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Lecture 1

January 17

1.1 Convergence in Distribution

We have two definitions:

• Probability measure (PM) µ on R,

• Distribution function F on R.

Given µ, F (x)
def
= µ(−∞, x] is a distribution function.

Given F , there exists a µ such that F (x) = µ(−∞, x].

x is a continuity point of F if F (x) = F (x−), which means µ{x} = 0.

Theorem 1.1. For PMs (µn, 1 ≤ n <∞) and µ on R, the following are equivalent.

1. Fµn(x)→ Fµ(x) as n→∞ for all continuity points x of F .

2.
∫∞
−∞ g(x)µn(dx)

n→∞−−−−→
∫∞
−∞ g(x)µ(dx) for all bounded continuous g : R→ R.

3. There exist, on some probability space, RVs (X̂n, 1 ≤ n <∞) and (X̂) such that for all 1 ≤ n <∞,
dist(X̂n) = dist(Xn), dist(X̂) = dist(X), and X̂n → X̂ a.s. as n→∞.

Note: 2 and 3 make sense for PMs on a metric space S and define “weak convergence” on S. In fact, 2⇔ 3
on general S (“Skorohod representation theorem”). The theorem shows that 1 is not just arbitrary.

dist(X) is often written as L(X) (for “law”). Write Xn
d−→ X “in distribution” to mean dist(Xn)→ dist(X).

Call this “weak convergence” µn → µ.

Proof. 3 =⇒ 2: X̂n → X̂ a.s. implies that g(X̂n) → g(X̂) a.s. (g is continuous), which implies that
Eg(X̂n) → Eg(X̂) (g is bounded), which implies that Eg(Xn) → Eg(X). 2 is equivalent to saying
Eg(Xn)→ Eg(X) for all bounded, continuous g.

2 =⇒ 1: Fix x0 and define fj(x) by 1 when x ≤ x0, 0 when x ≥ x0 + 1/j, and linear in between.

Fµn(x0) =

∫ ∞
−∞

1(x≤x0)µn(dx)

≤
∫ ∞
−∞

fj(x)µn(dx)

4
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lim sup
n

Fµn(x0) ≤ lim
n

∫ ∞
−∞

fj(x)µn(dx) =

∫ ∞
−∞

fj(x)µ(dx) ≤ Fµ(x0 + 1/j)

by 2. Let j →∞ to obtain

lim sup
n

Fµn(x0) ≤ Fµ(x0).

Define gj(x) by 1 when x ≤ x0 − 1/j, 0 when x ≥ x0, and linear in between.

lim inf
n

Fµn(x0) ≥ lim
n

∫ ∞
−∞

gj(x)µn(dx)

=

∫ ∞
−∞

gj(x)µ(dx)

≥ Fµ(x0 − 1/j)

Let j →∞.

lim inf
n

Fµn(x0) ≥ Fµ(x0−)

If x0 is a continuity point, we have shown Fµn(x0)→ Fµ(x0).

1 =⇒ 3: Recall the inverse function of Fµ.

F−1
µ (y)

def
= sup{x : Fµ(x) < y} = inf{x : Fµ(x) ≥ y}

If U is uniform on [0, 1], then F−1
µ is a RV whose distribution is µ.

Exercise. 1 implies F−1
µn (y) → F−1

µ (y) for all y such that {x : Fµ(x) = y} is either empty or a single
point x.

The other case is when {x : Fµ(x) = y} is a non-trivial interval. This can only happen for countably
many y. F−1

µn (U)→ F−1
µ (U) a.s. (all U outside a countable set). This is 3.

1.2 Elementary Examples

Here are elementary examples where we show 1 by calculation.

Example 1.2. If Xn has the uniform distribution on {1, 2, . . . , n}, then Xn/n
d−→ U , which is uniform

on [0, 1].

Example 1.3. Xθ has the Geometric(θ) distribution. P (X > i) = (1 − θ)i, i = 0, 1, 2, . . . . Then,

θXθ
d−→ Y with the Exponential(1) distribution, P (Y > y) = e−y, 0 ≤ y <∞.

Example 1.4. Bn is the “birthday RV”, min{j : ξj = ξi for some 1 ≤ i < j} for IID ξi uniform on

{1, 2, . . . , n}. Then n−1/2Bn
d−→ R with Rayleigh distribution P (R > x) = exp(−x2/2).

1.2.1 Artificial Examples

Example 1.5. For any X: X + 1/n
d−→ X as n→∞.
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Note: FX+1/n(x) = FX(x− 1/n)→ FX(x) iff FX(x) = FX(x−).

Example 1.6. If Xn is uniform on the interval [x0 − 1/n, x0 + 1/n], then Xn
d−→ x0. Above, we had

examples of discrete distributions converging to continuous distributions. This example shows that
continuous distributions can converge to discrete distributions.

Example 1.7. Xn has density fn(x) = (1/2)(1 + sin(2πnx)) on 0 ≤ x ≤ 1. Xn
d−→ U , uniform on [0, 1],

with fU (x) ≡ 1. Here, it is not true that fXn(x)→ fU (x).

1.3 Consequences of Weak Convergence

For a function g : R→ R, write Dg = {x : g is not continuous at x} and assume Dg is measurable.

Corollary 1.8. If Xn
d−→ X, if P (X ∈ Dg) = 0, then g(Xn)

d−→ g(X). Then, if g is bounded, we have
Eg(Xn)→ Eg(X).

Proof. Use 3. There exist X̂n → X̂ a.s. (outside some Ω0, P (Ω0) = 0), so g(X̂n) → g(X̂) a.s. (outside

Ω0 ∪{X ∈ Dg}), which by 3 implies g(Xn)
d−→ g(X). By bounded convergence, Eg(Xn)→ Eg(X).

If Xn
d−→ X, then 1/Xn

d−→ 1/X, provided P (X = 0) = 0.

Corollary 1.9. If Xn ≥ 0, if Xn
d−→ X, then EX ≤ lim infnEXn.

Proof. This is Fatou’s Lemma for X̂n → X̂ a.s., X̂n ≥ 0. Apply 3.

Theorem 1.10 (Scheffe’s Theorem). Let θ be a σ-finite measure on (S,S). Suppose that measurable
hn, h : S → [0,∞] are such that

∫
S
hn dθ = 1 for all n,

∫
S
hdθ = 1, and hn(s) → h(s) a.e. (θ). Then∫

S
|hn(s)− h(s)|θ(ds)→ 0.

Proof. ∫
S

|hn(s)− h(s)|θ(ds) = 2

∫
S

(h− hn)+θ(ds),

but 0 ≤ (h−h0)+ ≤ h and (h−hn)+ → 0 a.e. The Dominated Convergence Theorem implies the result.



Lecture 2

January 19

2.1 Conditions for Weak Convergence

Theorem 2.1 (Scheffe’s Theorem). Let θ(·) be a σ-finite measure on S. If hn, h : S → [0,∞) satisfy∫
S
hn dθ = 1,

∫
S
hdθ = 1, and hn(s)→ h(s) θ-a.e., then

∫
S
|hn(s)− h(s)|θ(ds)→ 0.

Proposition 2.2. Suppose (Xn, 1 ≤ n <∞) and X are integer-valued. The following are equivalent:

(a) Xn
d−→ X.

(b) P (Xn = i)
n→∞−−−−→ P (X = i), for all i.

(c)
∑
i|P (Xn = i)− P (X = i)| → 0.

Proof. (a) =⇒ (b): P (Xn ≤ i+ 1/2)→ P (X ≤ i+ 1/2). Then,

P (Xn = i) = P (Xn ≤ i+ 1/2)− P (Xn ≤ i− 1/2)→ P (X ≤ i+ 1/2)− P (X ≤ i− 1/2) = P (X = i).

(b) =⇒ (c): Scheffe’s Theorem 2.1 for θ(i) ≡ 1 for all i, hn(i) = P (Xn = i).

(c) =⇒ (a):

|P (Xn ≤ x)− P (X ≤ x)| =

∣∣∣∣∣∣
∑
i≤x

(P (Xn = i)− P (X = i))

∣∣∣∣∣∣
≤
∑
i

|P (Xn = i)− P (X = i)|

Proposition 2.3. If Xn and X have probability densities fn(x) and f(x), if fn(x) → f(x) for almost

all x, then Xn
d−→ X.

Proof. Scheffe’s Theorem 2.1:

|P (Xn ≤ x)− P (X ≤ x)| ≤
∫
|fn(x)− f(x)|dx→ 0

7
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2.2 Tight Distributions

Consider R-valued (Xn, 1 ≤ n <∞).

Definition 2.4. Say (Xn) is tight if limB↑∞ supn P (|Xn| ≥ B) = 0.

Definition 2.5. Say (Xn) is uniformly integrable if limB↑∞ supnE[|Xn|1(|Xn|≥B)] = 0.

Actually, the above definitions are properties of µn = dist(Xn).

Lemma 2.6 (Easy). (a) If supnE|Xn| < ∞, or more generally if supnEφ(|Xn|) < ∞ for some
0 ≤ φ(x) ↑ ∞ as x ↑ ∞, then (Xn) is tight.

(b) If supnEX
2
n < ∞, or more generally if supnEφ(|Xn|) < ∞ for some 0 ≤ φ(x) ↑ ∞ such that

φ(x)/x→∞ as x→∞, then (Xn) is UI.

Proof. (a) Markov’s inequality:

P (|Xn| ≥ B) ≤ Eφ(|Xn|)
φ(B)

Lemma 2.7 (205A). If Xn → X a.s., if (Xn, 1 ≤ n <∞) is UI, then E|X| <∞ and EXn → EX.

Corollary 2.8. If Xn
d−→ X, if (Xn, 1 ≤ n <∞) is UI, then E|X| <∞ and EXn → EX.

(Apply the lemma to X̂n.)

Distribution functions F , or equivalently, PMs µ on (−∞,∞), satisfy:

• 0 ≤ F (x) ≤ 1, ∀x ∈ (−∞,∞).

• x 7→ F (x) is increasing.

• F (x+) = F (x) (right-continuity).

• limx↑∞ F (x) = 1, limx↓−∞ F (x) = 0.

An extended distribution function (EDF) F has the first three properties above.

lim
x↑∞

F (x) = “F (∞)” ≤ 1

lim
x↓−∞

F (x) = “F (−∞)” ≥ 0

There is a one-to-one correspondence between PMs µ on [−∞,∞] and EDFs. Think of an RV X with values
in [−∞,∞].

Theorem 2.9 (Helly’s Selection Theorem). Let F1, F2, . . . be distribution functions on (−∞,∞).

• There exists nj →∞ and an EDF G such that Fnj (x)→ G(x) for all continuity points x of G.

• If (Fn, 1 ≤ n <∞) is tight, then G is a distribution function on (−∞,∞).
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Suppose Z is standard Normal, with distribution function Φ(z). J is uniform on {1, 2, 3}, and

Xn =


−n, if J = 1,

Z, if J = 2,

n, if J = 3.

Then, the distribution function of Xn does not converge to a distribution function.

Proof. (a) Let q1, q2, q3, . . . , be the rationals. The sequence F1(q1), F2(q2), F3(q3), . . . is in [0, 1] so
(compactness) there exists a subsequence m(1, 1),m(1, 2),m(1, 3), . . . such that

Fm(1,i)(q1) −−−→
i→∞

some limit G0(q1).

Then, we use a diagonal argument. Fm(1,i)(q2), i = 1, 2, . . . is a sequence in [0, 1]; there exists a
subsequence m(2, 1),m(2, 2),m(2, 3), . . . such that Fm(2,i)(q2)→ some G0(q2).

Repeat for each k ≥ 1: find a subsequence (m(k, i), i ≥ 1) of (m(k − 1, i), i ≥ 1) such that

Fm(k,i)(qk) −−−→
i→∞

some G0(qk).

Consider m(i, i) (the “diagonal”): this has the property Fm(i,i)(qk) −−−→
i→∞

G0(qk) for all k.

Now, define an EDF G by
G(x) = inf

q rational
q>x

G0(q).

Check that G is an EDF.

Fix x. For any q > x,

lim sup
i

Fm(i,i)(x) ≤ lim sup
i

Fm(i,i)(q) = G0(q)

≤ G(x)

by letting q ↓ x. By the same argument, lim infi Fm(i,i)(x) ≥ G(x−). So, if G(x) = G(x−), then
Fm(i,i)(x)→ G(x).

(b) Tight implies that there exists K(B) such that lim supn P (Xn ≤ B) ≥ 1 − K(B), K(B) ↓ 0 as
B ↑ ∞. Consider Fm(i,i)(q) → G(q) ∀q, which implies that G(B) ≥ 1 −K(B), so G puts 0 mass
on +∞.

Corollary 2.10. Given (Xn, 1 ≤ n <∞) and X (R-valued RVs), suppose (Xn) is tight. Suppose that,

whenever Xnj
d−→ some Y as j →∞ for some (nj), we have Y

d
= X. Then, Xn

d−→ X as n→∞.

Proof. By contradiction. If Xn 6→ X in distribution, then there exists x0, a continuity point of X, such
that P (Xn ≤ x0) 6→ P (X ≤ x0). ∃ε > 0 and mj → ∞ such that

∣∣P (Xnj ≤ x)− P (X ≤ x)
∣∣ ≥ ε for all

j. Apply Helly 2.9 to (Xnj ): there exists a subsequence Xnj
d−→ some Y . But Y

d
= X by hypothesis, so∣∣P (Xnj ≤ x)− P (X ≤ x)

∣∣→ 0, which is a contradiction.
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Lemma 2.11. Suppose EX = 0, EX2 = 1, and EX4 ≤ K. Then, there exists c(K) > 0, depending on
K, such that P (X > 0) ≥ c(K).

Proof. By contradiction. There exists K such that the statement is false. So, there exists Xn such
that EXn = 0, EX2

n = 1, EX4
n ≤ K, but P (Xn > 0) ≤ 1/n. Helly 2.9 implies that there exists a

subsequence Xnj
d−→ some X. So, EX = 0, EX2 = 1, and P (X > 0) = 0, which is impossible.
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3.1 Transforms

There are three variants of the same idea.

1. Let X take values in {0, 1, 2, . . . }. The probability generating function is

hX(z) =

∞∑
n=0

P (X = n)zn = EzX

for 0 ≤ z ≤ 1.

2. If X takes values in [0,∞), the Laplace transform is LX(θ) = Ee−θX =
∫∞

0
e−θxfX(x) dx if X has

density fX(x). If X has distribution µ, then LX(θ) =
∫∞

0
e−θxµX(dx). The Laplace transform is finite

for 0 ≤ θ <∞.

3. For X, an arbitrary R-valued random variable, the characteristic function (Fourier transform) is
φX(t) = EeitX = E cos(tX) + iE sin(tX). If X has a density, then φX(t) =

∫∞
−∞ eitxfX(x) dx.

Point. If S = X1 +X2 for independent X1, X2, then

hS(z) = hX1
(z)hX2

(z),

LS(θ) = LX1
(θ)LX2

(θ),

φS(t) = φX1
(t)φX2

(t),

since

EeitS = E[eitX1eitX2 ]

= (EeitX1)(EeitX2)

φS(t) = φX1
(t)φX2

(t)

by the product rule.

Notation. t, x, y ∈ R. z ∈ C, z = x + iy. |z| =
√
x2 + y2, |z1z2| = |z1||z2|.

∣∣eitx∣∣ = 1. For a C-valued RV
Z = X + iY , EZ = EX + iEY . |EZ| ≤ E|Z|. φX(t) = EeitX , where φX : R→ C. The modulus is

|φX(t)| =
∣∣EeitX ∣∣ ≤ E∣∣eitX ∣∣ = 1.

φX(t+ h)− φX(t) = E[ei(t+h)X − eitX ] = E[eitX(eihX − 1)], so

|φX(t+ h)− φX(t)| ≤ E
[∣∣eitX ∣∣ · ∣∣eihX − 1

∣∣] = E
∣∣eihX − 1

∣∣ = ψ(h),

say. As h ↓ 0, then eihX − 1→ 0. Use bounded convergence to see that t 7→ φX(t) is uniformly continuous.

11
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3.2 Inversion

Theorem 3.1 (Inversion Formulas). Let φ(t) be the CF of a PM µ.

(a)

µ(a, b) +
1

2
(µ{a}+ µ{b}) = lim

T→∞

1

2π

∫ T

−T

e−ita − e−itb

it
φ(t) dt︸ ︷︷ ︸

I(T )

, −∞ < a < b <∞.

(b) If
∫∞
−∞|φ(t)|dt <∞, then µ has a bounded continuous density

f(t) =
1

2π

∫ ∞
−∞

e−ityφ(t) dt.

S(T )
def
=

∫ T

0

sinx

x
dx→ π

2
as T →∞.

e−ita − e−itb

it
=

∫ b

a

e−ity dy,

so the modulus is at most b− a.

Proof. By Fubini,

I(T ) =

∫ ∞
−∞

(∫ T

−T

e−ita − e−itb

it
· eitx dt

)
µ(dx).

The inner integral contains a term∫ T

−T

eit(x−a)

it
dt =

∫ T

−T

sin(t(x− a))

t
dt+

1

i

∫ T

−T

cos(t(x− a))

t
dt︸ ︷︷ ︸

=0 by symmetry

,

since eit = cos t+ i sin t. The first term is∫ T

−T

sin(θt)

t
dt = 2

∫ T

0

sin(θt)

t
dt = 2S(θT ), θ > 0,

= 2 sgn(θ) · S(T |θ|) = R(T, θ), −∞ < θ <∞,
→ π sgn(θ) as T →∞.

Here,

sgn(x) =


1, x > 0,

0, x = 0,

−1, x < 0.
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Therefore,

I(T ) =

∫ ∞
−∞

(R(x− a, T )−R(x− b, T ))µ(dx).

The integrand is bounded by 2 supθ,T R(θT ) ≡ K <∞. Let T →∞.

lim
T→∞

I(T ) =

∫ ∞
−∞

χa,b(x)µ(dx),

where

χa,b(x) =


0, x < a or x > b,

2π, a < x < b,

π, x = a or x = b.

(Check.) This is (a).

In case (b), the integral ∫ ∞
−∞

e−ita − e−itb

it︸ ︷︷ ︸
|·|≤b−a

φ(t) dt

is absolutely convergent. Use (a):

µ(a, b) +
1

2
µ{a}+

1

2
µ{b} ≤ b− a

2π

∫ ∞
−∞
|φ(t)|dt.

Note that if (a′, b′) ↓ {x}, then µ{x} = 0 ∀x. By (a),

µ(a, b) =
1

2π

∫ ∞
−∞

(∫ b

a

e−ity dy

)
φ(t) dt

=

∫ b

a

(
1

2π

∫ ∞
−∞

e−ityφ(t) dt

)
dy

by Fubini. The integrand is the density function f(y) for µ, and

f(y) ≤ 1

2π

∫ ∞
−∞
|φ(t)|dt.

Comments.

1. If φµ(t) ≡ φν(t) ∀t, then ν = µ. (Uniqueness)

2. In principle, we can calculate the distribution of Sn = X1 + X2 + · · · + Xn for independent Xi using
φSn =

∏n
i=1 φXi(t).

Example 3.2. If X has Normal(0, σ2) distribution, then φX(t) = exp(−σ2t2/2).

So, if X1, X2 are independent Normal(0, σ2
i ), then S = X1 +X2 has

φS(t) = φX1
(t)φX2

(t) = exp(−σ2
1t

2/2− σ2
2t

2/2) = exp(−(σ2
1 + σ2

2)/2)

= CF of Normal(0, σ2
1 + σ2

2).
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Example 3.3. X has the Exponential(1) distribution, f(x) = e−x, x > 0.

φX(t) =

∫ ∞
0

eitxe−x dx =

∫ ∞
0

e−(1−it)x dx =
1

1− it

For c > 0, φcX(t) = φX(ct) = EeictX .

Example 3.4. Y has density

fY (y) =
1

2
e−|y|, −∞ < y <∞.

Since

µY =
1

2
µX +

1

2
µ−X ,

which implies that

φY (t) =
1

2
φX(t) +

1

2
φ−X(t) =

1

2
(φX(t) + φX(−t))

=
1

2

(
1

1− it
+

1

1 + it

)
=

1

(1− it)(1 + it)
=

1

1 + t2
.

3.3 Parseval Identity

Theorem 3.5 (Parseval Identity). Let µ and ν be PMs with CFs φµ and φν . Then∫ ∞
−∞

φν(t)µ(dt) =

∫ ∞
−∞

φµ(t)ν(dt).

Proof. Take X, Y independent, dist(X) = µ, dist(Y ) = ν.

E[eiXY | Y = y] = EeiyX = φµ(y),

so

E[eiXY ] = Eφµ(Y ) =

∫ ∞
−∞

φµ(y)ν(dy) = right side.

Also,
E[eiXY ] = E[E[eiY X |X]] = left side.

By choice of “simple” ν, we get general identities between µ and φ(µ).

Example 3.6. ν is uniform on [−c, c].

φν(t) =
sin(ct)

ct
.

For any µ,

1

2c

∫ c

−c
φµ(t) dt =

∫ ∞
−∞

sin(ct)

ct
µ(dt).
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Example 3.7. Take ν to be Normal(0, σ2). For any µ,∫ ∞
−∞

1

σ
√

2π
e−t

2/(2σ2)φµ(t) dt =

∫ ∞
−∞

e−σ
2t2/2µ(dt).
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4.1 Applications of Inversion Formula

Inversion Formula: If a PM µ has CF φ such that
∫∞
−∞|φ(t)|dt < ∞, then µ has a bounded continuous

density

f(x) =
1

2π

∫ ∞
−∞

e−itxφ(t) dt.

In general, φaW (t) = φW (at).

Corollary 4.1. Given a PM µ with CF φ and density f , suppose φ is R-valued, φ ≥ 0, and∫ ∞
−∞

φ(t) dt <∞.

Then,

g(x)
def
=

φ(x)

2πf(0)

is a density function, and its CF is f(t)/f(0). Here, f and g are called dual pairs.

