Stat206: Random Graphs and Complex Networks

Lecture 18: Emergence of Giant Component

Lecturer: David Aldous Scribe: Raul Etkin

18.1 Theorem 5.4 of [1]

Theorem 1 Consider an Erdös-Renyi random graph G(n, p). Set p = c/n, fixed c > 0.

Study $n \to \infty$ limits.

Assertions hold with prob $\rightarrow 1$ as $n \rightarrow \infty$.

(a) If c < 1 the largest component size is at most $\frac{3}{(1-c)^2} \log n$.

(b) If c > 1 there is a unique giant component with $(1 + o(1))\beta n$ vertices, where $\beta = \beta(c) > 0$ solves $\beta + e^{-\beta c} = 1$. The second largest component size is at most $\frac{16c}{(c-1)^2} \log n$.

We will use 3 ideas:

- Comparison with GWBP, Poisson(c) offspring.
- Exploring a component by "expanding" vertices.
- Chernoff (tail) bounds: quote If Y has Binomial(m,q) distribution:

$$P(Y \ge mq + t) \le \exp\left(-\frac{t^2}{2(mq + t/3)}\right), \ t \ge 0$$

 $P(Y \le mq - t) \le \exp\left(-\frac{t^2}{2mq}\right), \ t \ge 0$

In a GWBP, offspring ξ with probability generating function $\Phi(\cdot)$, the extinction probability $\rho = \rho(\xi)$ solves $\rho = \Phi(\rho)$. For $\xi =_d$ Poissson(c), c > 1, we get $\rho = 1 - \beta$ for β in (b).

One can check that if $n' \sim n$ then

$$\rho[\text{Binomial}(n', c/n)] \to \rho[\text{Poisson}(c)] = 1 - \beta$$

"Expand" a vertex by writing its new neighbors (see Figure 1)

 $X_i = \#$ of new vertices which are new neighbors of $v_i =_d \text{Bin}(n - \# \text{ of vertices written already}, c/n)$

Proof: Case (a): Fix vertex v.

$$X_i \leq_{\operatorname{Stoch}} \operatorname{Bin}\left(n, \frac{c}{n}\right)$$

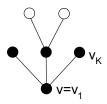


Figure 1: Exploring a component. Unshaded vertices haven't been explored yet.

$$\begin{split} P(\text{component} \;\; \ni v \; \text{has size} \geq K) & \quad \leq P\left(1 + \sum_{i=1}^K X_i \geq K\right) \leq P\left(\sum_{i=1}^K \text{Bin}_i(n,c/n) \geq K - 1\right) \\ & = P\left(\text{Bin}(Kn,c/n) \geq K - 1\right) \leq_{\text{Chernoff}} \exp\left(-\frac{[(1-c)K-1]^2}{2[cK+((1-c)K-1)/3]}\right) \\ & \leq_{algebra} \exp\left(-\frac{(1-c)^2K}{2}\right) \end{split}$$

where mq = ck and t = K - 1 - cK = (1 - c)K - 1.

Then we can write:

$$P\left(\exists \text{ component of size } \geq K\right) \leq nP(\text{component } \ni v \text{ has size } \geq K) \leq n\exp\left(-\frac{(1-c)^2K}{2}\right)$$

and we can choose $K = K_n$ such that this upper bound goes to zero as $n \to \infty$.

Case (b): Idea: show that each component size is either: $\leq K_{-} \stackrel{\text{def}}{=} \frac{16c}{(c-1)^2 \log n}$ or $\geq K_{+} \stackrel{\text{def}}{=} n^{2/3}$.

Fix vertex v, fix $K \in [K_-, K_+]$, seek upper bound on chance of event:

 $E_K = \{v \text{ in component of size } \geq K, \text{ and } \# \text{ of unexplored vertices } v_K \text{ is less than } (c-1)K/2\}$

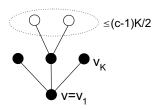


Figure 2: On the event E_K the number of unexplored vertices is $\leq (c-1)K/2$.

On this event the total # of vertices written $\leq K + (c-1)K/2 = (c+1)K/2$.

