplored vertices of the 2 components
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This is a bound on P(v,v’ in different components of size > K. ). So,

(c—1)
4

P(3 different components of sizes > K, ) < n?exp [ ent/ 3] -0

Therefore there exists at most 1 component of size > K.
We will now focus on determining the size of the giant component. Define

def
Y = # of vertices in (small) components of size < K_

Then the size of the giant component is n — Y. Write p(n,p) = chance v in small component. Then,

p < P(GWBP, Bin(n — K_,p), goes extinct)

Note that X; >stoen Bin(n — K_,p). Also,
p > P(GWBP, Bin(n, p), goes extinct with size < K_) = P(GWBP, Bin(n, p), goes extinct) — o(1)
because as n — 0o, Bin(n,p) — Poisson(c) and K_ — oc. This implies p(n,p) — 1 — 3. Then

E(Y) =np(n,p) ~ n(1 - )



We want to prove % — 1 in probability. This would imply part (b).
By Chebyshev’s inequality it is enough to show that
E(Y?) < (1+oW)[EX)] = (1+0(1))n*(1 - )?

For this we write:

EY? = Z Z P(v,v" in small components)

< (same component)npK _ + (diff. component)npnP(v' in diff. small component |v in small component)
This last probability equals p(n — O(K_),p) — (1 — ) by continuity argument. Also p — 1 — . So,

E(Y?) < (1+o(1))n*(1 - B)?
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