Proof. By the inversion formula,

f(y)

f(0)
=

∫ ∞
−∞

e−ity
φ(t)

2πf(0)︸ ︷︷ ︸
g(t)

dt = CF of g(x).

For y = 0,

1 =

∫ ∞
−∞

φ(t)

2πf(0)︸ ︷︷ ︸
=g(t)

dt.

Example 4.2 (Last Class). If

f(x) =
1

2
e−|x|,

16
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then

φ(t) =
1

1 + t2
.

The dual is

g(x) =
φ(x)

π
=

1

π(1 + x2)
,

the standard Cauchy distribution, and this has CF f(t)/f(0) = e−|t|, for −∞ < t <∞. Write W for a
RV with the standard Cauchy distribution. Take W1,W2, . . . , IID copies of W .

φW1+W2+···+Wn
(t) = (e−|t|)n = e−n|t| = φnW (t).

By uniqueness,
∑n
i=1Wi

d
= nW , so

1

n

n∑
i=1

Wi
d
= W.

The LLN does not hold. E|W | =∞.

4.2 Another Proof of Inversion

Exercise: If Yn
d−→ c, then Yn → c in probability. If Yn

d−→ c, then X + Yn
d−→ X + c (for any X).

2nd Proof of Inversion Formula. Take X with dist(X) = µ. Take Zσ
d
= Normal(0, σ2), independent of

X. X + Zσ
d−→ X as σ ↓ 0. Note: X + Zσ has density

fX+Zσ (0) =

∫ ∞
−∞

fZσ (t)µ(dt)

=
1

σ
√

2π

∫ ∞
−∞

e−t
2/(2σ2)µ(dt).

Use Parseval’s Identity for the normal distribution, θ = 1/σ.

1

2π

∫ ∞
−∞

e−t
2σ2/2φ(t) dt

Then, φX−x(t) = e−ixtφX(t). Applying the above to X − x instead of X, we have

fX+Zσ (x) =
1

2π

∫ ∞
−∞

e−t
2σ2/2e−itxφ(t) dt.

Let σ ↓ 0. Appeal to bounded convergence.

lim
σ↓0

fX+Zσ (x) =
1

2π

∫ ∞
−∞

e−itxφ(t) dt︸ ︷︷ ︸
f(x), say

.

Final detail:

P (a ≤ X ≤ b) = lim
σ↓0

P (a ≤ X + Zσ ≤ b)
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at continuity points a, b of X. The limit is
∫ b
a
f(x) dx. This is enough to prove that f is the density of

X.

4.3 Continuity Theorem

Theorem 4.3 (Continuity Theorem). Suppose Xn has CF φn.

(a) If Xn
d−→ X∞, then φn(t)→ φ∞(t), for each t.

(b) Suppose limn→∞ φn(t) exists (= φ(t), say), for each t. If either

(1) φ is a CF, or

(2) φ(t)→ 1 as t→ 0, or

(3) (Xn, n ≥ 1) are tight,

then Xn
d−→ X∞, and X∞ has CF φ.

Proof. (a) Xn
d−→ X∞ implies that Eg(Xn)→ Eg(X∞) for bounded, continuous g. Take g(x) = eitx,

which shows that φn(t)→ φ∞(t) as n→∞, for t fixed.

(b) Suppose (3). Helly’s Theorem implies that there exists a subsequence Xnj
d−→ some X̂. By (a) and

the hypothesis, X̂ has CF φ. By a previous lemma (every convergent subsequence has the same

limit distribution) implies that the whole sequence Xn
d−→ X̂ with CF φ, which is a proof of (b).

Claim: (1) =⇒ (2). A CF φ is continuous, with φ(0) = 1.

We need to prove that (2) and the hypothesis imply (3).

Fix K, put c = 2/K. (Trick)

P (|Xn| ≥ K) ≤ E2

(
1− 1

c|Xn|

)
1(|Xn|≥K)

≤ 2E

(
1− sin(c|Xn|)

c|Xn|

)
1(|Xn|≥K)

≤ 2E

(
1− sin(c|Xn|)

c|Xn|

)
,

because sin y ≤ 1 and

sin y

y
≤ 1.

Use the Parseval Identity for the Uniform[−c, c] distribution.

P (|Xn| ≥ K) ≤ 2

(
1− 1

2c

∫ c

−c
φn(t) dt

)
=

1

c

∫ c

−c
(1− φn(t)) dt

Use bounded convergence as n→∞.

lim sup
n

P (|Xn| ≥ K) ≤ 1

c

∫ c

−c
(1− φ(t)) dt

On the LHS, we can take the limit as K ↑ ∞. On the RHS, we can take the limit as c ↓ 0. Then,
the RHS is 0 by (2), which gives tightness.
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4.4 CFs & Moments

eitx =

∞∑
m=0

(itx)m

m!

This suggests that the CF φ of X is

φX(t) =

∞∑
m=0

E(itX)m

m!
= 1 + itEX − t2

2
EX2 + · · ·

However, EXm may be infinite.

Lemma 4.4 (Technical Lemma, Durrett 3.3.7).∣∣∣∣∣eiy −
n∑

m=0

(iy)m

m!

∣∣∣∣∣ ≤ min

(
|y|n+1

(n+ 1)!
,

2|y|n

n!

)

Apply this to y = tX. ∣∣∣∣∣φX(t)−
n∑

m=0

E(itX)m

m!

∣∣∣∣∣ ≤ Emin

(
|tX|n+1

(n+ 1)!
,

2|tX|n

n!

)

=
|t|n

n!
Emin

(
|t||X|n+1

n+ 1
, 2|X|n

)
︸ ︷︷ ︸

Zt

Corollary 4.5. Suppose E|X|n <∞. Then,

φX(t) =

n∑
m=0

E(itX)m

m!
+ o(|t|n) as t→ 0.

Proof. Zt → 0 a.s. as t→ 0, and is dominated by 2|X|n which is integrable. Hence, EZt → 0 as t→ 0.
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5.1 Characteristic Function Proofs

Convergence Theorem: Xn has CF φn. If φn(t) → φ∞(t) as n → ∞, for each t, if φ∞(t) is the CF of

some X∞, then Xn
d−→ X∞.

Suppose E|X|n <∞. Then ∣∣∣∣∣φX(t)−
n∑

m=1

E(itX)m

m!

∣∣∣∣∣ = o(|t|n) as t→ 0.

Theorem 5.1 (Weak Law of Large Numbers). Let X1, X2, . . . be IID with EX = θ, Sn =
∑n
i=1Xi,

then Sn/n→ θ in distribution, and hence convergence in probability.

Proof. The PM σθ has CF eiθt. It is enough to prove φSn/n(t) → eiθt as n → ∞, for a fixed t. Since
φSn(t) = (φX(t))n,

φSn/n(t) =

(
φX

(
t

n

))n
=

(
1 +

n(φX(t/n)− 1)

n

)n
.

If zn → z ∈ C, then (1 + zn/n)n → ez. It is enough to prove

n

(
φX

(
t

n

)
− 1

)
︸ ︷︷ ︸

Left

→ iθt.

The bound for n = 1 gives |φX(s)− (1 + isθ)| = o(|s|). Apply the bound with s = t/n. Then, we know

Left = n

(
i
t

n
θ + o

(
|t|
n

))
= itθ + n · o

(
|t|
n

)
→ itθ.

Remarks. The proof shows that
φ′X(0) = θ (5.1)

is sufficient for the WLLN 5.1.

Fact. In fact, (5.1) is also necessary. The property EX = θ implies φ′X(0) = θ, but not conversely.

20
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5.2 Central Limit Theorems

Theorem 5.2 (IID Central Limit Theorem). Let (Xi, i ≥ 1) be IID, EX = µ, var(X) = σ2 < ∞.
Then,

Sn − nµ√
n

d−→ Normal(0, σ2).

Proof. WLOG take µ = 0. It is enough to show

φSn/
√
n(t)︸ ︷︷ ︸

Left

→ exp

(
−σ

2t2

2

)
.

Also,

φSn/
√
n(t) =

(
φX

(
t√
n

))n
=

(
1 +

n(φX(t/
√
n)− 1)

n

)n
.

It is enough to show n(φX(t/
√
n)− 1)→ σ2t2/2. The bound for n = 2 and EX = 0 is∣∣∣∣φX(s)−

(
1− s2σ2

2

)∣∣∣∣ = o(s2).

Then, with s = t/
√
n,

Left = n

(
t2

n

σ2

2
+ o

(
t2

n

))
=
t2σ2

2
+ n · o

(
t2

n

)
→ t2σ2

2
.

Theorem 5.3 (Lindeberg’s Theorem). For each n, let Xn,1, Xn,2, . . . , Xn,n be independent, EXn,m = 0,
varXn,m = σ2

n,m <∞. Write Sn =
∑n
m=1Xn,m, σ2

n =
∑n
m=1 σ

2
n,m = var(Sn), ESn = 0. Suppose

(i) σ2
n → σ2 <∞ as n→∞,

(ii) limn→∞
∑n
m=1E[X2

n,m1(|Xn,m|>ε)] = 0, for each ε > 0. This is known as the Lindeberg condi-
tion: UAN = uniformly asymptotically negligible.

Then, Sn
d−→ Normal(0, σ2).

Proof. φn,m(t) is the CF of Xn,m. The more precise bound is∣∣∣∣∣φn,m(t)−

(
1−

t2σ2
n,m

2

)∣∣∣∣∣ ≤ Emin

(
|tXn,m|3

6
, |tXn,m|2

)

Cheap: If |x| ≤ ε, then |x|3 ≤ εx2.

≤ ε|t|3

6
E[X2

n,m] + |t|2E[X2
n,m1(|Xn,m|≥ε)].
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Then,

lim sup
n

n∑
m=1

∣∣∣∣∣φn,m(t)−

(
1−

t2σ2
n,m

2

)∣∣∣∣∣︸ ︷︷ ︸
=Bn(t)

≤ ε|t|3

6
· σ2 + 0, (5.2)

by hypothesis (ii). Let ε ↓ 0. Then, the summation goes to 0 as n→∞.

Claim.

(a) maxm σ
2
n,m → 0 as n→∞.

(b)
∑
m σ

4
n,m → 0 as n→∞.

Proof.

(a)

σ2
n,m = EX2

n,m1(|Xn,m|≥ε) + EX2
n,m1(|Xn,m|≤ε)

≤
∑
m

EX2
n,m1(|Xn,m|≥ε) + ε2,

so

lim sup
n

max
m

σ2
n,m ≤ 0 + ε2,

by (ii). Let ε ↓ 0.

(b) ∑
m

σ4
n,m ≤

(
max
m

σ2
n,m

)∑
m

σ2
n,m → 0,

by (i).

φSn(t) =
∏n
m=1 φn,m(t). By 5.4,∣∣∣∣∣φSn(t)−

n∏
m=1

(
1−

t2σ2
n,m

2

)∣∣∣∣∣ ≤ Bn(t)→ 0

by (5.2), using Claim (a).

So, it is enough to prove

n∏
i=1

(
1−

t2σ2
n,m

2

)
→ exp

(
− t

2σ2

2

)
.

This will follow from 5.5 applied to an,m = σ2
n,m. Assumption (i) is (i), while (ii) is Claim (b).

Lemma 5.4. If wi, zi ∈ C, |wi| ≤ 1, |zi| ≤ 1, then |
∏n
i=1 zi −

∏n
i=1 wi| ≤

∑
i|wi − zi|.
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Proof.

|z1z2 · · · ziwi+1 · · ·wn − z1 · · · zi+1wi+2 · · ·wn| = |(zi+1 − wi+1) ·A|
≤ |zi+1 − wi+1|,

where |A| ≤ 1.

Lemma 5.5. Let an,m ∈ R. If

(i)
∑
m an,m → a as n→∞,

(ii)
∑
m a

2
n,m → 0.

Then,
∏n
m=1(1− an,m)→ e−a.

Proof. We know that maxm|an,m| → 0 by (ii). Since |log(1− x) + x| ≤ Cx2 for |x| ≤ 1/2,∣∣∣∣∣
n∑

m=1

log(1− an,m) +

n∑
m=1

an,m

∣∣∣∣∣ ≤ C∑
m

a2
n,m for large n,

→ 0 as n→∞.

Hence, log
∏n
m=1(1− an,m)→ −a.

Theorem 5.6 (Equivalent Form of Lindeberg CLT). For each n, let Xn,m, 1 ≤ m ≤ n, be independent,
EXn,m = 0. Let Sn =

∑n
m=1Xn,m and s2

n = var(Sn) =
∑n
i=1 var(Xn,m). Suppose

n∑
m=1

E

[
X2
n,m

s2
n

1(|Xn,m|≥εsn)

]
→ 0 as n→∞.

Then, Sn/sn
d−→ Normal(0, 1).

This is the previous theorem 5.3 applied with X̂n,m = Xn,m/sn. Now, it looks more like the IID version.
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6.1 Lindeberg Theorem

Restatement of the Lindeberg Theorem without prior rescaling:

Lindeberg Theorem: For each n, assume that the (Xn,m, 1 ≤ m ≤ n) are independent, EXn,m = 0,
s2
n =

∑n
m=1 var(Xn,m) <∞, Sn =

∑n
m=1Xn,m (so ESn = 0). If

n∑
m=1

E

[
X2
n,m

s2
n

1(|Xn,m|≥εsn)

]
→ 0

as n→∞, for each ε > 0 (UAN), then Sn/sn
d−→ Normal(0, 1).

This is the previous version applied to Xn,m/sn.

Corollary 6.1. Suppose (Y1, Y2, . . . ) are independent, EYi = 0. Suppose s2
n =

∑n
i=1 var(Yi) < ∞. If

|Yi| ≤M a.s. and if sn →∞ as n→∞, then

1

sn

n∑
i=1

Yi
d−→ Normal(0, 1).

Proof. Apply the Lindeberg Theorem 5.3 to Xn,m = Ym. The event |Xn,m| ≥ εsn can only happen if
M ≥ εsn, that is, sn ≤M/ε. The event has probability 0 for large n, which implies UAN.

Corollary 6.2. In 5.3, we may replace UAN by Lyapunov’s condition: ∃δ > 0 such that

Ln
def
=

∑n
m=1E|Xn,m|2+δ

s2+δ
n

→ 0 as n→∞.

Proof.

x21(|x|≥εsn) ≤
|x|2+δ

|εsn|δ
= x2

(
|x|
εsn

)δ
∀x

24
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So,

n∑
m=1

E

[
X2
n,m

s2
n

1(|Xn,m|≥εsn)

]
≤
∑n
m=1E|Xn,m|2+δ

s2
n(εsn)δ

=
Ln
εδ
→ 0 as n→∞,

which checks UAN.

Corollary 6.3. Let (Yi, i ≥ 1) be independent, EYi = 0. Suppose var(Yi) → σ2 < ∞ as i → ∞.

Suppose ∃δ > 0 such that M := supiE|Yi|
2+δ

<∞. Then∑n
i=1 Yi
σ
√
n

d−→ Normal(0, 1).

Proof. Set Xn,m = Ym and check Lyapunov’s condition.

s2
n = var

(
n∑
i=1

Yi

)
∼ nσ2,

Ln ≤
Mn

s2+δ
n

∼ Mn

σ2+δn1+δ/2
=

M

σ2+δ
n−δ/2 → 0 as n→∞.

We conclude ∑n
i=1 Yi
sn

d−→ Normal(0, 1)

and sn ∼ σ
√
n.

Corollary 6.4. If (Xi, i ≥ 1) are independent, |Xi| ≤ A, µi = EXi, σ
2
i = var(Xi) < ∞, and if

Sn =
∑n
i=1Xi −−→a.s.

some S∞, which is finite, then
∑n
i=1 µi and

∑n
i=1 σ

2
i converge to a finite limit.

Proof. By contradiction. Suppose sn =
∑n
i=1 σ

2
i →∞ as n→∞. We can apply 6.1 to Xi − µi.

1

sn

n∑
i=1

(Xi − µi)
d−→ Normal(0, 1)

Sn
sn
− 1

sn

n∑
i=1

µi
d−→ Normal(0, 1)

The first term converges in distribution to 0. The second term is a constant. The LHS can only converge
in distribution to a constant. This contradiction implies that sn → s∞ <∞.

By 205A, this implies
∑n
i=1(Yi−µi) converges a.s., so Sn−

∑n
i=1 µi converges a.s. Since Sn → S∞ a.s.,

this implies
∑n
i=1 µi converges a.s.

6.2 3 Series Theorem

Theorem 6.5 (Classical “3 Series Theorem”). Suppose (Xi) are independent. Then
∑n
i=1Xi converges

a.s. to a finite limit if and only if, for some A,

1.
∑
i P (|Xi| ≥ A) <∞,

2. For Yi = Xi1(|Xi|≤A), we have
∑n
i=1EYi converges,
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3.
∑
i var(Yi) <∞.

Proof. “If”: We implicitly proved this part in 205A.

For “only if”, assume
∑n
i=1Xi converges. The events {|Xn| > A} occur only finitely often. By Borel-

Cantelli 2,
∑
i P (|Xn| > A) <∞. Also,

∑
i Yi converges a.s. Apply 6.4 to (Yi):

∑
iEYi and

∑
i var(Yi)

converge.

6.3 Classical Theory: “Infinitely Divisible Distributions”

What are all possible limits ∑n
i=1Xi − an

bn

d−→ Y ?

See Durrett 3.7 and 3.8.

6.4 Poisson Limits

For PMs µ1, µ2 on measurable (S,S),

‖µ2 − µ1‖
def
= sup
A∈S
|µ1(A)− µ2(A)|.

This is the variational distance.

(Easy) If S is countable, then

‖µ1 − µ2‖ =
1

2

∑
s∈S
|µ1{s} − µ2{s}|.

If S = R and µi has density fi, then

‖µ1 − µ2‖ =
1

2

∫ ∞
−∞
|f1(x)− f2(x)|dx.

Know. Class 2 says for countable S,

µn → µ∞ weakly ⇐⇒ ‖µn − µ∞‖ → 0.

Let f∞ = 1 and fn be a sinusoid on [0, 1] with period 1/n. Here, µn → µ∞ weakly but ‖µn − µ∞‖ 6→ 0.

Lemma 6.6 (Easy?). (a) If dist(Xi) = µi, i = 1, 2, then P (X1 6= X2) ≥ ‖µ1 − µ2‖.

(b) Given µ1, µ2, there exist (X1, X2) with dist(Xi) = µi and P (X1 6= X2) = ‖µ1 − µ2‖.

This uses a coupling argument.

“X is Bernoulli(p)” means P (X = 1) = p, P (X = 0) = 1− p.

Theorem 6.7 (Le Cam’s Theorem). Suppose (Xr, 1 ≤ r ≤ n) are independent Bernoulli(pr). Write
S =

∑n
r=1Xr, λ =

∑n
r=1 pr. Then ‖dist(S)− Poisson(λ)‖ ≤

∑n
r=1 p

2
r.
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Proof. Given p (small), we want (X,Y ), X
d
= Bernoulli(p), Y

d
= Poisson(p), and P (X 6= Y ) is small.

Define

P (X = 0, Y = 0) = 1− p,

P (X = 1, Y = y) =
e−ppy

y!
, y ≥ 1,

P (X = 1, Y = 0) = e−p − (1− p).

(Check that this works.)

P (Y 6= X) = e−p − (1− p) + P (Y ≥ 2)

= e−p − (1− p) + (1− e−p − pe−p)
= p(1− e−p) ≤ p2

For each r, construct the coupled pair (X̂r, Ŷr) for p = pr. Let the pairs be independent as r varies.∥∥∥∥∥dist

(
n∑
r=1

X̂r

)
− dist

(
n∑
r=1

Ŷr

)∥∥∥∥∥ ≤ P
(

n∑
i=1

X̂i 6=
n∑
i=1

Ŷi

)
≤

n∑
i=1

P (X̂i 6= Ŷi) ≤
n∑
i=1

p2
r

Then, dist(
∑n
r=1 X̂r) has the same distribution as S and dist(

∑n
r=1 Ŷr) = Poisson(

∑
pr = λ).
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7.1 Method of Moments

Say that dist(X) is determined by its moments if E|X|k <∞ ∀k and for all Y , if EY k = EXk ∀k, then

Y
d
= X.

Lemma 7.1 (Method of Moments). To prove Xn
d−→ X, it is sufficient to prove

(i) X is determined by its moments,

(ii) EXk
n → EXk as n→∞, for each k ≥ 1.

Proof. EX2
n is bounded, so (Xn, n ≥ 1) is tight. If Xjn

d−→ some Y , then EY k = EXk implies that

Y
d
= X. By the old “subsequence trick” lemma, Xn

d−→ X.

Not all distributions are determined by moments.

Theorem 7.2 (Durrett Theorem 3.3.11). If

lim sup
k→∞,
k even

(EXk)1/k

k
<∞, (7.1)

then dist(X) is determined by its moments.

Consider X
d
= Normal(0, 1).

EX2m =
(2m)!

2mm!

Also (n! )1/n ∼ n/e as n→∞. Set k = 2m.

lim sup
2m/e

21/2(m/e)1/22m
∼ m−1/2 → 0.

So, (7.1) holds for Normal(0, 1).

7.2 Application to Poisson Limits

It is easy to check (7.1).

28
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Notation. x(x− 1)(x− 2) · · · (x− k + 1) = [x]k. [x]1 = x, [x]2 = x(x− 1), etc.

For X ≥ 0, integer-valued,

E[X]k = E

[
X!

(X − k)!
1(X≥k)

]
.

For X
d
= Poisson(λ),

E[X]k =

∞∑
m=k

m!

(m− k)!

e−λλm

m!
=︸︷︷︸

m=k+i

e−λ
∞∑
i=0

λi

i!
λk

= λk.

xk can be written as a linear combination of [x]1, [x]2, . . . , [x]k.

Corollary 7.3 (Method of Moments Adapted to Poisson). For positive integer-valued Xn, to prove

Xn
d−→ Poisson(λ), it is enough to prove E[Xn]k → λk as n→∞, for all k.

