
MARKOV CHAINS

What I will talk about in class is pretty close to Durrett Chapter 5
sections 1-5. We stick to the countable state case, except where otherwise
mentioned.

Lecture 7. We can regard (p(i, j)) as defining a (maybe infinite) matrix
P. Then a basic fact is

P (Xn = j|X0 = i) = Pn(i, j) (12)

where Pn denotes matrix multiplication. There are two conceptually dif-
ferent ways to get this. First regard X0 as having some arbitrary initial
distribution µ0. Write µn for the distribution of Xn:

µn(j) = P (Xn = j).

By considering the n + 1’st step we get the forward equation (in vector-
matrix notation)

µn+1 = µnP

which implies
µn = µ0P

n.

Putting µ0(·) = δi(·) gives (12). On the other hand we could fix a bounded
function h : S → R and define

hn(i) = E(h(Xn)|X0 = i).

By considering the first step we get the backward equation

hn+1 = Phn

which implies
hn = Pnh.

Putting h(·) = δj(·) gives (12).

Hitting times. Fix A ⊂ S and consider the first hitting time τA =
min{n ≥ 0 : Xn ∈ A}. Now consider

hA(i) = Pi(τA < ∞).

12



The next result says hA is the minimal solution of equations (i)-(iii) below.
(i)h(i) ≥ 0 for all i ∈ S.
(ii) h(i) = 1 for i ∈ A.
(iii) h(i) =

∑

j p(i, j)h(j) for i &∈ A.

Proposition 18 (a) hA satisfies (i)-(iii).
(b) If h is a solution of (i)-(iii) then hA ≤ h.

Proof. (a) is easy. For (b) consider the transition matrix PA for “the chain
stopped on A”

pA(i, j) = p(i, j), i & ∈A

= δi(j), i ∈ A

Then (ii) and (iii) imply
(iv) h = PAh

(jargon: h is a harmonic function for PA.) Fix h satisfying (i)-(iii). Since
h ≥ 1A,

h = Pn
Ah ≥ Pn

A1A.

This says that h(i) ≥ Pi(XA
n ∈ A) where XA denotes a Markov chain with

transition matrix PA. Now given an (i,P)-chain (Xn) it is clear that

XA
n = Xn∧τA

defines an (i,PA)-chain. So

h(i) ≥ Pi(X
A
n ∈ A) = Pi(τA ≤ n).

Let n → ∞.
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Lecture 10. In this class we prove the basic results about invariant
measures and stationary distributions. The results are those of Durrett
Theorems 4.3 - 4.7, though the organization of the proofs is a little different.

Most of the work is in the first result (c.f. Durrett Theorem 4.3: note
we don’t assume recurrence).

Fix a reference state b and define the b-block occupation measure

µ(b, x) =
∞
∑

n=0

Pb(Xn = x, Tb > n).

Proposition 19 Consider the equations

µ(y) =
∑

x

µ(x)p(x, y), y &= b; µ(b) = 1, 0 ≤ µ(x) ≤ ∞ for all x. (13)

Then µ(b, ·) is the minimal solution of (13). Moreover

Pb(Tb < ∞) =
∑

x

µ(b, x)p(x, b).

Theorem 20 Suppose the chain is irreducible and recurrent. Then there
exists an invariant measure µ, unique up to scalar multiples. Either
(i) µ(S) = ∞ and ExTx = ∞ for all x;
or (ii) µ(S) < ∞ and ExTx < ∞ for all x.

In case (i) the chain is null-recurrent. In case (ii) the chain is positive-recurrent.

Theorem 21 Suppose the chain is irreducible. Then it is positive-recurrent
iff a stationary distribution π exists. If so, then π(x) = 1/ExTx for all x.
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Lecture 11. Here is a counterpart to the basic convergence result,
Durrett 5.5.

Proposition 22 Suppose the chain is irreducible but not positive-recurrent.
Then Pµ(Xn = y) → 0 for all y and all initial distributions µ.

Proof. First, we can reduce to the aperiodic case. Next, the result is obvious
in the transient case, because

∑

n≥1

Pµ(Xn = y) = EµN(y) ≤ 1 + EyN(y) = 1/(1 − ρyy) < ∞.

So we may suppose the chain is null-recurrent. Consider independent copies
(Xn, Yn) as a chain on S × S. This product chain is irreducible. If the
product chain is transient then as above

∑

n≥1

Pµ×µ(Xn = y, Yn = y) < ∞.

But the summands are (Pµ(Xn = y))2, and these must converge to 0. So
suppose the product chain is recurrent. We argue by contradiction. If the
result were false, then there exists an initial distribution µ, a state b and a
subsequence of times jn such that

Pµ(X(jn) = b) → αb > 0.

By the diagonal argument, we can then pick a subsequence (kn) such that
for every state y

Pµ(X(kn) = y) → αy ≥ 0. (14)

Now the coupling argument in the proof of Durrett 5.5 depended only on
the fact that the product chain was recurrent. So this argument shows
that convergence in (14) holds for all initial distributions. The rest of the
argument is analysis. Fatou’s lemma shows

∑

y αy ≤ 1, and then

(αP)(y) =
∑

w

(lim pkn(x,w))p(w, y) by (14)

≤ lim pkn+1(x, y) by Fatou’s lemma

= lim
∑

z

p(x, z)pkn(z, y)

= lim
∑

z

p(x, z)αy by (14) and dominated convergence

= αy.
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Now if there really was a strict inequality for some y then
∑

y

αy >
∑

y

(αP)(y) =
∑

x

∑

y

αxp(x, y) =
∑

x

αx

which is impossible. So we have shown α = αP: this is a finite invariant
measure, implying positive-recurrence.

Lecture 12.
The “ergodic theorem” (Durrett 5.1) is a consequence of the SLLN and

the following deterministic fact, worth isolating.

Lemma 23 Let (ti) be increasing with n−1tn → t̄. Let

n(t) = max{i : ti ≤ t}.

Then n(t)/t → 1/t̄. Now let (ri) be such that ri ≥ 0 and n−1 ∑n
i=1 ri → r̄,

and let r(t) be such that

n(t)
∑

i=1

ri ≤ r(t) ≤
n(t)+1
∑

i=1

ri.

Then r(t)/t → r̄/t̄.

A number of useful identities may be derived from the following result.
For simplicity, suppose our chain is irreducible and finite, aperiodic (really
we only need positive-recurrent).

Proposition 24 Consider the chain started at state x. Let 0 < S < ∞ be
a stopping time such that XS = x. Let y be an arbitrary state. Then

Ex(number of visits to y before time S) = π(y)ExS.

In the phrase “number of . . . before time t”, our convention is to include
time 0 but exclude time t.

The following series of lemmas arise from particular choices of y and S.
Some involve the fundamental matrix

Z(x, y) =
∞
∑

t=0

(pt
xy − π(y))

(the sum is finite by exercise 5.8).
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Lemma 25 For y &= x,

Ex(number of visits to x before time Ty) = π(x)(ExTy + EyTx).

Lemma 26

Eπ(number of visits to y before time τx)

=
π(y)

π(x)
Zxx − Zxy.

Lemma 27 π(x)Eπτx = Zxx.

Lemma 28 π(y)Exτy = Zyy − Zxy.
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