May suppose $X_i \ge_{Stoch} \text{Bin}(n-(c+1)K_+/2, p)$. (If we see this many $(n-(c+1)K_+/2)$ extra children the event in question cannot occur). Then,

$$\begin{split} P(E_K) & \leq & P\left(\sum_{i=1}^K X_i \leq K + \frac{(c-1)K}{2}\right) \leq P\left(\sum_{i=1}^K \mathrm{Bin}(n-(c+1)K_+/2, p) \leq K + \frac{(c-1)K}{2}\right) \\ & = & P\left(\mathrm{Bin}(K(n-(c+1)K_+/2), p) \leq K + \frac{(c-1)K}{2}\right) \end{split}$$

We can define: "Bad" event $\stackrel{\text{def}}{=}$ event E_K occurs for some v, some $K \in [K_-, K_+]$. Then, using Chernoff

bound and algebra we have,

$$P(\text{Bad}) \le n \sum_{K=K_{-}}^{K_{+}} P(E_{K}) \le n \sum_{K=K_{-}}^{K_{+}} \exp\left[-\frac{(c-1)^{2}K}{9c}\right] \le nK_{+} \exp\left[-\frac{(c-1)^{2}K_{-}}{9c}\right]$$

and we can choose $K_{-} = \frac{16c}{(c-1)^2} \log n$ to make this bound $\to 0$.

We now work on "Good" event, that is the complement of "Bad", in which case all components have size $\leq K_{-}$ or $\geq K_{+}$. When exploring a component of size $\geq K_{+}$, at step K_{+} there are at least $(c-1)K_{+}/2$ unexplored vertices.

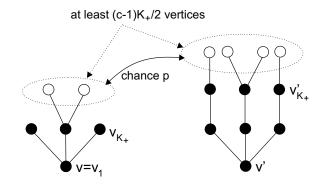


Figure 3: Exploring 2 disjoint components.

Fix v and v'. Explore components for K_+ steps. Suppose all vertices seen so far in the 2 components are disjoint. Then,

Chance v, v' in diff. components of $\mathcal{G}(n, p) \leq C$ Chance no edges between unexplored vertices of the 2 components

$$\leq (1-p)^{[(c-1)K_+/2]^2} \leq \exp\left(-\frac{p(c-1)^2K_+^2}{4}\right) = \exp\left[\frac{(c-1)^2}{4}cn^{1/3}\right]$$

This is a bound on P(v, v') in different components of size $\geq K_+$). So,

$$P(\exists \text{ different components of sizes } \ge K_+) \le n^2 \exp\left[\frac{(c-1)^2}{4}cn^{1/3}\right] \to 0$$

Therefore there exists at most 1 component of size $\geq K_{+}$.

We will now focus on determining the size of the giant component. Define

$$Y = \#$$
 of vertices in (small) components of size $\leq K_{\perp}$

Then the size of the giant component is n-Y. Write $\rho(n,p)=$ chance v in small component. Then,

$$\rho \leq P(\text{GWBP}, \text{Bin}(n - K_-, p), \text{ goes extinct})$$

Note that $X_i \geq_{\text{Stoch}} \text{Bin}(n - K_-, p)$. Also,

 $\rho \geq P(\text{GWBP}, \text{Bin}(n, p), \text{ goes extinct with size } \leq K_{-}) = P(\text{GWBP}, \text{Bin}(n, p), \text{ goes extinct}) - o(1)$

because as $n \to \infty$, Bin $(n, p) \to \text{Poisson}(c)$ and $K_- \to \infty$. This implies $\rho(n, p) \to 1 - \beta$. Then

$$E(Y) = n\rho(n, p) \sim n(1 - \beta)$$

We want to prove $\frac{Y}{E(Y)} \to 1$ in probability. This would imply part (b).

By Chebyshev's inequality it is enough to show that

$$E(Y^2) \le (1 + o(1))[E(Y)]^2 = (1 + o(1))n^2(1 - \beta)^2$$

For this we write:

$$E(Y^2) = \sum_{v} \sum_{v'} P(v, v' \text{ in small components})$$

 $\leq \quad (\text{same component}) n \rho K_- + (\text{diff. component}) n \rho n P(v' \text{ in diff. small component} \mid v \text{ in small component})$

This last probability equals $\rho(n-O(K_-),p) \to (1-\beta)$ by continuity argument. Also $\rho \to 1-\beta$. So,

$$E(Y^2) \le (1 + o(1))n^2(1 - \beta)^2$$

References

[1] Svante Janson, Tomasz Luczak, Andrzej Rucinski, Random Graphs, Wiley, 2000.