Consider a counting RV X =
∑
i 1(Ai) for events Ai. [X]k =

∑
(i1,...,ik) 1Ai1 1Ai2 · · · 1Aik over ordered distinct

(i1, . . . , ik). Then, E[X]k =
∑

(i1,...,ik) P (Ai1 ∩Ai2 ∩ · · · ∩Aik).

Example 7.4. Put M balls at random (uniformly, independently) into N boxes. Let X = XM,N be

the number of empty boxes,
∑N
i=1Ai, where Ai is the event “box i is empty”.

E[X]k = [N ]kP (A1 ∩A2 ∩ · · · ∩Ak) = [N ]k

(
1− k

M

)M
.

Consider N,M → ∞ in some way, and we want to prove XN,M
d−→ Poisson(e−c). We must prove

E[X]k → e−ck. Asymptotically, we want

Nk exp

(
−kM

N

)
→ e−ck.

This is true, provided M = o(N2). Hence, we want to show N exp(−M/N)→ e−c, so we want to show
logN −M/N → −c. Rearranging,

M −N logN

N
→ c. (7.2)

Define M = MN by (7.2) and check that the argument works.

7.2.1 Coupon Collector Problem

Put balls uniformly independently into N boxes. Let LN be the number of balls until there are no empty
boxes. P (LN ≤M) = P (XN,M = 0) because they are the same events. Under relation (7.2), the probability

goes to exp(−e−c) because XN,M
d−→ Poisson(e−c). Then, P (LN ≤ N logN + cN)→ exp(−e−c), so

P

(
LN −N logN

N
≤ c
)
→ exp(−e−c),

that is,

LN −N logN

N

d−→ ξ,

where ξ has distribution function P (ξ ≤ c) = exp(−e−c) for −∞ < c < ∞. This is known as the Gumbel
distribution.
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7.3 Weak Convergence in Metric Spaces

Recall the definition of a complete, separable metric space (S, d). As an example, take Rk, with

d(x, y) = |x− y| =
√∑

i

(xi − yi)2,

for x = (x1, . . . , xk).

On Rk, we have a partial order x ≤ y ⇐⇒ xi ≤ yi, 1 ≤ i ≤ k. We can define a distribution function for
Rk-valued X = (X1, . . . , Xk).

F (x) = P (X ≤ x) = P (Xi ≤ xi, all 1 ≤ i ≤ k)

However, this is less useful than in one dimension.

Theorem 7.5 (Portmanteau Theorem). On (S, d), let µn, 1 ≤ n ≤ ∞ be PMs on (S, d). The following
are equivalent, and define weak convergence µn → µ∞.

(a)
∫
S
f dµn

n→∞−−−−→
∫
S
f dµ∞ for all bounded continuous f : S → R.

(b) lim supn µn(C) ≤ µ∞(C) for all closed C.

(c) lim infn µn(G) ≥ µ∞(G) for all open G.

(d) µn(A)→ µ∞(A) for all A such that µ∞(Ā \A0) = 0. (This is the analog of continuity points.)

(e) There exist S-valued RVs X̂n such that dist(X̂n) = µn, 1 ≤ n ≤ ∞, and X̂n → X̂∞ a.s.

The hard part is =⇒ (e), which is the Skorokhod Representation Theorem.

We will state analogs of R1 results.

Lemma 7.6 (Continuous Mapping Theorem). If Xn
d−→ X∞, then f(Xn)

d−→ f(X∞) for any f : S → S′

such that P (X∞ ∈ Df ) = 0, where Df = {x ∈ S : f is not continuous at x}.

Theorem 7.7. For Rk-valued (Xn), Xn
d−→ X∞ if and only if Fn(x)→ F∞(x) for all continuity points

x of F∞.

Definition 7.8. (Xn, 1 ≤ n < ∞) is tight if for all ε > 0, there exists a compact Kε ⊆ S such that
supn P (Xn /∈ Kε) ≤ ε.

In Rk, (Xn, 1 ≤ n <∞) is tight if and only if ∀ε > 0 ∃Bε <∞ such that supn P (|Xn| ≥ Bε) ≤ ε.

Theorem 7.9 (Prohorov’s Theorem). (a) If Xn
d−→ some X∞, then (Xn, 1 ≤ n <∞) is tight.

(b) If (Xn, 1 ≤ n <∞) is tight, then there exists a subsequence Xnj
d−→ some X∞.

See the section in Billingsley on Convergence of PMs.
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8.1 Characteristic Functions in Rk

For t ∈ Rk, x ∈ Rk, t · x =
∑k
i=1 tixi.

X = (X1, . . . , Xk) is a Rk-valued RV. t ·X =
∑k
i=1 tiXi is a R1-valued RV.

The CF of X is a function φ(t) = E exp(it ·X) as a function from Rk to C.

The Uniqueness and Continuity Theorems are the same as in R1 (see the Billingsley textbook).

Theorem 8.1. Let X(n), n ≥ 1, be Rk-valued RVs. Suppose φX(n)(t) → some limit φ(t) ∀t ∈ Rk. If
either

(i) (X(n), n ≥ 1) is tight, or

(ii) φ is a CF,

then X(n) d−→ X, where X has CF φ.

Theorem 8.2 (Cramér-Wold Device). Let (X(n)) be Rk-valued RVs. Suppose t · X(n) d−→ some Wt

(convergence in R1) as n→∞, for all t ∈ Rk. If either

(i) (X(n), n ≥ 1) is tight, or

(ii) ∃X such that t ·X d
= Wt ∀t ∈ Rk.

Then, X(n) d−→ X, where t ·X d
= Wt ∀t.

Proof.

φX(n)(t) = E exp(it ·X(n))→ E exp(iWt)
def
= φ(t)

Under (i), 8.1 implies that X(n) d−→ some X. We know that t ·X(n) d−→Wt. By the Continuous Mapping

Theorem, t ·X d
= Wt.

Under (ii), φ(t) = E exp(it ·X), and so is a CF. Apply (ii) of 8.1.

31
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Corollary 8.3. To show X(n) d−→ X in Rk, it is enough to show E
∏k
j=1 fj(X

(n)
j )→ E

∏k
j=1 fj(Xj) for

all bounded, continuous fj : R→ R.

Proof. This extends to fj : R→ C. However, x 7→ eit·x ≡
∏n
j=1 e

itjxj is of this multiplicative form. So,

we have E exp(it ·X(n))→ E exp(it ·X) ∀t ∈ Rk.

8.2 Central Limit Theorem in Rk

Theorem 8.4 (IID CLT in Rk). Consider X, Rk-valued, EX = 0. Let E[XjX`] = Γj,` < ∞ (Γ is
the covariance matrix). Let X(n) be IID copies of X, S(n) =

∑n
i=1X

(i), Rk-valued, ES(n) = 0. Then

n−1/2S(n) d−→ Y , where Y has CF

φY (t) = exp

−1

2

∑
j

∑
`

tit`Γj,`

 = exp

(
−1

2
t>Γt

)
. (8.1)

Proof.

E
∣∣∣S(n)

∣∣∣2 =

k∑
j=1

E
∣∣∣S(n)
j

∣∣∣2 = n

n∑
j=1

E|Xj |2 = nE|X|2

E
∣∣n−1/2S(n)

∣∣2 = E|X|2, so (n−1/2S(n), n ≥ 1) is tight in Rk. To apply Cramér-Wold 8.2, we need to

show t · (n−1/2S(n))
d−→ some Wt.

n−1/2
n∑
i=1

t ·X(i) d−→ Normal(0, E(t ·X)2)

= Normal(0, t>Γt)

= Wt,

by the 1-dimensional CLT, since

E(t ·X)2 = E

 k∑
j=1

tjXj

( k∑
`=1

t`X`

) =
∑
j

∑
`

tjt`Γj,` = t>Γt,

and

E exp(iWt) = exp

(
−1

2
t>Γt

)
.

Definition 8.5. A Rk-valued Y has Normal(0,Γ) distribution if its CF is (8.1).

Let A be an arbitrary non-random k×k matrix. Let Z = (Z1, Z2, . . . , Zk) have IID Normal(0, 1) components.
Consider Y = AZ, Yi =

∑
j Ai,jZj .

t · Y =
∑
i

tiYi =
∑
i

∑
j

tiAi,jZj

E(t · Y )2 = E

∑
i

∑
j

tiAi,jZj

(∑
`

∑
m

t`A`,mZm

)
=
∑
j

∑
i

∑
`

tiAi,jA`,jt`
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= t>AA>t

This says Y has Normal(0, AA>) distribution.

Check : t · Y is Normal.

Proposition 8.6. For a k × k matrix Γ, the following are equivalent:

1. Γ = AA> for some A.

2. The Normal(0,Γ) distribution exists, and can be constructed as AZ for Z = (Z1, . . . , Zk) IID
Normal(0, 1) and for A as in 1.

3. Γ is the covariance matrix of some X with EX = 0.

4. Γ is symmetric and non-negative definite: t>Γt ≥ 0 ∀t.

Proof. 1 =⇒ 2: We already proved this.

2 =⇒ 3: Specialization.

3 =⇒ 4: t>Γt is var(t ·X).

4 =⇒ 1 is matrix theory.

Γ = U>DU

= U>D1/2D1/2U

= AA>

for U orthonormal, D diagonal, D ≥ 0.

The CLT 8.4 gives 3 =⇒ 2.

8.3 Weak Convergence in Rk

Example 8.7 (Artificial Example). Consider a probability measure on the unit square which is uniform
on parallel diagonal lines. U is uniform on [0, 1], Xn = U ,

Yn = nU − bnUc = decimal part of nU

= nU mod 1.

As n→∞, (Xn, Yn)
d−→ (U, Û), with Û uniform of [0, 1], independent of U , which means that

(Xn, Yn)
d−→ uniform on square [0, 1]2.

Simple Facts. For R-valued Xs and Y s, a statement like

(Xn, Yn)
d−→ (X,Y ) (8.2)

is a statement about weak convergence on R2. Consider

Xn
d−→ X and Yn

d−→ Y. (8.3)

(8.2) =⇒ (8.3):
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Continuous Mapping Theorem. If (Xn, Yn)
d−→ (X,Y ), then g(Xn, Yn)

d−→ g(X,Y ) for continuous g.

(x, y) 7→ x is continuous.

Not conversely!

So, (Xn, Yn)
d−→ (X,Y ) implies Xn + Yn

d−→ X + Y , Xn/Yn
d−→ X/Y provided P (Y = 0) = 0.

Lemma 8.8. Suppose Xn
d−→ X and Yn

d−→ Y . If either

(i) P (Y = y0) = 1 for some y0, or

(ii) Xn and Yn are independent (each n),

then (Xn, Yn)
d−→ (X,Y ), where X and Y are independent.

Example 8.9 (Artificial Example). ID and pairwise independence are not enough for the CLT.

19 = 10011 in binary

n =

∞∑
i=1

bi(n)2i−1

Take ξ0, ξ1, ξ2, . . . , IID, P (ξ = 1) = 1/2 = P (ξ = −1). Define Xn = ξ0
∏
i:bi(n)=1 ξi, n ≥ 0. Xn takes

values {±1}. Check that the (Xn) are pairwise independent.

S =

2j−1∑
n=0

Xn = ξ0(1 + ξ1)(1 + ξ2) · · · (1 + ξj)

ES = 0, var(S) = 2j . Then, P (S = 2j) = P (S = −2j) = (1/2)2−j , and S = 0 otherwise. 2−j/2S does
not converge to Normal(0, 1).
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9.1 Markov Chains: Big Picture

state space S discrete time continuous time
finite very similar very similar

countable our focus similar
general: measure theory (∗) doesn’t exist

general: topology (∗) SDE (starting from BM)
semigroup setting

We will do a little of the sections marked (∗).

9.2 Measure Theory Background

“X and Y are independent” means “σ(X) and σ(Y ) are independent”.

Definition 9.1. X and Y are conditionally independent (CI) given G means

E[h(X)g(Y ) | G] = E[h(X) | G]E[g(Y ) | G] ∀ bounded, measurable g, h.

This is equivalent to

E[g(Y ) | G, X] = E[g(Y ) | G] ∀ bounded, measurable g. (9.1)

Idea: Given G, knowing also X gives no extra information about Y .

Easy Fact. If X and Y are CI given G, if V is G-measurable, then X and (Y, V ) are CI given G.

Recall. µ is a PM on S1 × S2. µ1 is the marginal PM on S1. Q is a kernel Q(s1, B) from S1 → S2. There is
a one-to-one correspondence µ↔ (µ1, Q).

Lemma 9.2 (The Splice Lemma). Given spaces S1, S2, S3 (Borel spaces), given a PM µ1,2 on S1×S2

and a PM µ2,3 on S2 × S3 such that their marginals on S2 are identical, then there exists a unique PM
µ on S1 × S2 × S3 such that, for µ = dist(X1, X2, X3),

• dist(X1, X2) = µ1,2 and dist(X2, X3) = µ2,3, and

• X1 and X2 are CI given X2.

35
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Proof. Consider (S1 × S2)× S3. Specify µ by

• the marginal on S1 × S2 is µ1,2,

• the kernel Q from S1 × S2 to S3 is Q((s1, s2), B) = Q2,3(s2, B), where Q2,3 is the kernel S2 → S3

associated with µ2,3.

This specifies µ. Then,

E[h(X3) | (X1, X2)] =

∫
h(x)Q((X1, X2),dx) =

∫
h(x)Q2,3(X2,dx)

= E[h(X3) |X2].

We have checked (9.1), which implies CI. The calculation also says that dist(X2, X3) = µ2,3.

Exercise: Prove uniqueness.

9.3 Existence of General Markov Chains (Borel Spaces)

Theorem 9.3 (Existence of General Markov Chains (Borel Spaces)). Given Borel S0, S1, S2, . . . , given
a PM µ0 on S0, given kernels Qn from Sn to Sn+1 (each n ≥ 0), there exists (X0, X1, X2, . . . ), unique
in distribution, such that

(a) dist(X0) = µ0,

(b) Qn is the conditional probability kernel for Xn+1 given Xn,

(c) Xn+1 and (X0, X1, . . . , Xn−1) are CI given Xn (all n ≥ 1),

(d) (Xn, Xn+1, . . . ) and Fn are CI given Xn.

Proof. Suppose (induction) we have constructed (X0, X1, . . . , Xn). Apply the Splice Lemma 9.2 to
(X0, X1, . . . , Xn−1) and Xn and Xn+1. We have a joint distribution for (X0, X1, . . . , Xn−1) and Xn.
The joint distribution of Xn and Xn+1 is specified by dist(Xn) and the kernel Qn. The Splice Lemma
implies the existence of dist(X0, X1, . . . , Xn, Xn+1) with the CI property. Apply the Kolmogorov Ex-
tension Theorem to get dist(X0, X1, X2, . . . ).

(c) gives the “one-step ahead”property, but we want the analog for the entire future.

Write Fn = σ(X0, X1, . . . , Xn). (c) and the “Easy Fact” imply

(c’) Fn and (Xn, Xn+1) are CI given Xn.

Claim (d): By MT, it is enough to prove, for each m,

(d’) (Xn, Xn+1, . . . , Xn+m) and Fn are CI given Xn, for all n.

Use induction on m. The statement is true for m = 1 by (c’). We will prove the statement for m = 2.
The same argument (exercise) gives the inductive step m→ m+ 1.

Apply (c’) to n+ 1.

E[g(Xn+1, Xn+2) | Fn+1, Xn+1] = E[g(Xn+1, Xn+2) |Xn+1]

= h(Xn+1), say.
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Condition on Fn.

E[g(Xn+1, Xn+2) | Fn] = E[h(Xn+1) | Fn] = E[h(Xn+1) |Xn]

using the m = 1 case of CI. Condition on Xn.

E[g(Xn+1, Xn+2) |Xn] = E[h(Xn+1) |Xn],

so (Xn+1, Xn+2) and Fn are CI given Xn. This is (d’) for m = 2.

In practice, we usually consider time-homogeneous chains: Sn = S, Qn = Q.

(Idea). Given Xn0
= x0, the future process (Xn0+n, n ≥ 0) has the same distribution as the process

(x0 = X0, X1, X2, . . . ).

Formula. For bounded, measurable h : S∞ → R,

E[h(Xn0 , Xn0+1, . . . ) | Fn0 ] = g(Xn0),

where g(x)
def
= Eh(X̂0, X̂1, . . . ), where (X̂n, n ≥ 0) is the chain with X0 = x.

9.4 Elementary Examples

Recall the following elementary examples for S countable.

The kernel is specified by transition probabilities pi,j ≡ p(i, j) = P(X1 = j |X0 = i) which form a transition
matrix P = (pi,j : i, j ∈ S).

Example 9.4 (Random Walk on Zd). Given IID ξi, i ≥ 1, Zd-valued, Xn =
∑n
t=1 ξt. Then, (Xn) is

Markov, p(i, j) = P(ξ = j − i). Here, S = Zd.

Example 9.5 (Renewal Chain). S = Z+ = {0, 1, 2, . . . }. Take (ξi, i ≥ 1) to be IID, P(ξ ≥ 1) = 1,
Sn =

∑n
t=1 ξt. Define Xn = min{n− Sm : Sm ≤ n}. This is Markov on Z+. Then,

p(i, i+ 1) = P(ξ > i+ 1 | ξ > i),

p(i, 0) = P(ξ = i+ 1 | ξ > i).

Example 9.6 (Galton-Watson Branching Process). Given a PM µ on {0, 1, 2, . . . }, X0 = 1 (1 individual
in generation 0). In each generation, each individual has a random (dist = µ) number of offspring in the
next generation. Xn is the population in generation n. This is Markov. p(i, j) = P(ξ1 +ξ2 + · · ·+ξi = j)
for IID(µ) RVs (ξi).

S is infinite in 9.4 to 9.6.

Example 9.7 (Ehrenfest Urn Model). There are B balls and 2 boxes. Pick a random ball and move it
to the other box. Xn is the number of balls in the left box.

p(i, i− 1) =
i

B
,

p(i, i+ 1) =
B − i
B

.
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10.1 Markov Chains: Some Classical Methods

We have a countable S = {i, j, k, . . . } and a transition matrix P = (pi,j)i,j∈S satisfying pi,j ≥ 0 and∑
j pi,j = 1. The Markov chain (X0, X1, X2, . . . ) has

P(Xn+1 = j |Xn = i,Xn−1 = in−1, . . . , X0 = i0) = pi,j .

We write

Pi(·) = P(· |X0 = i),

Ei[·] = E[· |X0 = i].

Write µn = dist(Xn). µn can be viewed as a vector µn = (µn(i), i ∈ S), where µn(i) = P(Xn = i). Then,

µn+1(j) =
∑
i

µn(i)pi,j .

In matrix form, we have the forwards equation µn+1 = µnP, a vector-matrix product. Then,

µ1 = µ0P,

µ2 = µ1P = µ0P
2,

...

so µn = µ0P
n, where Pn = PP · · ·P is matrix multiplication. We obtained these equations by conditioning

on Xn.

Fix a function f : S → R. Consider νn(i) = Eif(Xn). Condition on X1.

νn+1(i) = Eif(Xn+1) =
∑
j

pi,j Ej [f(Xn+1) |����X0 = i,X1 = j]︸ ︷︷ ︸
=Ejf(Xn)

=
∑
j

pi,jνj(j),

by the Markov property. Write νn(i) = Eif(Xn). The backwards equation is νn+1 = Pνn, so

νn = Pnν0.

We see that (Pn)i,j = P(Xn = j |X0 = i).

38
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The analog of (pi,j) on general S is the kerenel Q = Q(x,A), which defines two maps.

For µ ∈P(S), we have a map µ 7→ µ̂, where µ̂(·) =
∫
µ(dx)Q(x, ·). Here, µ 7→ µQ.

For a function f : S → R, we have a map f 7→ f̂ , where f̂(x) =
∫
Q(x, dy)f(y). Here, f 7→ Qf .

Many questions about finite-state MCs can be answered in terms of the matrix P.

10.1.1 Hitting Times

For A ⊆ S, write

τA = min{n ≥ 0 : Xn ∈ A},
TA = min{n ≥ 1 : Xn ∈ A}.

In either case, the hitting time could equal ∞ if Xn /∈ A ∀n. Consider hA(i) = Pi(TA <∞).

First way to study hA: Define the matrix Q, the “P-chain killed after entering A”.

qi,j =

{
pi,j , i /∈ A,
0, i ∈ A.

Easy : Pi(τA = n,XτA = j) = (Qn)i,j for j ∈ A.

[(I−Q)−1]i,j =

[ ∞∑
n=0

Qn

]
i,j

= Pi(τA <∞, XτA = j), j ∈ A

This is the matrix form of the identity

∞∑
n=0

xn =
1

1− x
.

From this, we obtain

hA = (I−Q)−11A.

Second way to consider hA:

Proposition 10.1. (a) h = hA satisfies

(i) h(i) =
∑
j pi,jh(j) for i ∈ A,

(ii) h(i) = 1 for i ∈ A,

(iii) h ≥ 0.

(b) If h satisifes (i) to (iii), then hA ≤ h, so hA is the minimal solution of (i) to (iii).

Proof. (a) Condition on the first step for (i).

(b) Define PA and (XA
n , n ≥ 0), the “P-chain stopped on A”, by

pAi,j = pi,j , i /∈ A, pi,j = δi,j , i ∈ A.

Given h which satisfies (i) to (iii), (i) and (ii) imply h = PAh and h ≥ 1A. Therefore,

h = PAh ≥ PA1A.
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Repeat n times to obtain h ≥ (PA)n1A. Then,

h(i) = ((PA)n1A)i = Pi(XA
n ∈ A) = Pi(τA ≤ n),

since

XA
n =

{
Xn, if τA > n,

XτA , if τA ≤ n.

Let n→∞. h(i) ≥ Pi(τA <∞) ≡ hA(i).

10.1.2 Generating Functions

Let Ty = min{n ≥ 0 : Xn = y}, pnx,y = Px(Xn = y) = (Pn)i,j . The “Strong Markov Property” says

Px(Xn = y) =

n∑
m=0

Px(Ty = m)Py(Xn−m = y),

pnx,y =

∞∑
m=0

Px(Ty = m)pn−my,y ,

φx,y(z) =

∞∑
n=0

pnx,yz
n =

∑∑
0≤m≤n<∞

Px(Ty = m)zmpn−my,y zn−m, n = m+ i,

=

∞∑
m=0

Px(Ty = m)zm︸ ︷︷ ︸
def
=ψx,y(z)

∞∑
i=0

piy,yzi︸ ︷︷ ︸
=φy,y(z)

.

Now, we have a formula for the GF of (Ty).

ψx,y(z) =
φx,y(z)

φy,y(z)
.

Consider the matrix Φ(z) with entries φx,y(z).

Φ(z) =

∞∑
n=0

Pnzn = (I−Pz)−1

This, in principle, is a formula for the distribution of Ty in terms of P.

10.2 More Examples of MCs

Example 10.2 (Random Walk on an Undirected Finite Graph G = (V,E)). The state space is V .
v ∈ V has some degree d(v), the number of edges at v. Suppose d(v) ≥ 1. Then,

pi,j =
1

d(i)
, if (i, j) ∈ E.

Example 10.3 (Card-Shuffling “Random Transposition” Model). Consider a n card deck. S is the
set of n! orderings. Pick two random cards and interchange them; this is one step of the chain. For
configurations x and y,

px,y =
2

n2
, if it is possible to reach x→ y by a transposition,



LECTURE 10. FEBRUARY 16 41

px,x =
1

n
.
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11.1 Strong Markov Property

Let (Xn, n = 0, 1, 2, . . . ) be a MC on a countable S = {x, y, z, . . . }. Let Fn = σ(X0, X1, . . . , Xn).

Markov property: for bounded, measurable f : S∞ → R, write g(x) = Exf(X0, X1, X2, . . . ). Then,
Eµ[f(Xn, Xn+1, Xn+2, . . . ) | Fn] = g(Xn).

Recall : A stopping time T : Ω→ {0, 1, 2, . . . } ∪ {∞} is such that {T ≤ n} ∈ Fn, for all 0 ≤ n <∞. This is
equivalent to {T = n} ∈ Fn, for all 0 ≤ n <∞.

Theorem 11.1 (Strong Markov Property). Write g(x) = Exf(X0, X1, X2, . . . ), where f : S∞ → R is
bounded and measurable. Then, Eµ[f(XT , XT+1, . . . ) | FT ] = g(XT ) a.s. on {T <∞}.

Proof. XT 1(T<∞) is FT -measurable. We need to check: for B ∈ FT ,

Eµ[f(XT , XT+1, . . . )1B1(T<∞)] = Eµ[g(XT )1B1(T<∞)].

Break over n = 0, 1, 2, . . . . 1B1(T<∞) =
∑∞
n=0 1B∩{T=n} =

∑∞
n=0 1An , where An = B ∩ {T = n} ∈ Fn

by the definition of FT . So, it is enough to show

Eµ[f(XT , XT+1, . . . )1An ]Eµ[g(XT )1An ],

which is

Eµ[f(Xn, Xn+1, . . . )1An ] = Eµ[g(Xn)1An ] on An (T = n).

This is the Markov property.

Special Case. Suppose T is such that XT = y (non-random y) on {T <∞}. Then,

Eµ[f(XT , XT+1, . . . ) | FT ] = g(y) on {T <∞}, ∀f.

This implies f(XT , XT+1, . . . ) and FT are independent on {T <∞} and

dist((XT , XT+1, . . . ) | FT ) = disty(X0, X1, . . . ).

11.2 Recurrence Times

Consider T+
y

def
= min{n ≥ 1 : Xn = y} and ρx,y = Px(T+

y <∞).

42
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Lemma 11.2. For distinct x, y, z, ρx,z ≥ ρx,yρy,z.

Proof.

ρx,z ≥ Px(visit z sometime after T+
y )

= ρx,yPx(visit z sometime after T+
y | T+

y <∞).

We want to say the second factor is ρy,z by the SMP. Take f(x0, x1, x2, . . . ) = 1(xi=z for some i).

E[f(XT+
y
, XT+

y +1, . . . ) | FT+
y

] = g(y) = Eyf(X0, X1, . . . ) = ρy,z.

Take the expectation over 1(T<∞).

P(visit sometime after T+
y , and T+

y <∞) = g(y)P(T+
y <∞) = ρy,zP(T+

y <∞).

Define T ky to be the time of the kth visit to y, T 0
y = 0, and T k+1

y = min{n : n > T ky , Xn = y}. Then,
ρx,y = Px(T 1

y <∞).

Theorem 11.3 (Theorem 6.4.1).

Px(T ky <∞) = ρx,yρ
k−1
y,y , k ≥ 1.

Proof. It is true for k = 1. By induction, suppose it is true for k.

Px(T k+1
y <∞) = Px(T 1

y <∞, T k+1
y <∞) = Ex[1(T+

y <∞) P(T k+1
y <∞ | FT 1

y
)︸ ︷︷ ︸

∗

]

However,

∗ = Ex[f(XT 1
y
, XT 1

y+1, . . . ) | FT 1
y
] for f(x0, x1, . . . ) = 1(xi=y for at least k values of i)

=︸︷︷︸
SMP

g(y) = Eyf(X0, X1, . . . ) = Py(T ky <∞).

By induction, this is ρky,y. Hence,

Px(T k+1
y <∞) = ρky,yρx,y,

so the statement is true for k + 1.

Definition 11.4. A state y is recurrent if ρy,y = 1 and transient if ρy,y < 1.

Consider the number of visits to y,
∑∞
n=1 1(Xn=y) = N(y).

Lemma 11.5. If y is recurrent, then Py(N(y) = ∞) = 1, so EyN(y) = ∞. If y is transient, then
Py(N(y) ≥ k) = Py(T ky <∞) = ρky,y, for k = 0, 1, 2, . . . , and so

EyN(y) =
1

1− ρx,y
− 1 =

ρy,y
1− ρy,y

<∞.
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Proof. In either case, Py(N(y) ≥ k) = Py(T ky <∞) = ρky,y. Then,

Py(N(y) = k) = ρky,y − ρk+1
y,y = 0 if ρy,y = 1,

and
Py(N(y) <∞) = 0.

Note.

ExN(y) =

∞∑
n=1

Px(Xn = y) =

∞∑
n=1

p(n)
x,y.

Corollary 11.6.

y is recurrent ⇐⇒ EyN(y) =∞ ⇐⇒
∑
n

p(n)
y,y =∞.

Theorem 11.7 (Theorem 6.4.3). Suppose x is recurrent and ρx,y > 0. Then, y is recurrent and
ρy,x = 1. [So, ρx,y = 1 by switching x and y.]

Proof.

Px(N(x) <∞)︸ ︷︷ ︸
0, x recurrent

≥ Px(Ty <∞,never visit x after Ty)

=︸︷︷︸
SMP

ρx,y︸︷︷︸
>0, hypothesis

(1− ρy,x)︸ ︷︷ ︸
must be 0

,

so ρy,x = 1.

ρx,y > 0 =⇒ ∃K such that p
(K)
x,y > 0.

ρy,x > 0 =⇒ ∃L such that p
(L)
y,x > 0.

Then,

p(K+L+m)
y,y ≥ Py(XL = x,XL+m = x,XL+m+K = y)

=︸︷︷︸
Markov

p(L)
y,xp

(m)
x,x p

(K)
x,y .

Now, sum over m. ∑
m

p(m)
y,y︸ ︷︷ ︸

=∞

≥ p(L)
y,x︸︷︷︸
>0

p(K)
x,y︸︷︷︸
>0

∑
m

p(m)
x,x =∞,

since x is recurrent, so y is recurrent.

11.3 Elementary Graph Theory

Consider a directed graph on countable S, the set of vertices. Given P = (pi,j), put the edge i→ j if pi,j > 0.

We can define an equivalence relation R by

i R j ⇐⇒ i = j or ∃ directed path from i to j and from j to i.
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This partitions S into “strongly connected components” (SCC).

A SCC “C” is open if ∃i ∈ C, j /∈ C with i→ j (pi,j > 0), closed if not.

Corollary 11.8. In a SCC C, either all x ∈ C are recurrent or all x ∈ C are transient.

Proof. Suppose some x ∈ C is recurrent. Take any y ∈ C. Then, ρx,y > 0, so by 11.7, y is recurrent.

Example 11.9. Suppose S = {0, 1, 2, . . . } and suppose p0,0 = 1, pi,i+1 > 0, pi,i−1 > 0. There are two
SCCs, one open (and therefore transient) and one closed. So,

P(Xn = 0 ultimately) + P(Xn →∞ as n→∞) = 1,

since N(y) <∞ for each y ≥ 1.
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12.1 Classification of States

Let S be the state space, T+
x = min{n ≥ 1 : Xn = x}, ρx,y = Px(T+

y <∞), and N(x) =
∑∞
n=1 1(Xn=x).

x is recurrent
def
= ρx,x = 1 =⇒ Px(N(x) =∞) = 1

=⇒ ExN(x) =∞.

x is transient
def
= ρx,x < 1 =⇒ ExN(x) =

ρx,x
1− ρx,x

<∞.

It is aways the case that

ExN(y) =
ρx,y

1− ρy,y
.

Define the relation x ∼ y by x = y or (ρx,y > 0 and ρy,x > 0). The equivalence class C is a “SCC”. Define
C is open if ∃x ∈ C, y /∈ C, ρx,y > 0, and C is closed if not.

Fact. Given a SCC “C”, either x is transient for all x ∈ C or x is recurrent for all x ∈ C. Call C transient
or recurrent respectively.

Theorem. If x is recurrent and ρx,y > 0, then y is recurrent and ρy,x = 1.

Proposition 12.1. Let C be a SCC.

(a) If C is open, then C is transient (if C is recurrent, then C is closed).

(b) If C is closed and finite, then C is recurrent.

(c) If S is finite, then R = {recurrent states} is non-empty and Px(TR <∞) = 1 ∀x.

Proof. (a) follows from 11.7. If C is open, then ∃x ∈ C, y /∈ C ρx,y > 0. If x is recurrent, by the
Theorem, ρy,x > 0 implies x ∼ y, which implies y ∈ C, which is a contradiction.

46
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(b): Fix x ∈ C. For a chain started at x, since C is closed,∑
y∈C

1(Xn=y) = 1 ∀n,

Ex
∞∑
n=1

∑
y∈C

1(Xn=y) =∞,

Ex
∑
y∈C

N(y) =
∑
y∈C

ExN(y) =∞.

If C is finite, then ExN(y) =∞ for some y ∈ C, so y is recurrent, so C is recurrent.

(c): Fix x. Consider a transient y. Then, ExN(y) <∞, so

Px(N(y) <∞) = 1,

so Px(
∑
y transientN(y) <∞) = 1. However, TR ≤

∑
y transientN(y) + 1, so Px(TR <∞) = 1.

Note: At TR, we are at state XTR , which is some closed C, which implies that Xn ∈ C ∀n ≥ TR.

Definition 12.2. A chain is irreducible if ρx,y > 0 ∀x, y.

12.1 implies: if S is finite and irreducible, then the chain is recurrent. If S is infinite and irreducible, then
the chain may be recurrent or transient.

12.2 Birth-and-Death Chains

Let S = Z+ = {0, 1, 2, . . . }, p(i, i+ 1) = pi > 0, p(i, i− 1) = qi > 0 (for i ≥ 1), p(i, i) = ri = 1− pi − q1 ≥ 0.
Set q0 = 0.

Write τj = min{n ≥ 0 : Xn = j}.

Analysis. Fix m ≥ 1. Study f(i) = Pi(τm < τ0), 0 ≤ i ≤ m, f(0) = 0, f(m) = 1. Condition on the first step:
for 1 ≤ i ≤ m− 1, f(i) = pif(i+ 1) + qif(i− 1) + rif(i). Solve: pi(f(i+ 1)− f(i)) = qi(f(i)− f(i− 1)), or

f(i+ 1)− f(i) =
qi
pi

(f(i)− f(i− 1)),

f(i+ 1)− f(i) =

 i∏
j=1

qj
pj

 f(1),

f(x) = f(1)

x−1∑
i=0

i∏
j=1

qj
pj︸ ︷︷ ︸

φ(x)

.

We know 1 = f(m) = f(1)φ(m), so f(1) = 1/φ(m). Hence,

Pi(τm < τ0) =
φ(i)

φ(m)
, 0 ≤ i ≤ m.

Can we say

Pi(τm > τ0) = 1− φ(i)

φ(m)
?
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Make the chain absorbing at 0 and m. The states {1, . . . ,m− 1} are transient, so Pi(τ0 or τm <∞) = 1.

Is the chain recurrent or transient? recurrent ⇐⇒ ρ0,0 = 1 ⇐⇒ ρ1,0 = 1.

{τ0 <∞} =

∞⋃
m=1

{τ0 < τm},

P1(τ0 <∞) = lim
m→∞

P1(τ0 < τm) = lim
m↑∞

(
1− φ(1)

φ(m)

)
.

Thus,

recurrent ⇐⇒ φ(∞) ≡ lim
m↑∞

φ(m) =∞ ⇐⇒
∑
i

i∏
j=1

qj
pj

=∞.

For a simple RW, pi = p > 0, qi = q = 1− p. Then, the chain is recurrent if p ≥ 1/2, transient if p > 1/2.

More Delicate Case. Fix C, take

pi =
1

2
+
C

i
for large i,

qi =
1

2
− C

i
for large i.

Then,

qj
pj

=
1− 2C/j

1 + 2C/j
≈ exp

(
−4C

j

)
,

i∏
j=1

qj
pj
≈ exp(−4C · log i) ≈ i−4C .

Then, if C > 1/4, the chain is transient, and if C < 1/4, the chain is recurrent.

12.3 Invariant Measures

Setting. We have an irreducible P on a countable S.

Definition 12.3. A measure µ ≥ 0 on S is invariant if µP = µ, that is,
∑
i µ(i)pi,j = µ(j) ∀j.

Note: We may have µ(S) =∞. Ignore the trivial case µ ≡ 0.

If µ is invariant, then cµ is invariant, 0 < c <∞.

If invariant µ has µ(S) = 1, call it stationary.

If invariant µ has 0 < µ(S) <∞, then

µ̂(i) ≡ µ(i)

µ(S)

is stationary.
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Definition 12.4. A general process (Xn, n = 0, 1, 2, . . . ) is stationary if ∀n ≥ 1,

(Xn, Xn+1, . . . )
d
= (X0, X1, . . . ).

If (Xn, n ≥ 0) is a MC and dist(X0) is a stationary distribution, then the process (Xn, n ≥ 0) is stationary.

Aside. If µ is invariant, µ(S) = ∞, take (at time 0) independent Poisson(µ(i)) particles at i and run each
particle as an independent MC. This particle process is stationary.

µn = dist(Xn) always evolves as µn = µn−1P.

Two Special Settings. µ(S) ≤ ∞.

1. µ ≡ 1 is invariant ⇐⇒
∑
i pi,j = 1 ∀j ⇐⇒ doubly stochastic matrix.

2. If µ(x)p(x, y) = µ(y)p(y, x) ∀x, y, then µ is invariant (reversible case).

Proof.

(µP)y =
∑
x

µ(x)p(x, y) =
∑
x

µ(y)p(y, x) = µ(y).

Example 12.5 (Simple RW on Z = {. . . ,−1, 0, 1, . . . }).

p(x, x+ 1) = p,

p(x, x− 1) = q = 1− p.

What is an invariant µ?

P is doubly stochastic: µ(i) ≡ 1 is invariant.

µ(x) = (p/q)x is a reversible invariant measure.

For p 6= 1/2, the chain is transient and has 2 different σ-finite invariant measures.

Example 12.6 (Birth-Death Chain on Z+ = {0, 1, 2, . . . }).

p(i, i+ 1) = pi > 0,

p(i, i− 1) = qi = 1− pi > 0, i ≥ 1.

This has the reversible invariant measure

µ(i) =

i∏
j=1

pj−1

qj
.

Check:

µ(i)pi = µ(i+ 1)qi+1 ⇐⇒
µ(i+ 1)

µ(i)
=

pi
qi+1

.

This is the unique invariant measure (up to scaling). Looking at µ = µP at 0:

µ(0) = µ(0)p(0, 0) + µ(1)p(1, 0)

µ(1) = µ(0)p(0, 1) + µ(1)p(1, 1) + µ(2)p(2, 1).
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The first equation determines µ(1) in terms of µ(0), and the second equation determines µ(2) in terms
of µ(0), and so forth.
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13.1 Periodicity

Consider the directed graph associated with P on countable S.

For state x, d(x)
def
= greatest common divisor of {n : pnx,x > 0}.

Theorem 13.1 (Text, Exercise). Suppose that the Markov chain is irreducible.

(a) d(x) = d ≥ 1 for each x ∈ S.

The case d = 1 is aperiodic, and the case d ≥ 2 is periodic with period d.

(b) ∃n(x) <∞ such that pnx,x > 0 for all n ≥ n(x) with d | n.

(c) S can be partitioned into d “cyclic classes” C0, C1, . . . , Cd−1 such that if x ∈ Cu, Px(Xn ∈ Cv) is
1 if n = v − u modulo d, 0 if not.

(d) If the Markov chain is aperiodic, ∀(x, y) ∃n(x, y) such that pnx,y > 0 ∀n ≥ n(x, y).

(e) If the period is d ≥ 2, then Pd defines a MC on each Cu, which is irreducible on Cu.

(f) If ∃x with px,x > 0, then by (a), d = 1 and the chain is aperiodic.

13.2 Existence of Invariant Measures

If µ and ν are PMs on measurable S, the variation distance is ‖µ− ν‖ def
= supA |µ(A)− ν(A)|. If S is

countable, then

‖µ− ν‖ =
1

2

∑
i

|µ(i)− ν(i)|

and ‖µn − µ∞‖ → 0 ⇐⇒ µn(i)→ µ∞(i) ∀i ∈ S.

µP is dist(X1) when µ = dist(X0).

Lemma 13.2. For a MC with transition matrix P,

‖µP − νP‖ ≤ ‖µ− ν‖.

51
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Proof.

Left =
1

2

∑
i

∣∣∣∣∣∣
∑
j

(µ(j)− ν(j))pj,i

∣∣∣∣∣∣ ≤ 1

2

∑
i

∑
j

|µ(j)− ν(j)|pj,i

=
1

2

∑
j

|µ(j)− ν(j)| = ‖µ− ν‖,

since
∑
i pj,i ≡ 1.

Lemma 13.3. Let (Xn, 0 ≤ n < ∞) be the (µ0, P ) chain. Write µn = dist(Xn) = µ0P
n. If

‖µn − µ∞‖ → 0 for some PM µ∞, then µ∞ is a stationary distribution for P, µ∞ = µ∞P.

Proof.

‖µ∞P − µnP‖
13.2︷︸︸︷
≤ ‖µ∞ − µn‖ → 0 as n→∞

‖µ∞P − µn+1‖ → 0 as n→∞
‖µ∞ − µn+1‖ → 0 as n→∞

By the Triangle Inequality,

‖µ∞ − µ∞P‖ → 0 as n→∞
= 0.

So, the possible n→∞ limit distributions are exactly the stationary distributions.

Let Tx = T+
x = min{n ≥ 1 : Xn = x}. Fix state b. Define

µ(b, x) = Eb[number of visits to x before Tb] = Eb
∞∑
n=0

1(Xn=x,Tb>n),

which implies that µ(b, b) = 1. µ(b, ·) is a measure on S and EbTb = µ(b, S) ≤ ∞.

Proposition 13.4 (No Assumptions). Consider these equations for an unknown measure µ:

µ(y) =
∑
x

µ(x)p(x, y) ∀y 6= b, µ(b) = 1. (13.1)

Then, µ(b, ·) is the minimal solution of (13.1) and Pb(Tb <∞) =
∑
x µ(b, x)p(x, b) ∀x.

Proof. Let the matrix K be the “chain killed at Tb”. Kx,y = Px,y for y 6= b and Kx,y = 0 for y = b. Write
αn(y) = Pb(Xn = y, Tb > n). Check that αn+1 = αnK. α0(y) = δb(y) = 1(y=b). Therefore, αn = δbK

n.
By definition, µ(b, y) =

∑∞
n=0 αn(y), so µ(b, ·) =

∑∞
n=0 δbK

n. Rewrite (13.1) as µ = δb + µK. Hence,
µ(b, ·) satisfies (13.1).

Let µ be some solution of (13.1). Then, µ = δb + (δb + µK)K = δb + δbK + µK2. Inductively,
µ = µKm+1 +

∑m
n=0 δbK

n ≥
∑m
n=0 δbK

n ↑
∑∞
n=0 δbK

n = µ(b, ·), which implies µ ≥ µ(b, ·).
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Pb(Tb <∞) =

∞∑
n=0

Pb(Tb = n+ 1) =

∞∑
n=0

∑
y

Pb(Xn = y, Tb = n+ 1)

However, Pb(Xn = y, Tb = n + 1) = Pb(Tb > n,Xn = y, Tb = n + 1) = αn(y)p(y, b) by conditioning on
Fn, so:

=
∑
y

( ∞∑
n=0

αn(y)

)
p(y, b)

=
∑
y

µ(b, y)p(y, b).

Lemma 13.5. Suppose the Markov chain is irreducible. Suppose µ = µP, where 0 ≤ µ(x) ≤ ∞.

(a) If µ(b) = 0 for some b, then µ ≡ 0.

(b) If µ(b) =∞ for some b, then µ ≡ ∞.

Proof. Fix x. There exist n,m such that pnx,b > 0 and pmb,x > 0. µ = µPn implies that µ(b) ≥ µ(x)pnx,b,
so if µ(b) = 0, then µ(x) = 0. µ = µPm implies that µ(x) ≥ µ(b)pmb,x, which implies that if µ(b) = ∞,
then µ(x) =∞.

Theorem 13.6. Suppose the Markov chain is irreducible and recurrent. Then, there exists an invariant
µ which satisfies 0 < µ(x) <∞ ∀x ∈ S. This µ is unique up to scaling. Either

(i) µ(S) =∞ and ExTx =∞ ∀x (null-recurrent), or

(ii) µ(S) <∞ and ExTx <∞ ∀x (positive-recurrent).

Proof. Fix b. Define µ(·) = µ(b, ·), which satisfies (13.1). Then, µ(x) = (µP )(x) for x 6= b and
(µP )(b) = Pb(Tb < ∞) = 1 = µ(b), since the chain is recurrent. Therefore, µ = µP is invariant. Since
µ(b) = 1, 13.5 and the assumption that the chain is irreducible implies 0 < µ(x) <∞ ∀x.

Why is µ unique? Suppose µ̂ is invariant: rescale to make µ̂(b) = 1. By minimality in 13.4, µ̂ ≥ µ(b, ·).
Since they are both invariant, µ̂ − µ(b, ·) ≥ 0 is invariant and equals 0 at b. Then, 13.5 implies that
µ̂− µ(b, ·) ≡ 0, so µ̂ = µ(b, ·).

Consider some invariant µ. µ(x, ·) is a scaled version of µ, so µ(x, ·) = cxµ(·), 0 < cx <∞, by uniqueness.

ExTx =
∑
y

µ(x, y) = cxµ(S),

which implies that either (i) or (ii) occur.

Corollary 13.7. A finite-state irreducible chain is positive-recurrent.

Proof. Last class, we showed that the chain is recurrent, so an invariant µ exists, so

µ(S) =
∑
x∈S

µ(x) <∞.



LECTURE 13. FEBRUARY 28 54

Therefore, we are in case (ii).
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March 2

14.1 Stationary Measures

Consider P on countable S.

Proposition: Consider the equations

µ(y) =
∑
x

µ(x)p(x, y) ∀y 6= b, µ(b) = 1. (14.1)

Then, µ(b, ·) = Eb[number of visits to · before Tb] is the minimal solution to (14.1) and Pb(Tb < ∞) =∑
x µ(b, x)p(x, b).

µ(b, ·) is the “b-block occupation measure”.

Theorem: Suppose the Markov chain is irreducible and recurrent. Then, there exists an invariant µ, unique
up to scaling. Either

(i) µ(S) =∞ and ExTx =∞ ∀x (null-recurrent) or

(ii) µ(S) <∞ and ExTx <∞ ∀x (positive-recurrent).

In case (ii),

π(x) =
µ{x}
µ(S)

is a stationary distribution.

Theorem 14.1. Suppose the Markov chain is irreducible. Then, it is positive-recurrent if and only if a
stationary distribution π exists. If so, then

π(x) =
1

ExTx
.

Mystery. Starting by defining

π(x) =
1

ExTx

and showing π is stationary is not so easy.

55
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Proof. Suppose that a stationary distribution π exists. Fix b. Define

µ(j) =
π(j)

π(b)
.

µ is invariant, µ(b) = 1. “Minimality” in 13.4 implies that µ(b, y) ≤ µ(y) ∀y. Therefore,

EbTb =
∑
y

µ(b, y) ≤
∑
y

µ(y) =
1

π(b)
<∞,

so the chain is positive-recurrent.

Suppose that the chain is positive-recurrent. 13.6 implies that π exists.

Fix b. We know that µ(b, ·) is invariant, so

π(x) =
µ(b, x)

µ(b, S)

is the unique stationary distribution. This is true for x = b, so

π(b) =
µ(b, b)

µ(b, S)
=

1

EbTb
.

Warning. Suppose S is infinite, the chain is irreducible, and an invariant µ exists with µ(S) =∞. This does
not imply that the chain is recurrent. Also, this does not imply that the invariant measure is unique up to
scaling.

Example 14.2 (SRW on Z).

p(i, i+ 1) = p, p(i, i− 1) = q = 1− p.

For p 6= 1/2, there are two invariant measures:

µ(i) ≡ 1, µ(i) =

(
p

q

)i
.

Also, the chain is transient.

For p = 1/2, the chain is recurrent and there is a unique (up to scaling) invariant µ(i) ≡ 1.

Example 14.3 (Reflecting RW on Z+).

p(i, i+ 1) = p, i ≥ 1,

p(i, i− 1) = 1− p, i ≥ 1,

p(0, 1) = 1.

If p > 1/2, the chain is transient.

If p = 1/2, the chain is null-recurrent.

If p < 1/2, the chain is positive-recurrent.
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14.2 Convergence to the Stationary Distribution

Know. If ∃µ0 such that Pµ0(Xn = j)
n→∞−−−−→ π(j) ∀j for some probability distribution π, then π is stationary.

Theorem 14.4 (The MC Convergence Theorem). Suppose the chain is irreducible and positive-recurrent,

so the stationary π exists. If the chain is also aperiodic, then Pµ0(Xn = j)
n→∞−−−−→ π(j) ∀j ∀µ0.

Proof. Fix µ0. We shall construct a Markov chain on S × S, call it ((Xn, Yn), n = 0, 1, . . . ), such that

(i) (Xn, n ≥ 0) is the (µ0,P)-chain,

(ii) (Yn, n ≥ 0) is the stationary (π,P)-chain,

(iii) Xn = Yn ∀n ≥ T , where T <∞ a.s.

This will prove the theorem because

|Pµ0
(Xn = j)− π(j)| = |Pµ0

(Xn = j)− P(Yn = j)| ≤ P(Xn 6= Yn) ≤ P(T > n)→ 0 as n→∞.

This is the MC coupling method.

The transition matrix on S × S is

(x1, y1)→ (x2, y2) with probability p(x1, x2)p(y1, y2), x1 6= y1,

(x, x)→ (y, y) with probability p(x, y).

The initial distribution is µ0 ⊗ π. Two particles initially move as independent MCs, but after meeting,
they stick together and move as a single MC.

Fussy argument: why is (Xn, n ≥ 0) Markov?

P(Xn+1 = xn+1 |Xn = xn, Yn = yn,past of both proceses) = P(Xn+1 = xn+1 |Xn = xn, Yn = yn)

=︸︷︷︸
form of TM

P(Xn+1 = xn+1 |Xn = xn).

Condition on the past of Xn.

P(Xn+1 = xn+1 |Xn = xn,past of X) = P(Xn+1 = xn+1 |Xn = xn),

which is the Markov property for (Xn).

Define Tmeet = min{n : Xn = Yn}. Then, Xn = Yn ∀n ≥ Tmeet. It is enough to prove Tmeet < ∞ a.s.
Consider ((X̂n, Ŷn), n ≥ 0) with (X̂n) the (µ0,P)-chain, (Ŷn) the (π,P)-chain, independent. This is a
product chain. The distribution of Tmeet is the same.

Let Q̂ be the transition matrix for the product chain. P is aperiodic, so

Q̂(n)((x0, y0), (xn, yn)) = p(n)
x0,xnp

(n)
y0,yn > 0

for large n by aperiodicity of P. Hence, Q̂ is irreducible.

It is easy to see that π ⊗ π is invariant and stationary for Q̂. 14.1 implies that the product chain Q̂ is
positive-recurrent. Take state (b, b). T(b,b) <∞ a.s. in the product chain, so Tmeet ≤ T(b,b) <∞ a.s. in
the product chain, so also in the coupled chain.
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Note for later : In order to show

|Pµ(Xn = x)− Pν(Xn = x)| → 0 ∀x as n→∞,

it is enough to show that the product chain is irreducible and recurrent.

Proposition 14.5. Suppose that the chain is irreducible and not positive-recurrent. Then,

Pµ0
(Xn = j)

n→∞−−−−→ 0 ∀j ∀µ0.

Proof. Reduce to the aperiodic case. First, suppose that the chain is transient.∑
n

Pµ(Xn = j) = EµN(j) ≤ 1 + EjN(j) = 1 +
1

1− ρj,j
<∞,

by transience. Therefore, Pµ(Xn = j)→ 0.

So, suppose that the chain is null-recurrent. Consider the product chain. Suppose that the product
chain is transient. As above, Pµ⊗µ(Xn = j, Yn = j) → 0, so (Pµ(Xn = j))2 → 0. Suppose that Q̂ is
recurrent. If the result is false, then ∃µ0 ∃b ∃subsequence (jn) such that

Pµ(Xjn = b)→ αb > 0.

By compactness, there exists a subsequence kn such that

Pµ(Xkn = y)→ some αy ≥ 0 ∀y. (14.2)

By the coupling argument, (14.2) holds for all µ. [See notes.] This implies that (αy) is a stationary
distribution, so the chain is positive-recurrent.
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15.1 Coupling & Mixing Times

For PMs µ, ν on countable S,

‖µ− ν‖ =
1

2

∑
s

|µ(s)− ν(s)|

Lemma︷︸︸︷
= inf{P(X 6= Y ) : over joint distributions (X,Y ) with dist(X) = µ,dist(Y ) = ν}.

Consider an irreducible, positive-recurrent P with stationary distribution π. Suppose that we construct
((Xn, Yn), n ≥ 0) such that:

• (Xn) is the (µ0,P)-chain. Write µn = dist(Xn).

• (Yn) is the (π,P)-chain.

• Xn = Yn for all n ≥ T (for some T ).

Then, ‖µn − π‖ ≤ P(Xn 6= Yn) ≤ P(T > n). This is the MC coupling inequality.

Note: We did not assume that (Xn, Yn) is Markov or T is a stopping time, but in almost every example,
these hold.

15.1.1 Card Shuffling by Random Transposition

Example 15.1 (“Card Shuffling by Random Transposition”). Consider a deck of C cards. Rule: pick
two cards uniformly, independently (they may be the same). Interchange them.

This is a MC on the state space of all C! decks. The P is symmetric, so π is uniform. P is aperiodic
because px,x ≥ 0. P is irreducible by group theory. So (for arbitrary µ0), the convergence theorem
implies ‖µn − π‖ → 0 as n→∞ (C is fixed). How large must n be (in terms of C) for ‖µn − π‖ to be
small? This is the mixing time.

We will show a coupling with ET ≤ C2. Then,

‖µn − π‖ ≤ P(T > n) ≤ C2

n
,
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so order C2 shuffles are enough. The correct mixing time is order C logC.

X deck Y deck
e a
b f
c c
a e
d d
f b

The following rule on P is the same as the previous rule:

• Pick the card label uniformly at random.

• Pick a position uniformly at random.

• Switch the card with the position.

The rule for coupling is: make the same choices in both decks.

Suppose we pick card a and position 3.

X deck Y deck
e c
b f
a a
c e
d d
f b

Instead, if we pick card b and position 4:

X deck Y deck
e a
a f
c c
b b
d d
f e

We will study Zn, the number of unmatched cards. In our first choice, we went from Zn = 4 to Zn+1 = 4.
In our second choice, we went to Zn+1 = 3.

Easy :

Zn+1 ≤ Zn always,

Zn+1 ≤ Zn − 1 if the position and card were both unmatched. (15.1)

Study T = min{n : Zn = 0}. Write Sm = min{n : Zn ≤ m}. Then, T = S0 = S1. (15.1) implies that

P(Zn+1 ≤ Zn − 1 | Zn = m,past) ≥
(m
C

)2

,

so

E[Sm−1 − Sm] ≤ 1

(m/C)2
=
C2

m2
,



LECTURE 15. MARCH 7 61

where SC = 0. Hence,

ET = ES1 =

C∑
m=2

E[Sm−1 − Sm] ≤ C2
C∑

m=2

1

m2
≤ C2

(
π2

6
− 1

)
≤ C2.

Comment : Use the structure of P to try to construct a coupling so that some notion like Zn (“distance”
between states) tends to decrease.

15.2 Ergodic Theorem for Markov Chains

Theorem 15.2 (Ergodic Theorem for Markov Chains). Consider an irreducible, positive-recurrent MC.
Let π be the stationary distribution. Take f : S → R such that

∑
x π(x)|f(x)| <∞. Then,

1

t

t∑
n=1

f(Xn) −−→
a.s.

f̄ :=
∑
x

π(x)f(x) as t→∞.

Proof. We can reduce to the IID SLLN. We can assume that f ≥ 0 (write f = f+ − f−). Fix state b.
Let T j be the time of the jth visit to b.

If we consider a typical sequence for the chain:

xz

T 1︷︸︸︷
b wae︸ ︷︷ ︸

Λ1

T 2︷︸︸︷
b c︸ ︷︷ ︸
Λ2

T 3︷︸︸︷
b qrsaw︸ ︷︷ ︸

Λ3

b . . .

Define Λj = (X(T j), X(T j + 1), . . . , X(T j+1 − 1)). The Strong Markov Property implies that the

(Λj , j ≥ 1) are IID. Λj takes values in
⋃∞
d=1 S

d = S(∞). Define Rj =
∑T j−1
i=T j−1 f(Xi), the sum of the

f -values over Λj−1. The SMP implies (R1, R2, R3, . . . ) are IID and (T 2 − T 1, T 3 − T 2, . . . ) are IID.
Apply the IID SLLN.

1

n

n∑
i=2

Ri → ER2 a.s. and
1

n

n∑
i=1

(T i − T i−1)
a.s.−−→ E[T 2 − T 1],

1

n
Tn → E[T 2 − T 1] ≡ EbT+

b =
1

π(b)
,

where T+
b is the return time to b. We can calculate ER2 =

∑
x µ(b, x)f(x). We know that µ(b, ·) is a

multiple of π(·), so

µ(b, x) =
π(x)

π(b)
=⇒ ER2 =

f̄

π(b)
=⇒ 1

n

n∑
i=1

Ri →
f̄

π(b)
a.s.

Now, apply 15.3 with r(t) =
∑t
i=1 f(Xi), tn = Tn, rn = Rn (each ω). Conclude that

1

t

t∑
i=1

f(Xi) −−→a.s.

ER2

E[T 2 − T 1]
= f̄ .

Lemma 15.3 (Deterministic Lemma, 205A). Let 0 < tn ↑ ∞, tn/n → t̄ > 0. Let ri ≥ 0, such that
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n−1
∑n
i=1 ri → r̄ > 0 and

∑n(t)
i=1 ri ≤ r(t) ≤

∑n(t)+1
i=1 ri, where n(t) = max{n : tn ≤ t}. Then,

r(t)

t
→ r̄

t̄
as t→∞.

Special Case: Fix y. Set f(x) = 1(x=y). Then,

1

t
Nt(y)

a.s.−−→ π(y),

where Nt(y) is the number of visits to y before t.
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16.1 Renewal Reward Theorem

Proposition 16.1. Let (Xn, n ≥ 0) be irreducible and positive-recurrent, where π is the stationary
distribution. Fix x. Let 0 < S <∞ be a stopping time such that XS = x a.s. Then,

Ex
S−1∑
t=0

1(Xt=y)︸ ︷︷ ︸
number of visits to y before S

= π(y)ExS.

Proof. S = f(X0, X1, X2, . . . ) for some f . Define S0 = 0, S1 = S, and

Sj+1 − Sj
def
= f(XSj , XSj+1, XSj+2, . . . ).

Rj =
∑Sj−1
t=Sj−1

is the number of visits to y during [Sj−1, Sj). The Strong Markov Property implies that

the blocks Λ1,Λ2, . . . are IID. Therefore, the (R1, R2, . . . ) are IID and the (Sj − Sj−1, j ≥ 1) are each
IID. By the SLLN,

1

n

n∑
i=1

Ri → ER1 a.s.,
1

n
Sn → ES a.s.

If Nt(y) =
∑t−1
i=0 1(Xi=y), then 15.3 implies that

1

t
Nt(y)→ ExR1

ExS
,

but we know from the MC Ergodic Theorem, 15.2, that the LHS converges to π(y) a.s., so the RHS and
π(y) are equal.

We can replace the “x” by a PM θ. (Use the “general” ergodic theorem.)

16.2 Finite Markov Chains: Matrix Theory

Consider an irreducible, positive-recurrent, aperiodic chain.

pt(x, y) = Px(Xt = y)→ π(y) as t→∞.

63
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If S is finite, then (easy) the convergence is geometrically fast.

∞∑
t=0

(pt(x, y)− π(y)) = z(x, y), say.

(The sum converges.) Assume zx,y =
∑∞
t=0(pt(x, y)−π(y)) exists. The matrix Z is determined by P. How?

Let I be the identity matrix and Π be the matrix where Πx,y = πy. Saying πP = π means that ΠP = Π.

Z
def
=

∞∑
t=0

(Pt − P ) =⇒ ZP = Z− (I−Π) =⇒ Z(I−P) = I−Π,

so Z = (I−Π)(I−P)−1. . . but π(I−P) = 0 implies that (I−P) is not invertible. Z can be interpreted as
a “generalized inverse”. Kemeny-Snell, Finite Markov Chains treats this topic.

Let Tx = min{n ≥ 0 : Xn = x}.

Step 1. Let y 6= x. Consider S = min{t > Ty : Xt = x}. 16.1 implies that π(y)ExS = EyNTx(y). Note that
ExS = ExTy + EyTx.

Lemma 16.2.

Ex[number of visits to x before Ty] = π(x)(ExTy + EyTx).

Step 2 : Fix a constant k, and consider S = min{t ≥ k : Xt = x}. 16.1 implies

π(y)(k + Eρ(k)Tx) = Ex[number of visits to y before k] + Eρ(k) [number of visits to y before Tx].

Then,

π(y)Eρ(k)Tx =

k−1∑
t=0

(p(t)
x,y − π(y)) + Eρ(k) [number of visits to y before Tx].

Let k →∞. ρ(k) → π, so π(y)EπTx = zx,y + Eπ[number of visits to y before Tx].

Lemma 16.3.

π(x)EπTx = zx,x.

Lemma 16.4.

Eπ[number of visits to y before Tx] = π(y)EπTx − zx,y.

Step 3. Consider S = min{n ≥ Ty + k : Xn = x}. 16.1 implies that

π(y)(ExTy + k + Eθ(k)Tx) = Ey[number of visits to y before k] + Eθ(k) [number of visits to y before Tx],

π(y)(ExTy + Eθ(k)Tx) =

k−1∑
t=0

(pt(y, y)− π(y)) + Eθ(k) [number of visits to y before Tx].

Let k →∞.

π(y)(ExTy + EπTx) = zy,y + Eπ[number of visits to y before Tx]︸ ︷︷ ︸
π(y)EπTx−zx,y

.

Also, 16.3 says π(x)EπTx = zx,x.

The point of this is:
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Lemma 16.5.

π(y)ExTy = zy,y − zx,y.

Example 16.6 (Patterns in Coin-Tossing). Fix a sequence, say, HHTHH. Toss a fair coin until we
see this pattern. What is the expected number of tosses?

In 205A, we had a martingale proof.

We can use a 32-state MC, (Xn, n ≥ 0), of overlapping 5-tuples. π is uniform, π(x) = 1/32. Study EπTx
for x = HHTHH.

p(0)(x, x) = 1,

p(1)(x, x) = 0,

p(2)(x, x) = 0,

p(3)(x, x) =
1

8
,

p(4)(x, x) =
1

16
,

p(t)(x, x) =
1

32
, t ≥ 5.

Then,

zx,x =

∞∑
t=0

(
p(t)(x, x)− 1

32

)
= 1 +

1

8
+

1

16
− 5

32
.

Then, by the formula,

EπTx =
zx,x
π(x)

= 32zx,x = 32 + 4 + 2− 5.

16.3 The MC CLT & Variance of Sums

Consider a chain on finite S, irreducible and aperiodic, with stationary distribution π. Consider a function
f : S → R with f̄ =

∑
i πif(i) = 0. Write St =

∑t
n=1 f(Xn). We can prove (using IID blocks) that

St√
t

d−→ Normal(0, σ2(t)).

Instead, we will directly study varSt. Consider the stationary chain.

σ2(t) = lim
t→∞

var(St)

t
= lim
t→∞

t∑
u=1

t∑
v=1

Eπ[f(Xu)f(Xv)], u− v = s,

=

∞∑
s=−∞

Eπ[f(X0)f(Xs)],

Eπ[f(X0)f(Xs)] =
∑
i

∑
j

f(i)f(j)π(i)[p(s)(i, j)− πj ] because
∑
j

πjf(j) = f̄ = 0

σ2(t) =

∞∑
s=−∞

Eπ[f(X0)f(Xs)] =
∑
i

∑
j

f(i)f(j)π(i)zi,j .
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We are using Eπ[f(Xu)f(Xv)] = Eπ[f(X0)f(Xs)]. Given a stationary process (X0, X1, X2, . . . ), Kolmogorov
extension says that there exists a process (Xn,−∞ < n <∞).

The sum over s ≥ 0 of πx(p
(s)
x,y − πy) = πxzx,y. The sum over s ≤ 0 is πyzy,x because

π(i)p(−s)(i, j)

stationarity︷︸︸︷
= π(j)p(s)(j, i).

The sum over s = 0 is πx(δx,y − πy).

Conclusion: σ2(t) = f>Γf for Γi,j = πizi,j + πjzj,i − πi(δi,j − πj) (symmetric).
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17.1 Martingale Methods for Markov Chains

17.1.1 Harmonic Functions

Setting. (Xn) is an irreducible MC on countable S. P = (p(x, y)). We have h : S → [0,∞) and let
Fn = σ(X0, X1, . . . , Xn). Suppose Eh(X0) < ∞. Then, (h(Xn), 0 ≤ n < ∞) is a MG if and only if
h(x) =

∑
y p(x, y)h(y) ∀x ∈ S.

E[h(Xn+1) | Fn] =︸︷︷︸
Markov

E[h(Xn+1) |Xn]

= E[h(Xn+1) |Xn = x] =
∑
y

p(x, y)h(y) = h(x) on {Xn = x}

= h(Xn) a.s.

which is the MG property.

h is harmonic w.r.t. P.

(h(Xn), 0 ≤ n <∞) is a super-MG if and only if h(x) ≥
∑
y p(x, y)h(y). h is superharmonic w.r.t. P.

Lemma 17.1. If (Xn) is recurrent and h ≥ 0 is superharmonic, then h is constant.

Proof. h(Xn) ≥ 0 is a super-MG, so (MG convergence) h(Xn)→ some H∞ ≥ 0 a.s.

For states y1, y2, Xn visits y infinitely often, so H∞ = h(y1) = h(y2) a.s., so h is constant.

Fact. A transient chain may or may not have the property

there exists a non-constant harmonic h with 0 ≤ h ≤ 1. (17.1)

Example 17.2. Consider the following chain.

· · · −2 −1 0 1 2 · · ·

2/3 2/3 1/2 1/2 2/3 2/3

1/3 1/3 1/3 1/31/31/3
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P(Xn →∞ or Xn → −∞) = 1.

h(x)
def
= Px(Xn → +∞). Note that

h(Xn+1) = Px(Xn →∞ |Xm, Xm−1, Xm−2, . . . ) ≡ P(A | Fm) is always a MG.

Hence, h is harmonic. It is easy to see that h(x)→ 1 as x→∞ and h(x)→ 0 as x→ −∞.

Example 17.3. (ξi, i ≥ 1) are IID Zd-valued. Xn =
∑n
i=1 ξi is a MC on Zd.

Suppose h is harmonic, 0 ≤ h ≤ 1. h(Xn) is a MG, so h(Xn)
a.s.−−→ H∞, say. H∞ is in the exchangeable

σ-field of (ξi, 1 ≤ i < ∞), which is trivial by the Hewitt-Savage 0-1 law. So, H∞ is constant. Since
h(Xn) is a MG, then h(Xn) = E[H∞ | Fn] is constant.

Remark. “Martin boundary theory” discusses extreme harmonic functions and the number of ways that a
countable-state chain can go to infinity.

17.1.2 Mean Hitting Times

Lemma 17.4. Fix A ⊆ S. TA = min{n ≥ 0 : Xn ∈ A}.

(a) Suppose h(x)
def
= ExTA <∞ ∀x ∈ S. Define Yn = h(Xn) + n. Then, (Yn∧TA , 0 ≤ n <∞) is a MG.

(b) If 0 ≤ h <∞ satisfies h(x) ≥
∑
y p(x, y)h(y) + 1 ∀x /∈ A, then ExTA ≤ h(x) ∀x.

Proof. (a) For x /∈ A, then condition on the first step h(x) = 1 + Exh(X1) = 1 +
∑
y p(x, y)h(y).

Then, Y0 = E[Y1 | X0] on {TA > 0}. By the same argument, Yn = E[Yn+1 | Fn] on {TA > n},
which implies that (Yn∧TA , n ≥ 0) is a MG.

(b) Given such an h, write Yn = h(Xn) + n. The above argument implies that (Yn∧TA , n ≥ 0) is
a super-MG. By MG convergence, Yn∧TA → some Z a.s. as n → ∞ and EZ ≤ EY0. However,
Yn →∞ as n→∞, so TA <∞ a.s. So, Z = YTA ≥ TA.

ExTA ≤ ExZ ≤ ExY0 = h(x).

17.1.3 Criteria for Recurrence on Infinite S

We can use these ideas to prove recurrence/transience.

Idea. h(x) is the distance from x to a reference state. If h tends to decrease, then we have recurrence. If h
tends to increase, then we have transience.

Proposition 17.5. If there exists h : S → [0,∞) and a finite B ⊆ S such that

(i) h(x) ≥
∑
y p(x, y)h(y) ∀x /∈ B,

(ii) |{x : h(x) ≤M}| <∞ ∀M <∞,

then the chain is recurrent.

Proof. (i) implies that h(Xn∧TB ) is a super-MG, so h(Xn∧TB )
a.s.−−→ some Z as n→∞. By contradiction:

Xn visits each state only finitely often. So, (ii) implies h(Xn)→∞ a.s. Therefore, TB <∞ a.s. Since
this is true for every initial state, P(Xn visits B infinitely often) = 1. However, B is finite, so Xn visits
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B only finitely often, which is a contradiction.

Proposition 17.6. As above, but strengthen (i) to ∃δ > 0 such that

(iii) h(x) ≥
∑
y p(x, y)h(y) + δ ∀x /∈ B

and also assume

(iv) |{y : p(x, y) > 0}| <∞ for x ∈ B.

Then, the chain is positive-recurrent.

Proof. We can assume δ = 1 (h← h/δ). By 17.4, ExTB ≤ h(x). Let T+
B = min{n ≥ 1 : Xn ∈ B}.

(x /∈ B) ExT+
B = ExTB ≤ h(x),

(x ∈ B) ExT+
B ≤ 1 + max{h(y) : p(x, y) > 0} <∞ by (iv).

Consider Zm = “the chain watched only on B” = XSm , where Sm is the time of the mth visit to B.
(Zm) is an irreducible, finite-state chain, so it has a stationary distribution π̂.

µ(x, y)
def
= Ex

∞∑
n=0

1(Xn=y,n<T+
B ) <∞,

π(y)
def
=
∑
x∈B

π̂(x)µ(x, y).

From the homework, π is an invariant measure for P and∑
y∈S

π(y) =
∑
y∈S

∑
x∈B

π̂(x)µ(x, y)

=
∑
x∈B

π̂(x)ExT+
B <∞,

so the chain is positive-recurrent.

Later Homework. Show the corresponding sufficient condition for transience.
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18.1 Rejection Sampling

Undergraduate. F−1(U) has the distribution function F .

“Rejection sampling”.

Want : To simulate from a given density g(x).

Know : How to simulate from some density f(x).

Know :

sup
x

g(x)

f(x)
≤ C is known.

• x is a sample from f .

• With probability g(x)/(Cf(x)), output x.

• Else, repeat.

On each step,

P(output ∈ [x, x+ dx]) = f(x) dx · g(x)

Cf(x)
=

1

c
g(x) dx.

P(some output) = 1/C, so the density given that we have an output is g(x).

18.2 Markov Chains on Measurable State Spaces

Consider a MC (Xn, n ≥ 0) on measurable S, specified by the kernel Q(s,A) = P(X1 ∈ A |X0 = s).

µn(·) = dist(Xn) =

∫
Q(s, ·)µn−1(ds).

Lemma 18.1. Let β be a PM on S with the following assumption:

(H1) Suppose that ∀x ∈ S, there exists a stopping time Tx < ∞ a.s. for the (δx, Q)-chain such that
Px(XTx ∈ ·) = β(·).
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Then, for the (β,Q)-chain, ∃T <∞ such that Pβ(XT ∈ ·) = β(·) and define

µ(A)
def
= Eβ [number of visits to A before T ].

Suppose ∃An ↑ S such that µ(An) <∞. This defines a (maybe σ-finite) invariant measure µ.

Proof. Condition on the first step.

Consider the following assumption:

(H2) There exists a PM β and ∃δ > 0 such that Q(x, ·) ≥ δβ(·) ∀x ∈ S.

Lemma 18.2. (H2) =⇒ (H1).

Proof. This is rejection sampling.

Write Q(x, ·) = δβ(·) + (1 − δ)R(x, ·), which is the definition of the kernel R(x, ·). Let (ξi, i ≥ 1) be
independent, P(ξi = 1) = δ, P(ξi = 0) = 1 − δ. Construct a Q-chain: given Xn−1 = x, if ξn = 1, then
Xn has distribution β; if ξn = 0, then Xn has distribution R(x, ·). Define T = min{n : ξn = 1}. T has
the Geometric(δ) distribution, and XT has the distribution β.

Useful Version. Consider the assumptions:

(H3) There exists a subset A ⊆ S and a PM β and δ > 0 such that

(i) Px(TA <∞) = 1 ∀x ∈ S,

(ii) Q(x, ·) ≥ δβ(·) ∀x ∈ A.

This is a Harris chain.

Lemma 18.3. (H3) =⇒ (H1).

Proof. Define Vj to be the time of the jth visit to A, Vj+1 = min{n > Vj : Xn ∈ A}. Define

Yj = X(1+Vj).

Then, (Yj) is a MC with some kernel Q̂, and by (ii), Q̂ satisfies (H2). Therefore, (Yj) satisfies (H1), so
(Xn) satisfies (H1).

We can derive limit theorems from (H1) analogously to the countable state case. In particular, if we have
µ(S) <∞ ⇐⇒ positive-recurrent, then

π(·) =
µ(·)
µ(S)

is a stationary distribution and

1

n

n−1∑
i=0

1(Xi∈A)
a.s.−−→ π(A) as n→∞

(for any initial distribution) and

‖dist(Xn)− π‖VD → 0 as n→∞ if aperiodic.

See Durrett, section 6.8.
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Example 18.4. S = Rd. Q(x, ·) has the density q(x, y) > 0 everywhere which is a continuous function
of (x, y).

Take A = ball(0, B). Then, infx,y∈A q(x, y) ≡ ε > 0 by uniform continuity, so (ii) holds for the choice
β = Uniform(A) and

δ =
ε

Leb(A)
.

We need to show TA < ∞ a.s. It is enough to show ∃B Ex|X1| ≤ |x| for all x with |x| > B. By
super-MG convergence, TA <∞.

This method cannot work if there are only a countable number of possible transitions from a state.

18.3 Markov Chains as Iterated Random Functions

This follows the posted Diaconis-Freedman paper. It is also known as coupling from the past.

Background. Given f : S → S, we can iterate: if we have f(s), f (2)(s) = f(f(s)), and

f (n+1)(s) = f(f (n)(s)) = f (n)(f(s)).

Let S be measurable and µ be a PM invariant under f . This is the structure of ergodic theory.

If S is a topological space, and f is continuous, consider s0, s1 = f(s0), sn+1 = f(sn) = f (n)(s0). Consider
µn, the empirical distribution on (S0, S1, . . . , Sn):

1

n

n−1∑
i=0

δsi .

Suppose µn → some µ weakly. Then, µ is invariant. This is the study of dynamical systems or “chaos”.

Lemma 18.5 (Old Lemma). Given a PM µ on S×S, the first marginal µ1, given independent X and U
such that dist(X) = µ1 and U = Uniform(0, 1), then ∃f : S× [0, 1]→ S such that dist(X, f(X,U)) = µ.

Given a MC, take some explicit representation as Xn+1 = f(Xn, ξn+1) = fξn+1
(Xn) for IID (ξi, i ≥ 1),

Ŝ-valued, where f is continuous S × Ŝ → S. We want to show dist(Xn)→ some π weakly.

X0 = x0, Xn(x0) = fξn(fξn−1
(· · · fξ2(fξ1(x0)) · · ·)).

Instead, consider

Yn(x0) = fξ1(fξ2(· · · fξn−1(fξn(x0)) · · ·)).

Here, Yn(x0)
d
= Xn(x0).

If we can prove Yn(x0) −−→
a.s.

some Y∞(x0) as n→∞, then dist(Xn(x0))→ π weakly.

Example 18.6. Let (Ai, Bi) be IID R2-valued. Define a R1-valued MC Xn by

Xn+1 = An+1Xn +Bn+1.

For X0 = x0,

Xn =

n∑
j=0

Bj

n∏
k=j+1

Ak, B0 = x0,
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Yn =

n∑
j=0

Bj

j−1∏
k=1

Ak, B0 = xn.

By the IID SLLN,

1

j
log

∣∣∣∣∣
j−1∏
i=1

Ai

∣∣∣∣∣→ E log |A1| a.s.

Easy. If E log |A1| < 0, then
∏j
i=1Ai → 0 geometrically fast. If also E log |B1| <∞, then

Yn
a.s.−−→ Y∞ =

∞∑
j=0

Bj

j−1∏
k=1

Ak

so dist(Xn)→ dist(Y∞) weakly.

The analog for Rd-valued

Xn+1 = An+1︸ ︷︷ ︸
d×d matrix

Xn + Bn︸︷︷︸
d-vector

works. We get a stationary distribution π on Rd.
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19.1 Another MC Example

Setting. Xn = f(Xn−1, ξn) for prescribed f and IID (ξi).

Suppose we have a metric space (S, d). For f : S → S,

‖f‖Lip
def
= sup

x6=y

d(f(x), f(y))

d(x, y)
.

For a random function f(x, ξ), consider E log ‖f(·, ξ)‖Lip ≡ κ, say.

Theorem 19.1 (Diaconis-Freedman Paper). For a MC of form Xn = f(Xn−1, ξn), if κ < 0 (and side
conditions), then the “coupling from the past” method shows there exists a unique stationary distribution
π and dist(Xn)→ π weakly.

Example 19.2. S = (0, 1). Given X0 = x, flip a fair coin {L,R}. If L, take X1 to be Uniform[0, x],
and if R, take X1 to be Uniform[x, 1].

Define

f(x, u, L) = ux,

f(x, u,R) = x+ u(1− x).

Take ξ = (U, I), U is Uniform[0, 1], I is Uniform{L,R}, independent. This represents the chain as
Xn = f(Xn−1, ξn).

‖f(·, u, L)‖Lip = u = ‖f(·, u,R)‖Lip =⇒ κ = E logU < 0.

19.1 implies that a stationary π exists.

(Exercise). Find π explicitly.

19.2 Ergodic Theory

19.2.1 “Probability” Set-Up

(X0, X1, X2, . . . ) defined on (Ω,F ,P), R-valued, are stationary if

(X0, X1, . . . , Xn−1)
d
= (X1, X2, . . . , Xn) ∀n. (19.1)
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This is equivalent to (X0, X1, X2, . . . )
d
= (X1, X2, X3, . . . ) and equivalent to

(X0, X1, X2, . . . )
d
= (Xn, Xn+1, Xn+2, . . . ) ∀n.

Given stationary (Xn, 0 ≤ n < ∞), there exists (Kolmogorov Extension Theorem) a two-sided stationary

sequence (X̂n,−∞ < n <∞), such that (X̂n, n ≥ 0)
d
= (Xn, n ≥ 0).

Example 19.3. IID random variables are stationary.

Example 19.4. Exchangeable random variables are stationary.

Example 19.5. A stationary Markov chain is stationary.

Example 19.6 (“Moving Average”). Let (ξi) be IID. Fix L ≥ 2. Let

Ai =
ξi + ξi+1 + · · ·+ ξi+L−1

L
.

Then, (Ai, i ≥ 0) is stationary.

Theorem 19.7 (Easy). If (Xn, 0 ≤ n < ∞) is stationary, if g : R∞ → R is measurable, then for
Yn = g(Xn, Xn+1, Xn+2, . . . ), (Yn, 0 ≤ n <∞) is stationary.

This starts with very random ingredients.

19.2.2 Ergodic Theory Set-Up

A probability space (S,S, µ) is “concrete”. For a measurable φ : S → S, the push-forward measure is
µ̂(A) = µ(φ−1(A)). Suppose µ is invariant under φ: µ(A) = µ(φ−1(A)) ∀A. [Given µ, say φ is a measure-
preserving transformation.]

Now, for any measurable f : S → R, we can define

X0(s) = f(s), (19.2)

X1(s) = f(φ(s)), (19.3)

X2(s) = f(φ(2)(s)), (19.4)

Xn(s) = f(φ(n)(s)), (19.5)

φ(m)(s) = φ(φ(m−1)(s)). (19.6)

We can define RVs (Xn, 0 ≤ n <∞) on a probability space (S,S, µ).

Lemma 19.8. Given µ, φ as above, for any f , the sequence (Xn, n ≥ 0) is stationary.

Proof. To check (19.1), we need to check

µ{s : X0(s) ∈ A0, X1(s) ∈ A1, . . . , Xn−1(s) ∈ An−1} = µ{s : X1(s) ∈ A0, . . . , Xn(s) ∈ An−1}.

Let B = {s : X0(s) ∈ A0, X1(s) ∈ A1, . . . , Xn−1(s) ∈ An−1}.

Left = µ{s : s ∈ B}, (19.7)
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Right = µ{s : X0(φ(s)) ∈ A0, X1(φ(s)) ∈ A1, . . . , Xn−1(φ(s)) ∈ An−1} (19.8)

= µ{s : φ(s) ∈ B} = (19.7) by measure-preserving.

Here, we start with deterministic objects.

Example 19.9 (“Rotation on a Circle”). S = [0, 1]. Fix θ ∈ (0, 1). Take

φ(s) = s+ θ (mod 1), µ = Lebesgue measure on S.

Example 19.10 (Baker’s Transformation). S = [0, 1]2 and µ = Leb2.

φ(x, y) =


(

2x,
y

2

)
, if x <

1

2
,(

2x− 1,
1

2
+
y

2

)
, if x ≥ 1

2
.

Given stationary (X̂n, n ≥ 0) defined on (Ω,F ,P), there is a “canonical” way to set it up in the ergodic
theory set-up.

Define S = R∞, µ = dist(X̂n, n ≥ 0) on S. Define φ : S → S by φ(x0, x1, x2, . . . ) = (x1, x2, . . . ). The
function f : S → R is f(x0, x1, . . . ) = x0. Then, define Xn as in (19.5) gives Xn(x0, x1, x2, . . . ) = xn and

(Xn, n ≥ 0)
d
= (X̂n, n ≥ 0). The former are RVs on (R∞, µ) and the latter are RVs on (Ω,F ,P).

19.2.3 Invariant Events

Definition 19.11. In the ergodic theory set-up, an event A is invariant if φ−1(A) = A a.s.

Easy Fact : If A = φ−1(A) a.s., then A∗ =
⋃∞
n=1

⋂
i>n φ

−i(A) satisfies A∗ = A a.s. and φ−1(A∗) = A∗ always.

The collection of all invariant events forms the invariant σ-field I.

Definition 19.12. A measure-preserving transformation φ on (S,S, µ) is ergodic if I is trivial. That
is, µ(A) = 0 or 1 for each invariant A.

Given a stationary (X̂n, n ≥ 0), go to the canonical set-up to use these definitions. The notion of invariant
A ⊆ R∞ says that

{ω : (X0(ω), X1(ω), . . . ) ∈ A} a.s.
= {ω : (X1(ω), X2(ω), . . . ) ∈ A}. (19.9)

The process (X̂n) is ergodic ⇐⇒ P((X0, X1, . . . ) ∈ A) = 0 or 1 for each invariant A.

Lemma 19.13. For stationary (Xn, n ≥ 0) in the canonical set-up, I
a.s.
⊆ τ = tail σ-field of (Xn).

Proof.

A ⊆ R∞ invariant =⇒ A = φ−1(A) a.s.

(where φ is the shift map (x0, x1, . . . ) 7→ (x1, x2, . . . ))

=⇒ A = φ−n(A) a.s.
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Therefore,

φ−n(A) = {ω : (Xn(ω), Xn+1(ω), . . . ) ∈ A} ∈ σ(Xn, Xn+1, . . . ) ≡ τn,

so A ∈
⋂
n τn = τ a.s.

For example, consider alternating coin flips, HTHTHTH . . . or THTHTHT . . . . Then, X0 ∈ τ , but we
have X0 /∈ I.

Recall : Theorem. If (Xn, n ≥ 0) is stationary, if g : R∞ → R is measurable, then (Yn, n ≥ 0) is stationary
for Yn = g(Xn, Xn+1, . . . ) and if (Xn) is ergodic, then (Yn) is ergodic.

If B is invariant for (Yn),

{ω : (Y0(ω), Y1(ω), . . . ) ∈ B} a.s.
= {ω : (Y1(ω), Y2(ω), . . . ) ∈ B},

and this reduces to (19.9) for a certain A depending on B.



Lecture 20

March 23

20.1 Ergodic Theory & Markov Chains

Proposition 20.1. Any stationary irreducible Markov countable state (S) Markov chain is ergodic.

Proof. Let π be the stationary distribution. We know that the chain is positive-recurrent, which implies
that it visits every state infinitely often. Consider an invariant set A ⊆ S∞. Define the function
h(x) = Ex1((X0,X1,... )∈A).

Eπ[1((X0,X1,... )∈A) | Fn]
a.s
= Eπ[1((Xn,Xn+1,... )∈A) | Fn] (definition of “invariant”)

=︸︷︷︸
Markov

h(Xn).

The LHS is a MG, so it converges a.s. to 1((X0,X1,... )∈A). Since h(Xn) is also converging a.s., h(x) is
constant for all x, so h(x) = 0 for all x or h(x) = 1 for all x. Therefore, Eπ1((X0,X1,... )∈A) is 0 or 1, so
the chain is ergodic.

Fact. Here, the tail σ-field is trivial ⇐⇒ the chain is aperiodic.

20.2 Ergodic Theorem

Theorem 20.2 (The Ergodic Theorem). For stationary (Xi, 0 ≤ i <∞) with E|X0| <∞ and

Sn =

n−1∑
i=0

Xi,

we have n−1Sn → E[X0 | I] a.s. and in L1 as n→∞.

Ergodic implies that the limit is EX0.

Lemma 20.3 (Maximal Lemma). Write Mk = max(0, S1, S2, . . . , Sk). Then, E[X01(Mk>0)] ≥ 0.

Proof. See the text.

Easy. E[Xk | I]
a.s
= E[X0 | I] and (Xk − E[Xk | I], k ≥ 0) is stationary.

78
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Classic Proof of 20.2. Reduce to the case E[X0 | I] = 0. Write

X̄ = lim sup
Sn
n
∈ I.

It is enough to prove X̄ ≤ 0 a.s. (then apply this to −X̄).

Fix ε > 0. Consider X∗i = (Xi − ε)1(X̄>ε). Check that (X∗i , i ≥ 0) is stationary, and define S∗k , M∗k as
in 20.3. Define Fn = {M∗n > 0}. Let

F =
⋃
n

Fn =

{
sup
n≥1

S∗n
n
> 0

}
=

{
sup
n≥1

S∗n
n
> ε, X̄ > ε

}
= {X̄ > ε}.

Apply the Maximal Lemma 20.3 to (X∗i ).

E[X∗0 1Fn ] ≥ 0.

Note that Fn ↑ F and E|X∗0 | ≤ E|X0|+ ε <∞. Therefore,

E[X∗0 ] = E[X∗0 1F ] = lim
n

E[X∗0 1Fn ] ≥ 0. (20.1)

However, F ∈ I and E[X0 | I] = 0, which implies that E[X01F ] = 0. X∗0 = (X0 − ε)1F implies that
EX∗0 = E[X01F ]− εP(F ), so P(F ) = 0. Hence, P(X̄ > ε) = 0, so X̄ ≤ 0 a.s.

20.3 Applications to Range/Recurrence of “Stationary Increment”
Random Walks

Setting. Let (X1, X2, X3, . . . ) be stationary, Zd-valued. S0 = 0 and Sk =
∑k
i=1Xi. The event A is the event

that we “never return to 0”: {Sk 6= 0,∀k ≥ 1} = {(X1, X2, . . . ) ∈ Â}, where

Â =

{
(x1, x2, . . . ) :

j∑
i=1

xi 6= 0 ∀j ≥ 1

}
,

Âk =

{
(x1, . . . , xk) :

j∑
i=1

xi 6= 0 ∀1 ≤ j ≤ k

}
.

So, Â ⊆ (Zd)∞.

Theorem 20.4. In the setting above, Rn is the number of distinct sites in Zd that (S1, . . . , Sn) visits.

Then, n−1Rn
a.s.−−→
L1

E[1A | I].

Idea. Rn counts the number of events. We will sandwich Rn between two stationary processes of events.

Proof. Rn is at least the number of m’s (1 ≤ m ≤ n) such that (Sm+1, Sm+2, . . . ) are all different from
Sm. The latter is

∑n
m=1 1((Xm+1,Xm+2,... )∈Â) and the m = 0 case is 1A. The Ergodic Theorem 20.2

implies

lim
n→∞

1

n

n∑
m=1

1((Xm+1,Xm+2,... )∈Â) = E[1A | I] ≤ lim inf
n

n−1Rn.

(This is one side of the theorem.)
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Fix k. Observe

Rn ≤ k + number of m’s (1 ≤ m ≤ n− k) such that Sm+1, Sm+2, . . . , Sm+k are all different from Sm

= k +

n−k∑
m=1

1((Xm+1,...,Xm+k)∈Âk), where Âk is the analog of Â.

Apply the Ergodic Theorem 20.2 to the stationary process of indicators.

lim sup
n

n−1Rn ≤ lim
n→∞

1

n

n−k∑
m=1

1((Xm+1,...,Xm+k)∈Âk) = E[1Ak | I] a.s. and in L1

Let k ↑ ∞, Ak ↓ A.

≤ E[1A | I] a.s. and in L1

Theorem 20.5. In the setting above, assume the random variables are Z1-valued and E|X1| <∞.

(i) If E[X1 | I] = 0, then P(A) = 0 (“recurrence”).

(ii) If P(A) = 0, then P(Sn = 0 infinitely often) = 1.

Proof. (i) By 20.4, it is enough to prove Rn/n→ 0 a.s. (then E[1A | I] = 0 =⇒ P(A) = 0). However,
Rn ≤ 1 + maxm≤n Sm −minm≤n Sm. So, it is enough to show

1

n
max
m≤n

Sm → 0 a.s. (20.2)

The Ergodic Theorem 20.2 says

Sn
n
→ 0 a.s. (20.3)

and it is a deterministic fact that (20.3) =⇒ (20.2).

(ii) We will show P(Xn = 0 for at least 2 values of n) = 1. A similar argument will work for any B.
Write Tn for the time of the nth return to 0. {T1 = j, T2 = j + k} = {T1 = j} ∩Gj,k, where

Gj,k = {Sj+i − Sj 6= 0, 1 ≤ i ≤ k − 1, Sj+k = Sj}.

Stationarity implies P(Gj,k) = P(G0,k) = P(T1 = k). The hypothesis implies that

∞∑
k=1

P(Ti = k) = 1 =⇒
∞∑
k=1

P(Gj,k) = 1 =⇒
⋃
k≥1

Gj,k = Ω a.s.,

so
⋃∞
k=1(Gj,k ∩ {T1 = j}) = {T1 = j} a.s. So, {T1 = j, T2 < ∞} = {T1 = j} a.s. Take the union

over j, and we have {T1 < ∞, T2 < ∞} = {T1 < ∞} a.s. The latter has probability 1, so the
former has probability 1.



Lecture 21

April 4

21.1 Entropy

Definition 21.1. If π is a PM on finite S,

H(π) = −
∑
s∈S

π(s) log π(s)

is the entropy of π.

Easy : 0 ≤ H(π) ≤ log |S|. H(uniform distribution on S) = log |S|.

(X0, X1, X2, . . . ) is a S-valued process. p(x0, x1, . . . , xn−1) = P(X0 = x0, X1 = x1, . . . , Xn−1 = xn−1).

Then, Ln
def
= p(X0, X1, . . . , Xn−1) is the empirical likelihood.

For IID (Xi), dist(Xi) = π, then

p(x0, x1, . . . , xn−1) =
∏
s∈S

(π(s))m(n,s)

where m(n, s) =
∑n−1
i=0 1(xi=s),

log p(x0, x1, . . . , xn−1) =
∑
s

m(n, s) log π(s)

1

n
log p(X0, . . . , Xn−1) =

∑
s

F (n, s) log π(s), F (n, s) =
1

n

n−1∑
i=0

1(Xi=s)
a.s.−−→ π(s) as n→∞

a.s.−−−−→
n→∞

∑
s

π(s) log π(s) = −H(π).

Informally, for a typical realization x0, x1, . . . , xn−1, p(x0, x1, . . . , xn−1) ≈ exp(−nH(π)).

Theorem 21.2 (Shannon-McMillan-Breiman Theorem). If (Xi, i ≥ 0) is stationary and ergodic, then

− 1

n
logLn

a.s.−−→ H

for a constant 0 ≤ H <∞.

The proof uses:

• MG convergence

81
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• Ergodic Theorem

• K-step Markov process

Proof. Embed (Xi, i ≥ 0) into a doubly-infinite process (Xi,−∞ < i < +∞), which is station-
ary and ergodic. Write p(xn | xn−1, . . . , x0) = P(Xn = xn | Xn−1 = xn−1, . . . , X0 = x0). Con-

sider p(x0 | X−1, X−2, . . . , X−n)
n→∞−−−−→
a.s.

p(x0 | F∞) since p(x0 | X−1, X−2, . . . , X−n) is a MG. Here,

F∞ = σ(X−1, X−2, . . . ). Define Hk = E[− log p(X0 |X−1, . . . , X−k)]. Then,

Hk = E[− log p(X0 |X−1, . . . , X−k)] = E[E[− log p(X0 |X−1, . . . , X−k) |X−1, . . . , X−k]]

= E

[∑
x

− log p(x |X−1, . . . , X−k) · p(x |X−1, . . . , X−k)

]
→ E

∑
x

(− log p(x | F∞) · p(x | F∞))

(as k →∞, by MG convergence)

= E[E[− log p(X0 | F∞) | F∞]]

= E[− log p(X0 | F∞)]

define
= H.

The Ergodic Theorem says

1

n

n−1∑
m=0

F (Xm, Xm−1, Xm−2, . . .︸ ︷︷ ︸
Ym

)→ EF (X0, X−1, X−2, . . . )

for bounded measurable F . Apply the Ergodic Theorem to F (X0, X1, . . . ) = − log p(X0 |X−1, X−2, . . . ).

1

n

n−1∑
m=0

− log p(Xm |Xm−1, Xm−2, . . . )
a.s.−−→ H (21.1)

Elementary: p(x0, x1, . . . , xn−1 |x−1, . . . , x−k) =
∏n−1
m=0 p(xm |xm−1, xm−2, . . . , x0, . . . , x−k). Substitute

in (X−1, . . . , X−k), let k →∞, and use MG convergence.

p(x0, . . . , xn−1 | F∞) =

n−1∏
m=0

p(xm | xm−1, . . . , x0,F∞)

Substitute X1, . . . , Xn−1, take (1/n) log(·), and apply (21.1).

− 1

n
log p(X0, . . . , Xn−1 | F∞)

a.s.−−→ H by (21.1). (21.2)

Given a distribution (Y0, Y1) with dist(Y0) = dist(Y1) on S∗, we can construct a stationary Markov

(X̂0, X̂1, X̂2, . . . ) with (X̂n, X̂n+1)
d
= (Y0, Y1). Take X̂0 = Y0 and for the transitions, use the kernel

Q(x0, x1) = P(Y1 = x1 | Y0 = x0).

Given stationary S-valued (X0, X1, X2, . . . ), set S∗ = Sk. Set Y0 = (X0, . . . , Xk−1), Y1 = (X1, . . . , Xk).
We can construct (Ŷi, i ≥ 0) as above which is stationary. The process (Ŷ0, Ŷ1, Ŷ2, . . . ) has the Markov
property P(Ŷm = · | Ym−1, Ym−2, . . . ) depends only on Ym−1. Extract the coordinates: (X̂0, X̂1, . . . ) is
a stationary sequence with the “k-step Markov” property. P(X̂m = xm | X̂m−1 = xm−1, . . . ) depends
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only on xm−1, . . . , xm−k and (X̂m, . . . , X̂m+k−1)
d
= (X0, X1, . . . , Xk−1).

Fix k. Apply the Ergodic Theorem to F (x0, x−1, . . . , x−k) = − log p(x0 | x−1, . . . , x−k).

− 1

n

n−1∑
m=0

log p(Xm |Xm−1, . . . , Xm−k)
a.s.−−→ Hk

= − 1

n
log

n−1∏
m=0

p(Xm |Xm−1, . . . , Xm−k)

Write p(k)(x0, x1, . . . , xn−1) = p(x0, . . . , xk−1)
∏n−1
m=k p(xm |xm−1, . . . , xm−k). This is the distribution of

the k-step Markov process.

− 1

n
log p(k)(X0, . . . , Xn−1)

a.s.−−−−→
n→∞

Hk by the above argument. (21.3)

Because the Hk → H, to prove the theorem, it is enough to prove

H ≤ lim inf
n
− 1

n
log p(X0, . . . , Xn−1) (21.4)

and

lim sup
n
− 1

n
log p(X0, . . . , Xn−1) ≤ Hk. (21.5)

Check: Given 21.3,

(21.3) + (21.6) =⇒ (21.5),

(21.2) + (21.7) =⇒ (21.4).

Lemma 21.3. (a) If Wn ≥ 0, EWn ≤ 1, then lim supn n
−1 logWn ≤ 0 a.s.

(b)

E
p(k)(X0, . . . , Xn−1)

p(X0, . . . , Xn−1)
= 1. (21.6)

(c)

E
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 | F∞)
≤ 1. (21.7)

Proof. (a)

P(n−1 logWn ≥ ε) = P(Wn ≥ eεn)

≤ e−εnEWn ≤ e−εn.

Use Borel-Cantelli.

(c) To prove (21.7), it is enough to prove

E
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 |X−1, . . . , X−k)
= 1,
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and then let k →∞ and use Fatou’s Lemma.

E
p(X0, . . . , Xn−1)

p(X0, . . . , Xn−1 |X−1, . . . , X−k)
= E

p(X0, . . . , Xn−1)p(X−1, . . . , X−k)

p(X−k, . . . , X0, . . . , Xn−1)

= 1 by (21.8) because the numerator is a PM.

Recall: If Y has distribution π, then

E
π̂(Y )

π(Y )
= 1 (21.8)

for any distribution π̂.

(b) Again, by (21.8) because p(k) is a PM.



Lecture 22

April 6

22.1 Entropy Rate

Setting : (Xi, i ≥ 0) is stationary, ergodic, S-valued.

Theorem: Ln = p(X0, X1, . . . , Xn−1), where p(x0, x1, . . . , xn−1) = P(Xi = xi, 0 ≤ i ≤ n− 1). Then,

− 1

n
logLn

a.s.−−→ H (constant) as n→∞.

Call H the entropy rate of the process (Xi).

Recall that for a PM π on S, H(π)
def
=
∑
s π(s) log π(s) = −E[log π(X)] if X

d∼ π is the entropy of π.

The proof of the Shannon-McMillan-Breiman Theorem 21.2 gave a formula for the entropy rate

H = −E[log p(X0 |X−1, X−2, . . . )]

in terms of the function p(x0 | x−1, x−2, . . . , x−n).

Example 22.1. If (Xi) is IID(π), then p(x0 | x−1) = π(x0), so H = −E[log π(X0)] = H(π).

Example 22.2. Let (Xi) be stationary Markov, P(Xi = x,Xi+1 = y) = π(x)q(x, y), where Q is the
transition matrix.

p(x0 | x−1, x−2, . . . )
Markov

= p(x0 | x−1),

so

H = −E log p( X0︸︷︷︸
y

|X−1︸︷︷︸
x

) =
∑
x

∑
y

π(x)q(x, y) log q(x, y).

Corollary 22.3. Let Ĥk = H(dist(X0, X1, . . . , Xk−1)). Then,

1

k
Ĥk → H as k →∞.

22.2 Asymptotic Equipartition Property

Different Viewpoint. What do we know about (Xi) if we are told H but don’t know p(x0, . . . , xn)?

85
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Consider Bk ⊆ Sk.

|Bk| min
x∈Bk

p(x) ≤ P((X0, X1, . . . , Xk−1) ∈ Bk) ≤ |Bk| max
x∈Bk

p(x).

Theorem 22.4 (Asymptotic Equipartition Property). Fix δ > 0.

(a) If |Bk| = o(exp(k(H − δ))), then P((X0, . . . , Xk−1) ∈ Bk)→ 0 as k →∞.

(b) ∃Bk with |Bk| = O(exp(k(H + δ))) such that P((X0, . . . , Xk−1) ∈ Bk)→ 1 as k →∞.

Proof. (a)

P((X0, . . . , Xk−1) ∈ Bk) ≤ P
(

(X0, . . . , Xk−1) ∈ Bk and − 1

k
logLk ≥ H − δ

)
+ P

(
−1

k
Lk ≤ H − δ

)
︸ ︷︷ ︸

o(1) as k→∞

= P((X0, . . . , Xk−1) ∈ Bk ∩B′k)

≤ |Bk| exp(−k(H − δ))→ 0 as k →∞,

where

Bk =

{
x : −1

k
log p(x) ≥ H − δ

}
= {x : p(x) ≤ exp(−k(H − δ))}.

(b) Choose

Bk =

{
x : −1

k
log p(x) ≤ H + δ

}
.

Then, 21.2 implies P((X0, . . . , Xk−1) ∈ Bk)→ 1 as k →∞.

1 ≥ P((X0, . . . , Xk) ∈ Bk) ≥ |Bk| exp(−k(H + δ)).

In fact, (b) holds for

Bk =

{
x : −1

k
log p(x) ∈ [H − δ,H + δ]

}
.

22.3 Subadditive Ergodic Theorem

Background :

1. Consider R-valued RVs (ξi). Define Xm,n =
∑n
i=m+1 ξi.

X0,n = X0,m +Xm,n, 0 ≤ m ≤ n.

2. If the (ξi) are stationary, then for any fixed k ≥ 1,

dist(Xm,n : 0 ≤ m ≤ n <∞) = dist(Xm+k,n+k : 0 ≤ m ≤ n <∞). (22.1)
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Theorem 22.5 (Kingman’s Subadditive Ergodic Theorem). Suppose we have R-valued random vari-
ables (Xm,n : 0 ≤ m < n <∞) satisfy (22.1) and

X0,n ≤ X0,m +Xm,n 0 ≤ m < n <∞ (22.2)

and

EX+
0,1 <∞ and inf

n

EX0,n

n
> −∞. (22.3)

Then

1

n
X0,n

a.s.−−→
L1

X,

say, and EX = limn n
−1EXn = infn n

−1EXn > −∞.

The Durrett text gives an alternate “Liggett” version. See the text for the proof.

Often, it is useful to show limits exist without explicit calculation.

Example 22.6 (Products of Random Matrices). Let A1, A2, . . . be a stationary sequence of random
s× s matrices, with entries Am(i, j) > 0. Consider the random matrix αm,n = Am+1Am+2 · · ·An.

Proposition 22.7. If E|logA1(i, j)| <∞ ∀i, j, then

1

n
logα0,n(i, j)→ −X a.s.

(some X).

Proof. Define Xm,n = − logαm,n(1, 1). α0,n = α0,mαm,n, so α0,n(1, 1) ≥ α0,m(1, 1)αm,n(1, 1). There-
fore, Xm,n has property (22.2) and property (22.1) follows from the fact that (Ai) is stationary.

EX+
0,1 ≤ E|logA1(1, 1)| <∞ by assumption.

Note that α0,n(1, 1) is the sum of sn−1 terms of the form A1(1, i1)A2(i1, i2) · · ·An(in−1, 1), so

α0,n(1, 1) ≤ sn−1
n∏

m=1

max
i,j

Am(i, j),

so

E
1

n
logα0,n(1, 1) ≤ log s+ E log max

i,j
A1(i, j) ≡ β <∞,

which is (22.3). 22.5 implies

1

n
logα0,n(1, 1)→ −X a.s.

For the general (i, j) entry,

α0,n(i, j) ≥ A1(i, 1)α1,n−1(1, 1)An(1, j),



LECTURE 22. APRIL 6 88

so

− 1

n
logα0,n(i, j)→ −X a.s.

Example 22.8 (First Passage Percolation on Square Lattice). Let (τe, e ∈ E) be IID, 0 < τe < ∞,
Eτe < ∞, where E is the edges of the Z2 lattice. Define Xm,n to be the time to travel from (m, 0) to
(n, 0): Xm,n = min{

∑
e∈π τe : π a path from (m, 0) to (n, 0)}.

Check Hypotheses. (22.1) holds because the (τe) are invariant under translation by k.

Xm,n ≤ minimum time route from (0, 0) to (0, n) via (m, 0)

= X0,m +Xm,n,

which checks (22.2). X0,1 ≤ τe, so EX+
0,1 <∞, which checks (22.3). 22.5 implies

1

n
X0,n → some X.

Note that changing a finite number of the τe does not change X. Therefore, X ∈ tail(τe, e ∈ E), which
is trivial by the 0-1 Law, so X is constant.



Lecture 23

April 11

23.1 Law of Iterated Logarithm

Let B(t), 0 ≤ t <∞ be standard Brownian motion.

Curious Fact : B̂(t) = tB(1/t) is also standard BM (calculate the covariance E[B̂(s)B̂(t)]). So, limits as
t→∞ are “equivalent” to limits as t→ 0.

Theorem 23.1 (Law of Iterated Logarithm). (a)

lim sup
t→∞

B(t)√
2t log log t

= 1 a.s.

(b)

lim sup
t↓0

B(t)√
2t log log(1/t)

= 1 a.s. (23.1)

Harder Result : If (Xi) are IID, EX = 0, EX2 = 1, and Sn =
∑n
i=1Xi, then

lim sup
n→∞

Sn√
2n log log n

= 1 a.s.

We will prove (23.1). Recall:

Lemma 23.2. If c > 0, d > 0,

P
(

sup
0≤t<∞

(Bt − td) ≥ c
)

= exp(−2cd).

Proof of 23.1. Write h(t) =
√

2t log log(1/t). Fix 0 < δ < θ < 1. Apply 23.2 with

d =
1

2
θ−n(1 + δ)h(θn), c =

1

2
h(θ).

So,

2cd = (1 + δ) log log
1

θn
= (1 + δ) log n+Kδ,θ.
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23.2 implies

P
(

sup
t

(
Bt −

1

2
(1 + δ)θ−nh(θn)t

)
≥ 1

2
h(θn)

)
≤ K̂δ,θn

−(1+δ).

Borel-Cantelli 1 implies

sup
t

(
Bt −

1

2
(1 + δ)θ−nh(θn)t

)
≤ 1

2
h(θn) for all n ≥ n0(ω).

Consider small t, say θn+1 < t < θn, n > n0(ω). Then,

Bt ≤
1

2
h(θn) +

1

2
(1 + δ)θ−nh(θn)t ≤ 1

2
(2 + δ)h(θn) ≤ 1

2
(2 + δ)θ−1/2h(t),

since h(t) ≥ h(θn+1) ≥ θ1/2h(θn) for n large (check). Hence,

lim sup
t↓0

Bt
h(t)

≤ 1

2
(2 + δ)θ−1/2 a.s.

Let δ ↓ 0 and θ ↑ 1.

≤ 1 a.s. (upper bound).

Lower Bound. Fix θ > 0. Suppose we prove

P(B(θn)−B(θn+1) > (1− θ)1/2h(θn) infinitely often) = 1. (23.2)

Then, by the upper bound (applied to −B(t)), −B(θn+1) ≤ 2h(θn+1) ultimately. Combining these two
facts, B(θn) ≥ (1− θ)1/2h(θn)− 2h(θn+1) infinitely often. But,

h(θn+1)

h(θn)
→ θ1/2 =⇒ h(θn+1) ≤ 2θ1/2h(θn) ultimately,

since h(t) =
√

2t log log t, so B(θn) ≥ ((1− θ)1/2 − 4θ1/2)h(θn) infinitely often. Hence,

lim sup
t↓0

B(t)

h(t)
≥ lim sup

n→∞

B(θn)

h(θn)
≥ (1− θ)1/2 − 4θ1/2 a.s.

Let θ ↓ 0.

Proof of (23.2): For Z, Normal(0, 1),

P(Z > x) ∼ φ(x)

x

∼ (2π)−1/2x−1 exp

(
−x

2

2

)
as n→∞.

So,

P(B(θn)−B(θn+1) > (1− θ)1/2h(θn)) = P((θn − θn+1)1/2Z > (1− θ)1/2h(θn)) = P(Z > θ−n/2h(θn))

= P(Z >
√

2 log log(1/θn)) (definition of h(t))

∼ constant · (log n)−1/2 · 1

n log(1/θ)
.

Since the summation
∑
n(·) =∞, Borel-Cantelli 2 implies (23.2).
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23.2 Embedding Distributions into BM

Consider B(t). Take U ≤ 0 ≤ V (dependent), but independent of B(t) with EU + EV = 0. Let

T = inf{t : B(t) = U or V }.

(205A) Conditional on (U = u, V = v), EB2
T = ET = −uv, EBT = 0.

P(BT = u) =
v

v − u
, P(BT = v) =

−u
v − u

.

(B2(t)− t is a MG.) Since E[B2
T | UV ] = E[T | UV ], then EB2

T = ET , EBT = 0.

P(BT ∈ (u, u+ du)) = E
[

V

V − u
1(U∈(u,u+du))

]
, (u < 0), (23.3)

P(BT ∈ (v, v + dv)) = E
[
−U
v − U

1(V ∈(v,v+dv))

]
, (v > 0). (23.4)

Proposition 23.3. Given dist(X) with EX = 0, there exists a joint distribution (U, V ) such that

BT
d
= X.

Proof. We prove the case where X has some density f(x). Recall x = x+ − x−. Then,

EX = 0 ⇐⇒ EX+ = EX− = c, say.

Take the joint density for (U, V )

fU,V (u, v) =
f(u)f(v)(v − u)

c
, u < 0 < v.

Check that the total mass is 1. ∫ ∞
0

∫ 0

−∞
fU,V (u, v) dudv

?
= 1.

The inner integral is ∫ 0

−∞

f(v)f(u)(v − u)

c
du =

vf(v)

c
P(X < 0) +

f(v)

c
EX−.

So ∫ ∞
0

[
vf(v)

c
P(X < 0) +

f(v)

c
EX−

]
dv =

EX+P(X > 0)

c
+

EX−P(X > 0)

c

= P(X < 0) + P(X > 0) = 1.

Also,

P(BT ∈ (u, u+ du))

du

(23.3)
=

∫ ∞
0

v

v − u
· fU,V (u, v) dv =

∫ ∞
0

vf(u)f(v)

c
dv

= f(u)

∫ ∞
0

vf(v)

c
dv

= f(u)
EX+

c
= f(u).

The Morters-Peres book section 5.3 gives other embeddings B(T )
d
= given X.
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23.3 Donsker’s Invariance Principle

Donsker’s Invariance Principle says that BM is the scaling limit of random walks.

Set-Up: We have IID (Xi), EX = 0, EX2 = 1, Sn =
∑n
i=1Xi. Interpolate to continuous S(t).

S(t) = Sbtc + (t− btc)(Sdte − Sbtc).

Rescale time and space.

S∗n(t) =
S(nt)√

n
, 0 ≤ t ≤ 1.

We can regard S∗n as a random function, a RV taking values in the space C[0, 1] of continuous functions
f : [0, 1]→ R. We can consider (B(t), 0 ≤ t ≤ 1) as a RV B taking values in C[0, 1].

The theory of weak convergence on metric spaces formalizes the idea “S∗n
d−→ B”.

The assertion S∗n(1)
d−→ B(1) is the assertion

Sn√
n

d−→ Normal(0, 1),

which is the CLT.



Lecture 24

April 13

24.1 Donsker’s Invariance Principle

Setting. (Xi, 1 ≤ i <∞) are IID, EX1 = 0, EX2
1 = 1, Sn =

∑n
i=1Xi. S(t) is the linear interpolation.

S∗n(t) =
1√
n
S(nt), 0 ≤ t ≤ 1.

“As n→∞, the process S∗n converges in distribution to BM.”

(Last Class) Given dist(X1) and standard BM (B(t), 0 ≤ t < ∞), there exists a stopping time T1 with

B(T1)
d
= X1 and ET1 = 1.

Use the Strong Markov Property. If B̃(u)
def
= B(T1 + u) − B(T1), then the process (B̃(u), 0 ≤ u < ∞) is

distributed as BM independent of F(T1). There exists a stopping time T2 for B̃ such that B̃(T2)
d
= X2 and

is independent of B(T1). Now, (B(T1), B(T1 + T2))
d
= (X1, X1 +X2).

Conclusion: There exist IID (T̃i, 1 ≤ i <∞) such that

(B(T̃1), B(T̃1 + T̃2), B(T̃1 + T̃2 + T̃3), . . . )
d
= (S1, S2, S3, . . . )
d
= (B(T1), B(T2), . . . ),

where Tk =
∑k
i=1 T̃i.

Trick : Work with this construction of S(t) and S∗n(t).

Idea: Sk ≈ B(k) to first-order.

Proposition 24.1.

∀ε > 0 lim
n→∞

P
(

sup
0≤t≤1

∣∣∣∣B(nt)√
n
− S∗n(t)

∣∣∣∣ > ε

)
= 0.

Why?

S∗n(t) =
Snt√
n
≈ B(nt)√

n

by the SLLN for the (Ti).
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Proof. Set

Wn(t) =
B(nt)√

n
. (24.1)

Wn(t) is distributed as BM. Study every An
def
= {∃0 ≤ t ≤ 1 |S∗n(t)−Wn(t)| > ε}. Set k = k(t) such

that

k − 1

n
≤ t ≤ k

n
.

Note that

An ⊆
{
∃0 ≤ t ≤ 1 :

∣∣∣∣ Sk√n −Wn(t)

∣∣∣∣ > ε

}
∪
{
∃0 ≤ t ≤ 1 :

∣∣∣∣Sk−1√
n
−Wn(t)

∣∣∣∣ > ε

}
.

If an average is > ε, then one of the items > ε. Rewrite (24.1):

Sk = B(Tk) =
√
nWn

(
Tk
n

)
.

Then,

An ⊆
{
∃0 ≤ t ≤ 1 :

∣∣∣∣Wn

(
Tk
n

)
−Wn(t)

∣∣∣∣ > ε

}
∪
{
∃0 ≤ t ≤ 1 :

∣∣∣∣Wn

(
Tk−1

n

)
−Wn(t)

∣∣∣∣ > ε

}
≡ A∗n, say.

Repeat the “continuity of BM” argument.

Claim: Take δ > 0. If A∗n, then

Dn(δ)
def
=

{
∃0 ≤ t ≤ 1 : max

(∣∣∣∣Tk−1

n
− t
∣∣∣∣, ∣∣∣∣Tkn − t

∣∣∣∣) ≥ δ}
or

D∗n(δ)
def
= {∃0 ≤ s, t ≤ 2 : |s− t| ≤ δ, |Wn(s)−Wn(t)| > ε}.

P(D∗n(δ))→ 0 as δ → 0 (uniformly in n) because BM paths are continuous.

Need to show: P(Dn(δ))→ 0 as n→∞, for fixed δ > 0. By the SLLN,

Tn
n
→ 1 a.s.

By 24.2,

P
(

sup
0≤k≤n

|Tk − k|
n

≥ δ
)
→ 0 as n→∞. (24.2)

In Dn(δ), we have

k − 1

n
≤ t ≤ k

n
.
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Take

n >
2

δ
.

In Dn(δ), the maximum must be attained with

t =
k

n
or t =

k − 1

n
.

Therefore,

P(Dn(δ)) ≤ P
(

sup
1≤k≤n

max

(
Tk − (k − 1)

n
,
k − Tk−1

n

)
> δ

)
.

Because

1

n
<
δ

2
,

one has

P(Dn(δ)) ≤ P
(

sup
1≤k≤n

Tk − k
n

>
δ

2

)
+ P

(
sup

1≤k≤n

(k − 1)− Tk−1

n
>
δ

2

)
→ 0 as n→∞ by (24.2).

Lemma 24.2 (Deterministic Lemma). If

a(n)

n
→ 1,

then

sup
1≤k≤n

|a(k)− k|
n

→ 0 as n→∞.

Consider the metric space (C[0, 1], d) on the space of continuous functions f : [0, 1]→ R, with

d(f1, f2) = sup
0≤t≤1

|f1(t)− f2(t)|.

We have seen a little about “weak convergence on metric spaces”.

Easy general fact, applied to our setting: If S∗n, W ∗n , and W (W is the BM process) satisfy

(i) d(S∗n,W
∗
n)→ 0 in probability as n→∞,

(ii) W ∗n
d
= W ∀n,

then S∗n
d−→W .

Here, we have

W ∗n =
B(nt)√

n

and P(d(W ∗n , S
∗
n) > ε)→ 0 ∀ε: 24.1 says d(W ∗n , S

∗
n)→ 0 in probability. This is Donsker’s Invariance Princi-

ple. S∗n →W in distribution on C[0, 1].

As a general “weak convergence” fact, applied to Donsker’s Theorem:
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Corollary 24.3. If ψ : C[0, 1]→ R is continuous, or more generally, if P(W ∈ Dψ) = 0 for

Dψ
def
= {f : ψ is not continuous at f},

then ψ(S∗n)
d−→ ψ(W ) on R.

Example 24.4. ψ(f)
def
= sup0≤t≤1 f(t). This is everywhere continuous because

|ψ(f)− ψ(g)| ≤ sup
t
|f(t)− g(t)| ≡ d(f, g).

Example 24.5. ψ(f) = Leb{t ∈ [0, 1] : f(t) > 0}. If we take

fn(t) ≡ 1

n
, ψ(fn) = 1,

f(t) ≡ 0, ψ(f) = 0,

but fn → f , so ψ is not continuous. If f satisfies

Leb{t : f(t) = 0} = 0, (24.3)

then ψ is continuous at f . If fn → f , then 1(fn>0) → 1(f>0) outside {f = 0}. If fn → f and f satisfies

(24.3), then 1(fn(t)>0) → 1(f(t)>0) a.e. =⇒
∫ 1

0
1(fn(t)>0) dt→

∫ 1

0
1(f(t)>0) dt, so ψ(fn)→ ψ(f).

Dψ = {f : Leb{t : f(t) = 0} > 0}.

To use 24.3, we need to show P(Leb{t : W (t) = 0} > 0) = 0. It is enough to show

E[Leb{t : W (t) = 0}] = 0,

but we have
∫ 1

0
P(Wt = 0) dt = 0 because P(Wt = 0) = 0 for t > 0.

Example 24.6.

ψ(f) = inf

{
s : f(s) = sup

0≤t≤1
f(t)

}
.

Exercise: If f has the property {
s : f(s) = sup

t
f(t)

}
is a single point (24.4)

then ψ is continuous at f . To apply 24.3, we need to show P(B has property (24.4)) = 1.



Lecture 25

April 25

25.1 Martingale Central Limit Theorem

Take standard Brownian motion (B(t), 0 ≤ t < ∞). Given dist(X) with EX = 0, there exists a stopping

time T such that B(T )
d
= X, which implies ET = EX2 = var(X). We can show ET 2 ≤ cEX4 for constant c.

Theorem 25.1 (Martingale Embedding into BM). Take a MG 0 = S0, S1, S2, . . . . Then, there exists

stopping times 0 = T0 ≤ T1 ≤ T2 such that (S0, S1, S2, . . . )
d
= (B(T0), B(T1), B(T2), . . . ).

Proof. By induction on k. Condition on (S0 = 0, S1 = s1, . . . , Sk = sk) (or condition on Fk). The
conditional distribution of (Sk+1 − Sk) given Fk is a mean-0 distribution. Apply the embedding to the
conditional distribution and (B(Tk + t)−B(Tk), t ≥ 0) to get Tk+1 − Tk = T̂k.

Note: E[Tk+1 − Tk | Fk] = E[(Sk+1 − Sk)2 | Fk] and

E[(Tk+1 − Tk)2 | Fk] ≤ cE[(Sk+1 − Sk)4 | Fk]. (25.1)

Theorem 25.2 (Lindeberg-Feller CLT for Martingales). For each n, let (Xn,m,Fn,m,m = 0, 1, . . . , n)
be a martingale difference sequence, that is, (Sn,m,Fn,m,m = 0, 1, . . . , n) is a MG, Sn,m =

∑m
i=1Xn,i,

that is, Xn,m is Fn,m-measurable, E[Xn,m+1 |Fn,m] = 0. Write Vn,k =
∑k
m=1 E[X2

n,m |Fn,m−1]. Suppose

(i) Vn,nt −→
P
t as n→∞, 0 ≤ t ≤ 1 fixed (Vn,nt defined by linear interpolation),

(ii)
∑n
m=1 E[X2

n,m1(|Xn,m|>ε) | Fn,m−1] −→
P

0 as n→∞.

Then, (Sn,nt, 0 ≤ t ≤ 1)
d−→ (B(t), 0 ≤ t ≤ 1) as C[0, 1]-valued random functions. In particular,

Sn,n
d−→ Normal(0, 1).

Outline Proof. (See Durrett 3rd Edition).

We prove this under the stronger assumption |Xn,m| ≤ εn, εn ↓ 0. For a single sequence (ξi, i ≥ 1), then

Xn,i =
ξi√
n
,

so the stronger assumption is saying |ξn| ≤ εn
√
n.
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If we stop the process if Vn,· reaches 3/2, take εn < 1/2, then we can assume Vn,n ≤ 2 by (i).

Regard the embedding (B(Tn,m),m = 0, 1, . . . , n) as the definition of (Sn,m,m = 0, 1, . . . , n). So,

(Sn,nt, 0 ≤ t ≤ 1)
d
= (B(Tn,nt), 0 ≤ t ≤ 1). It is enough to show Tn,nt −→

P
t as n → ∞ (for fixed t), and

then use continuity of BM paths as in Donsker’s Theorem. Write tn,m = Tn,m − Tn,m−1.

E[tn,m | Fm,m−1] = E[X2
n,m | Fn,m−1]

(i)
=⇒

nt∑
m=1

E[Tn,m | Fn,m−1] −→
P
t as n→∞.

By orthogonality of the increments of the MDS tn,m − E[Tn,m | Fn,m−1],

E(Tn,nt − Vn,nt)2 = E

(
nt∑
m=1

tn,nt − E[tn,m | Fn,m−1]

)2

=
orthogonality

E
nt∑
m=1

(tn,m − E[tn,m | Fn,m−1])2

≤
(25.1)

cE

[
nt∑
m=1

E[X4
n,m | Fn,m−1]

]

≤ cE

[
ε2
n

n∑
m=1

E[X2
n,m | Fn,m−1]

]
≤ cε2

nEVn,n

→ 0 as n→∞.

So, Tn,nt − Vn,nt −→
P

0.

25.2 The 3 Arcsine Laws

The 3 arcsine RVs associated with (B(t), 0 ≤ t ≤ 1):

1. Consider L = sup{t ≤ 1 : B(t) = 0}, 0 ≤ L ≤ 1.

P(L ≤ t |B(t) = a) = P(T|a| > 1− t),

so

P(L ≤ t) =

∫ ∞
0

P(T|a| > 1− t)fB(t)(a) da.

We know how to calculate these quantities since

P(Tb ≤ s) = P
(

max
0≤u≤s

Bs ≥ b
)

= P(|Bs| ≥ b).

From calculus, the density is

fL(t) =
1

πt1/2(1− t)1/2
, 0 < t < 1. (25.2)

2. Consider M(t)
def
= sup0≤s≤tB(s).

Fact : The process (M(t)−B(t), 0 ≤ t <∞) has the same distribution as (|B(t)|, 0 ≤ t <∞). This is

different from the fact M(t)
d
= |B(t)|, which holds for fixed t.

The RV L applied to (M(t)−B(t)) is some RV L̂ applied to (B(t)).

L̂ = sup{t ≤ 1 : B(t) = M(t)} = inf{t : B(t) = M(1)}.
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So, L̂ also has the same arcsine density fL(t) at (25.2).

Rewrite: ψ2 : C[0, 1]→ R, where

ψ2(f) = inf

{
t : f(t) = sup

0≤s≤t
f(s)

}
.

ψ2(B) has the arcsine density.

3. We considered (last class) ψ3(t) = Leb{0 ≤ t ≤ 1 : f(t) > 0}.

Fact : ψ3(B) also has the arcsine density.

History : The original proof is based on a combinatorial identity for a simple symmetric RW

Sm =

m∑
i=1

ξi.

The combinatorial identity is

#{1 ≤ k ≤ n : Sk > 0} d
= min

{
k ≤ n : Sk = max

0≤j≤n
Sj

}
.

Multiply by 1/n.

1

n
#{1 ≤ k ≤ n : Sk > 0} d

=
1

n
min

{
k ≤ n : Sk = max

0≤j≤n
Sj

}
. (25.3)

Rescale to

S∗n(t) =
Snt√
n
.

The LHS of (25.3) is close to ψ3(S∗n) and the RHS of (25.3) is close to ψ2(S∗n). As n → ∞, the
differences converge in probability to 0. Donsker’s Theorem implies that

ψ2(S∗n)
d−→ ψ2(B),

ψ3(S∗n)
d−→ ψ3(B),

which implies ψ2(B)
d
= ψ3(B).



Lecture 26

April 27

26.1 Local Time for Brownian Motion

[Morters-Peres book, Chapter 6.]

26.1.1 Existence

The classic example of a fractal set is C0, C1, C2, . . . . The Cn are closed and Cn ↓ C∞, so C∞ is closed and
non-empty. area(C∞) = 0.

C0 C1 C2

Instead, consider PMs where µn is a uniform (relative to area) PM on Cn. Then, µn → µ∞ weakly, with
supp(µ∞) = C∞. Intuitively, µ∞ is a “uniform” PM on C∞.

For (B(t), 0 ≤ t < ∞), the zero-set Z(ω) = {t : B(t, ω) = 0} is a random closed subset of [0,∞). We know
Leb(Z(ω)) = 0 a.s. since P(B(t) = 0) = 0, t > 0. [MP] proves that the Hausdorff dimension of Z(ω) is 1/2
a.s. If we have any measure on Z(ω), we can describe it via

L(t, ω) = measure of Z(ω) � [0, t],

which must have the property

t 7→ L(t, ω) increases only on {t : t ∈ Z(ω)} = {t : B(t) = 0}. (26.1)

We will give a construction of a process called “local time at 0” which has the property (26.1).

Study D(a, b, t), the number of downcrossings completed by time t.

Theorem 26.1. There exists a process (L(t), 0 ≤ t <∞) such that for all an ↑ 0, bn ↓ 0,

lim
n→∞

Z(bn − an)D(an, bn, t) = L(t) a.s.

Clearly, such L(t) has property (26.1).
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Key Idea: Take a < m < b. Look at one downcrossing over [a, b] followed by an upcrossing. X∗ is the
number of downcrossings of [a,m] and Y ∗ is the number of downcrossings of [m, b]. We know

Pm(Ta < Tb) =
b−m
b− a

.

Then,

Y ∗ = 1 +

0 with probability p =
b−m
b− a

,

1 + Y ∗∗ with probability 1− p,

where Y ∗∗
d
= Y ∗. So,

X∗
d
= Geometric

(
m− a
b− a

)
Y ∗

d
= Geometric

(
b−m
b− a

)
,

independent.

Lemma 26.2. Take a < m < b and a stopping time T with B(T ) ≥ b. Write D = D(a, b, T ) and
D(a,m, T ) and D(m, b, T ). These are related by

D(a,m, T ) = X0 +

D∑
i=1

Xj ,

D(m, b, T ) = Y0 +

D∑
j=1

Yj ,

where the X’s, Y ’s, and D are independent, Xj
d
= X∗, j ≥ 1, Yj

d
= Y ∗, j ≥ 1, X0 ≥ 0, and Y0 ≥ 0.

Lemma 26.3. Take an ↑ 0, bn ↓ 0, and b > b1 > b2 > · · ·. The discrete-“time” process

(2(bn − an)D(an, bn, Tb), n = 1, 2, . . . )

is a submartingale and converges a.s. to L(Tb), say, as n→∞.

Proof. We can assume an+1 = an, bn+1 < bn.

E[D(an = an+1, bn+1, Tb) | Fn] = (≥ 0) + (EX∗) ·D(an, bn, Tb).

Note that

EX∗ =
bn − an

bn+1 − an+1
.

This is the sub-MG property.

If G
d
= Geometric(p), then EG2 ≤ 2/p2.

[MP] says

D(an, bn, Tb)
d
= Geometric

(
bn − an
b− an

)
.
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Actually, the LHS is smaller. So,

E(2(bn − an)D(an, bn, Tn))2 ≤ 8(b− an)2 → 8b2.

Apply the Sub-MG Convergence Theorem.

After the stopping time T̂t, then B̂(u)
def
= B(T̂t+u), u ≥ 0 is BM. Apply the construction to B̂(n) to get L̂(Tb).

Trick : Define

L(t) = lim
b→∞

L(Tb)− L̂(Tb).

We can show that the paths t 7→ L(t, ω) are continuous.

26.1.2 Connection with the Maximum Process

Why is L(t) interesting?

Recall |B(t)| is “reflecting BM”. Given B(t), consider M(t) = sup0≤s≤tB(s).

Fact : Given BM B1(t) and M1(t), the process B2(t)
def
= M1(t) − B1(t) is distributed as reflecting BM. We

have the “same” L(t) for B(t) and |B(t)|.

Given this fact, consider L(t), local time at zero for B2(t). t 7→ L(t) has the property (26.1): it is increasing
only at t such that B2(t) = 0, that is, when B1(t) = M1(t). But, t 7→ M1(t) has the same property (26.1).
This suggests:

Fact : The process (L(t), 0 ≤ t <∞)
d
= (M(t), 0 ≤ t <∞).

26.1.3 Occupation Density

Consider f : [0, t]→ R. There is always an “occupation measure” on R

µt(·) = Leb{t : f(t) ∈ ·}.

This may or may not have a density

dµt
d Leb

(y) = `t(y), y ∈ R.

If f is smooth,

`t(y) =
∑
x≤t

f(x)=y

1

f ′(x)
.

It is not obvious if “occupation density” exists for BM paths.

Theorem 26.4 (Local Time = Occupation Density). There exists (L(t, y, ω), 0 ≤ t < ∞, y ∈ R)
such that y 7→ L(t, y, ω) is the occupation density of the function (s 7→ B(s, ω), 0 ≤ s ≤ t) and also
(t, y) 7→ L(t, y, ω) is jointly continuous.

Idea: L(t, 0, ω) is the L(t) process we constructed.

For each y, we repeat the construction with an ↑ y, bn ↓ y to get L(t, y, ω).
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Fact : For BM, E[time spent within [a, b] during downcrossings over [a, b]] = (b− a)2.

In the limit,

L(t) = lim
n

2(bn − an)D(an, bn, t).

By the SLLN, the total amount of time spent in [an, bn] ∼ 2(bn − an)D(an, bn, t).
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